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Networks with pairwise rates of the form  
Lij = aij exp( -Uij / T ), T = a small parameter (temperature)

1. Stochastic networks representing 
energy landscapes of atomic and 
molecular clusters and proteins  
(Wales’s group (Cambridge Univ.)) 

2. Evolutionary genetics: fitness 
landscapes. (Kimura, Ewens, 
Gillespie) (A. Morozov & M. Manhart) 

3. Markov State Model in Molecular 
Dynamics. (Schuette, Swope, Pande, 
Noe, etc)

1. Molecular motors. (Astumian (2005)) 

2. Aggregation of interacting particles.   

3. Stochastically oscillating energy 
landscapes.  

Time - reversible Time - irreversible
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Reversible networks
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Lij =

(
(kij/ki)e�(Vij�Vi)/T

, i ⇠ j

0, otherwise

Lii = �
X

j 6=i

Lij

The generator matrix: The invariant distribution: 

⇡i = kie
�Vi/T

Uij = Vij � Vi,

cij =
cij
ci

,

where Vij = Vji, kij = kji



Irreversible networks: Molecular motors 
(Astumian, 2005)
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Molecular motors, cont’d (Astumian, 2005) 
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Significance of the spectral decomposition 

• Understanding of the dynamics of the network: 
decompose it into a collection of processes with various 
time scales 

• Extraction of quasi-invariant sets of states 

• Building coarse-grained models

L = �⇤ ⌘ �⇤��1



Interpretation of spectral decomposition 

⇡ = [⇡1, . . . ,⇡n]

The matrix of left eigenvectors,

 =  the invariant distribution
 =

2

664

⇡ !
 1 !
. . . . . .
 n�1 !

3

775

The matrix of right  
eigenvectors,

e =

2

64
1
...
1

3

75� =


e �1 . . .�n�1

# # . . . #

�

L = �⇤ ⌘ �⇤��1

⇤ =

2

6664

0
z1

. . .
zn�1

3

7775
zk = ��k + iµk

0 < �1  �2  . . .  �n�1

Eigenvalues:

dp(t)

dt
= p(t)L, p(0) = p0 = [p1, . . . , pn]

The Fokker-Planck equation  
or the Master equation

The time evolution of  
the probability distribution p(t) = p0etL = p0�et⇤ = ⇡ +

n�1X

k=1

(p0�k) e
zkt k



Time evolution of the probability distribution

p(t) = ⇡ +
n�1X

k=1

(p0�k) e
��kt+iµkt k

Projection of  
the initial distribution  

onto right eigenvector 

Left eigenvector  

For time-reversible networks: 
P = diag{⇡1, . . . ,⇡n}L = P�1Q Q, where                                                      ,        is symmetric

Right eigenvectors: � = [�0, . . . ,�n�1]

Left eigenvectors: P� = [P�0, . . . , P�n�1]

Right eigenvector               =  proportion  by which the states  
           are over- or under-populated in the perturbed distribution          

↵k�k

⇡ + ↵kP�k

Left  eigenvector           decays uniformly across the network with rate  k �k



Difficulties in computing spectral decomposition

• The generator matrix is large: L in n-by-n, n = 10p, p = 4,5,6,… 

• The pairwise rates Uij  can vary by tens of orders of magnitude 

• No special structure 

• Even if we succeed, the results would be hard to interpret

Idea 
Step 1: compute the asymptotic spectral decomposition 
Step 2: continue eigenpairs of interest to finite temperatures 



The goal

• To develop an efficient algorithm for computing the zero-
temperature asymptotics for eigenvalues and 
eigenvectors of the generator matrices  

• To develop efficient continuation techniques 

• Applications to large and complex networks representing 
energy landscapes



Asymptotics for eigenvalues and eigenvectors



Asymptotics for eigenvalues

T. Gan, C., 2015
For a continuous-time Markov chain  

with pairwise rates of the form

�k = Ak exp(��k/T )

For a continuous-time Markov chain  
with pairwise rates of the form

if all optimal W-graphs are unique, 
eigenvalues of the generator matrix are

A. Wentzell, 1972

�k ⇣ exp(��k/T )

0 > ��1 � . . . � ��N�1

 where       is the optimal W-graph  
with k sinks 

g⇤k

Lij ⇠ e�Uij/T Lij = aije
�Uij/T

if all optimal W-graphs are unique, 
eigenvalues of the generator matrix are

0 > ��1 � . . . � ��N�1

V (k) =
X

(i!j)2g⇤
k

Uij

�k = V (k) � V (k+1) �k = V (k) � V (k+1)

V (k) =
X

(i!j)2g⇤
k

Uij

Ak =

Q
i!j2g⇤

k
Uij

Q
i!j2g⇤

k+1
Uij

+ o(1)



W-graphs (Wentzell, 1972)

Definition. Let G(S,A,U) be a weighted directed graph. 
A W-graph with k sinks is its subgraph satisfying: 
(1) any sink has no outgoing arcs; any non-sink has exactly one outgoing arc; 
(2) the graph has no cycles.
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Optimal W-graphs with k sinks: 
               is minimized with respect to both k sinks and n-k arcs
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Nested property (Gan, C., 2015)

{The set of sinks of       } g⇤k ⇢ g⇤k+1{The set of sinks of          } 

There exists a connected component       of          whose set of vertices  
contains no sink of      .g⇤k

g⇤k+1Sk

The sets of arcs connecting vertices             in                       coincide. S\Sk g⇤k and g⇤k+1

g⇤kIn     , there is a single arc from       to   Sk S\Sk
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Asymptotics for eigenvectors  
(under assumption that ll optimal W-graphs are unique)

Right eigenvectors: �k
i =

(
1, i 2 Sk

0, i /2 Sk

Left eigenvectors: 

Sk

g⇤k+1

b

a

g⇤k

b

a

 k
i =

8
><

>:

1, i = b

�1, i = a,

0, i /2 {a, b}

Time- reversible case: 
Justification: Bovier, Eckort,  
Gayrard, Klein, early 2000’s

Time - irreversible case: 
Justification:  

Cameron, Gan, 2015



Algorithms on graphs for finding asymptotic for 
eigenvectors and eigenvalues



Algorithms for computing asymptotic spectra

Algorithm 1 
(Cameron, 2014) 

Valid for time-reversible 
networks 

Precompute the 
minimum spanning tree 

Order of computation:  
from smallest to largest 

(Cameron, NHM, 9, 3, 383-416  
(2014), arXiv:1402.2869; 
Cameron. J. Chem. Phys., 141,  

NEW!    Algorithm 2  
(Tingyue Gan, Cameron 2015) 

Time-reversibility is  
not assumed 

A single-sweep algorithm 
(motivation: Chi-Liu/Edmond’s algorithm  
for optimum branching for a directed 
graph with a selected root) 

Order of computation:  
from largest to smallest

In preparation



The single-sweep algorithm            (Cameron, Gan., 2015)

Input:  
list of arcs with weights  

and prefactors 

1 ! i1 : U1i1 , k1i1
...

1 ! in1 : U1in1
, k1in1

...

N ! p1 : U1p1 , k1p1

...

1 ! pnN : U1pnN
, k1pnN

Output:

Sk

g⇤k+1

b

a

k = n� 1, an�1, �n�1, An�1, Sn�1, bn�1
...

...
...

...
...

...
k = 1, a1, �1, A1, S1, b1



The single-sweep algorithm                        (T. Gan, C., 2015)

Form binary trees out of sets of outgoing arcs for each vertex  
Delete the minimal outgoing arc min_arc(i) from the tree  

        of each vertex      and add it to the main tree 
While the main tree contains more than 1 arc, keep adding arcs  

           to build optimal W-graphs
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If the arc             on the top of the main tree creates a directed cycle, do:  
• Update U’s of in each tree reserve outgoing arcs of vertices lying  
• in the cycle according to the rule:  
• Merge trees of remaining outgoing arcs from all vertices of the cycle 
• Keep deleting the minimal outgoing arcs           from the merged tree  

             and discard it until  p and q are associated with the merged tree.   
• Delete  the minimal outgoing arc           from the merged tree and 

add it to the main tree. 
•  For all vertices i associated with the merged tree, min_arc(i) = 

a ! b

Uij = Uij + Uab � Umin arc(i)

p ! q

p ! q

p ! q
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�1, = 5 S1 = {a, b, c}, sink1 = a

Find optimal W-graphs: 
        recursively trace arcs from  

      the set that  
        ever appear on the top  
        of the main tree backwards  
        starting from the sink, so that  
        each vertex has exactly one  
        outgoing arc 
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sink0 = d
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Ba = {[(a ! b), 4], [(a ! c), 11]};
Bb = {[(b ! c), 3], [(b ! a), 9]};
Bc = {[(c ! a), 1], [(c ! d), 2], [(c ! b), 12]};
Bd = {[(d ! c), 10]};
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Ba = {[(a ! c), 11]}; Bb = {[(b ! a), 9]};
Bc = {[(c ! d), 2], [(c ! b), 12]}; Bd = ;;
M = {[(c ! a), 1], [(b ! c), 3], [(a ! b), 4], [(d ! c), 10]};
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Bc = {[(c ! d), 2], [(c ! b), 12]}; Bd = ;;
M = {[(b ! c), 3], [(a ! b), 4], [(d ! c), 10]};
s⇤3 = c; �3 = 1; A3 = aca;

g⇤3 = {(c ! a)};
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Ba = {[(a ! c), 11]}; Bb = {[(b ! a), 9]};
Bc = {[(c ! d), 2], [(c ! b), 12]}; Bd = ;;
M = {[(a ! b), 4], [(d ! c), 10]};
s⇤2 = b; �2 = 3; A2 = abc;

g⇤2 = {(c ! a), (b ! c)};

Initialization

While-cycle, step 1 While-cycle, step 2
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Ba = {[(a ! c), 11]}; Bb = {[(b ! a), 9]};
Bc = {[(c ! d), 2], [(c ! b), 12]}; Bd = ;;
M = {[(d ! c), 10]};

Cycle {(a ! b), (b ! c), (c ! a)} is created

Update Ba, Bb, and Bc :

Ba = {[(a ! c), 11 + 4� 4 = 11]}; Bb = {[(b ! a), 9 + 4� 3 = 10]};
Bc = {[(c ! d), 2 + 4� 1 = 5], [(c ! b), 12 + 4� 1 = 15]};

Merge Ba, Bb, and Bc :

B := {[(c ! d), 5], [(b ! a), 10], [(a ! c), 11], [(c ! b), 15]};
Ba = Bb = Bc = B;

Remove the minimum arc from B and add it to M :

M = {[(c ! d), 5], [(d ! c), 10]};
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While-cycle, step 3 While-cycle, step 4

M = {[(d ! c), 10]};
s⇤1 = a; �1 = 5;

A1 =
acdaab
aca

;

g⇤1 = {(c ! d), (b ! c), (a ! b)}



Results:

�3 ⇡ acae
�1/T , �3 ⇡

2
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0
0
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775 ,  3 ⇡ [�1, 0, 1, 0]

�2 ⇡ abce
�3/T , �2 ⇡

2
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0
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Computational cost

N vertices, index of each vertex ≤ k 

Best case scenario: 
Initialization: O(Nk log k) 

Routine: O(N log N) 

Worst case scenario: 
Routine: O((Nk)2 log(Nk)) due to merging trees  

of reserve arcs when a cycle is created



Performance

• Lennard-Jones-38 network:       71887 vertices, 239706 arcs  

• CPU time: 30 seconds,  

• the number of cycles encountered: 50266 

• the number of arcs having appeared on the top of the main tree: 122152 

• Lennard-Jones-75 network:      169523 vertices, 441016 arcs 

• CPU time: 632 seconds (10.5 minutes) 

• the number of cycles encountered: 153164 

• the number of arcs having appeared on the top of the main tree: 322686



Application to 
Lennard-Jones-75 
network

Data: courtesy of David Wales
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Stats  
593320 vertices, 452315 edges 
the maximal vertex index: 740  

The maximal connected component: 
169523 vertices, 227198 edges 
the maximal vertex degree: 740 

the number of edges that are not loops and  
connecting different pairs of vertices: 

220508
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Zero-temperature asymptotic analysis to LJ75



Quasi-invariant sets, Freidlin’s cycles, etc.
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Asymptotics for eigenvalues: �k =
Os⇤k+1

⌫̄219s⇤k+1

Op⇤
kq

⇤
k
⌫̄218p⇤
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⇤
k

e��k/T
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k = 4395

�4395 ⇡ 147.2e�7.897/T

|S4395| = 92883

(p⇤4395 ! q⇤4395) = (25811 ! 73992)



Decomposition into maximal disjoint sets Sk
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Largest quasi-invariant sets ( > 100 local minima)
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The asymptotic zero-temperature (MinMax) path 
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Crystalline Order Numbers (Steinhardt, Nelson, Ronchetti, 1983)

Ql =

"
4⇡

2l + 1

lX

m=�l

|Q̄lm|2
#1/2

Qlm(r) ⌘ Ylm(✓(r),�(r))

Ylm(✓,�)

✓(r), �(r)

Q̄lm

Q4 and Q6

Bond-orientational order numbers  
or crystalline order numbers

Spherical harmonics

Polar angles of the bond r

Averages over all bonds in the cluster where

|r|  1.391r⇤, r⇤ = 21/6✏

Following Picciani, Athenes, Kurchan, Tailleur, 2011, we use



Icosahedral and Marks decahedral basins

Marks decahedron  
(minimum 1)

Icosahedral structure  
(minimum 92)

Red dots (15838): the largest Freidlin’s cycle containing  
minimum 1 that does not contain minimum 92. 

Dark blue dots (28032): the largest Freidlin’s cycle containing  
minimum 92 that does not contain minimum 1. 

Light blue dots (92883): the quasi-invariant set  
associated with minimum 92 

Pink dots (76640): the set of minima not contained  
in the quasi-invariant set  

associated with minimum 92 92



Spectrum of the truncated LJ75 network 
(Vmax - V1 < 10.0):    56074 vertices, 163666 arcs
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Purple dots: all deltas 
Large black dots: deltas corresponding  
to transitions visible on the (Q4,Q6)-plane



Relaxation processes visible on the (Q4,Q6)-plane
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Continuation to finite temperature of 
which is responsible for the relaxation process  
from the icosahedral funnel  
to Marks decahedron funnel 

�4395



Eigencurrent

dpi
dt

= �
n�1X

k=0

ck
X

j 6=i

F k
ij

F k
ij := ⇡iLije

��kt[(�k)i � (�k)j ]

The Fokker-Planck equation  
in terms of eigencurrents

The importance of currents 
was emphasized  

in works of J. Kurchan. 

E. Vanden-Eijnden proposed to 
consider eigencurrents.

=   the net average number of transitions  
     along the edge  
     per unit time at time t  
     in the relaxation process from  
     the initial distribution 

(i ! j)

↵kF
k
ij

⇡ + ↵kP�k

X

j 6=i

F k
ij = e��kt�k⇡k�

k
i



The emission-absorption cut

S = Sk
+ [ Sk

�

Sk
+ : = {i 2 S : (�k)i � 0}

Sk
� : = {i 2 S : (�k)i < 0}

Among all possible cuts, the eigencurrent          is maximal  

through the emission-absorption cut
F k

The emission-absorption cut

Emitting states

Absorbing states

Sk
+

Sk
�

X

j 6=i

F k
ij = e��kt�k⇡k�

k
i

always > 0 > 0 or < 0

Consider the total eigencurrent Fk  
through the vertex i

Ref.: M. Cameron, J. Chem. Phys. (2014), 141, 184113, arXiv: 1408.5630



Continuation of eigenpairs to finite temperatures

• Difficulties: (1) eigenvalues are close to 0 and may cross; (2) 
the matrix is large with widely varying entries 

• Useful fact: the eigenvectors of the symmetrized generator 
matrix                                                                     are 
orthonormal 

• Rayleigh Quotient iteration with initial approximation  

• Precaution: check whether the corresponding eigencurrent 
is largely emitted at the sink sk* and largely absorbed at the 
sink tk* 

Lsym := P 1/2LP�1/2 ⌘ P�1/2QP�1/2

( 0
k)i =

(p
⇡i, i 2 Sk

0, i /2 Sk



Rayleigh Quotient Iteration

    rayleigh = @(x) x’*Lsym*x/(x’*x); % the Rayleigh quotient

    rtol = 1e-6;
itermax = 12;

%% Rayleigh quotient iteration
    iter = 0;
    while abs(res) > rtol*abs(lam) & iter < itermax
        A = Lsym  - lam*speye(n);
        w = (A)\v;
        v = w/norm(w);
        res = norm(A*v);
        lam = rayleigh(v);
        iter = iter + 1;
        fprintf('iter = %d:  lam = %d\t res = %d\n',iter,lam,res);
    end



Difficulties with Lennard-Jones-75
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Marks decahedron
Icosaherdal states
(−397 < V < −395.2)
Liquid−like states
(V > −395.2)

solid −− solid

solid −− liquid

Marks decahedron - icosahedral states  
solid - solid transition: T = 0.08 

Icosahedral - liquid-like states 
transition: T = 0.25 

The range of temperatures to which  
    we would like to continue              : 

For T < 0.17, the matrix is badly  
scaled, and the results are  

inaccurate  or NaN 

For T ≥ 0.17, convergence  
to a wrong eigenpair takes place

�4395

0.05  T  0.25

cv =
@hEi
@T

=
@

@T

✓P
Eie�Ei/T /kiP
e�Ei/T /ki

◆



Remedy 1: lumping

Sk

Pick          . Here  �min �min = �2

Lump the quasi-invariant sets  
with �k < �min

Re-calculate pairwise rates

L̃kl =
X

i2Sk,j2Sl

Lij
⇡iP

i02Sk
⇡i0

The lumped network

�1

�2

12 3

The resulting generator matrix     is smaller, 
the largest entries of L are gone

L̃

Aki =

(
⇡iP

i02Sk
⇡i0

, i 2 Sk

0, otherwise

Bjl =

(
1, j 2 Sl

0, otherwise

L̃N⇥N = AN⇥n Ln⇥n Bn⇥N



Remedy 2: truncation

One can combine truncation and lumping:  
first truncate, then lump.

keep

remove

remove

Vmax

The resulting network is smaller, 
the components that  

used to be nearly transient  
or make it nearly reducible 

are removed

Pick Vmax, remove all states  
separated from  

the global minimum  
by a barrier exceeding Vmax



Eigenvalue          of LJ75 �4395
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1/0.051/0.061/0.071/0.101/0.151/0.25

1/0.181/0.201/0.23

Truncation: Vmax = 10.0; lumping: ∆min = 6.0 
Truncation: Vmax = 12.0; lumping: ∆min = 4.0 
Lumping: ∆min = 4.0 
Full network 
Best linear fit: 
Theoretical prediction for the rate ICO —> MARKS 

Best linear fit: 
Theoretical prediction for the rate MARKS —> ICO 

rMARKS!ICO(T ) = 7.7 · 107 · e�9.11/T

rMARKS!ICO(T ) = 4.3 · 108 · e�9.18/T

rICO!MARKS(T ) = 1.55 · 102 · e�7.96/T

rICO!MARKS(T ) = 1.47 · 102 · e�7.90/T



Eigencurrent distribution in the emission-
absorption cut
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The emission-absorption cut: location
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Emission-absorption distribution
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Emission, T=0.17

Absorption, T=0.17

Emission, T=0.19

Absorption, T=0.19

Emission, T=0.21

Absorption, T=0.21

Emission, T=0.23

Absorption, T=0.23

Emission, T=0.25

Absorption, T=0.25



Emission - absorption
T = 0.17

T = 0.25

States emitting 99% of the eigencurrent 
States emitting 90% of the eigencurrent 
States absorbing 99% of the eigencurrent 
States absorbing 90% of the eigencurrent



Highlights
• Formulas for asymptotic eigenvalues: exponents and prefactors 

• Nested property of optimal W-graphs for stochastic networks with pairwise 
transition rates of the form Lij = kij exp(-Uij/T) 

• A single-sweep algorithm for computing asymptotic eigenvalues and eigenvectors 

• Application to Lennard-Jones-75
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