Spectral Analysis of Stochastic Networks

Maria Cameron
Department of Mathematics, University of Maryland, USA
(joint work with Tingyue Gan (AMSC, UMD))

Workshop: Fluctuation - driven phenomena in non-equilibrium statistical mechanics, Warwick University, UK, September 2015

Networks with pairwise rates of the form
$L_{i j}=a_{i j} \exp \left(-U_{i j} / T\right), T=$ a small parameter (temperature)

Time - reversible

1. Stochastic networks representing energy landscapes of atomic and molecular clusters and proteins (Wales's group (Cambridge Univ.))
2. Evolutionary genetics: fitness landscapes. (Kimura, Ewens, Gillespie) (A. Morozov \& M. Manhart)
3. Markov State Model in Molecular Dynamics. (Schuette, Swope, Pande, Noe, etc)

Time - irreversible

1. Molecular motors. (Astumian (2005))
2. Aggregation of interacting particles.
3. Stochastically oscillating energy landscapes.

Reversible networks

$$
\begin{aligned}
U_{i j} & =V_{i j}-V_{i}, \\
c_{i j} & =\frac{c_{i j}}{c_{i}}
\end{aligned}
$$

where $V_{i j}=V_{j i}, \quad k_{i j}=k_{j i}$

The generator matrix:
$L_{i j}= \begin{cases}\left(k_{i j} / k_{i}\right) e^{-\left(V_{i j}-V_{i}\right) / T}, & i \sim j \\ 0, & \text { otherwise }\end{cases}$
$L_{i i}=-\sum_{j \neq i} L_{i j}$

The invariant distribution:

$$
\pi_{i}=k_{i} e^{-V_{i} / T}
$$

Irreversible networks: Molecular motors

 (Astumian, 2005)
Ψ switches between $+\Psi$ and $-\Psi$ with Poisson-distributed lifetime $r=A e^{-a / T}$

Molecular motors, cont'd (Astumian, 2005)

Significance of the spectral decomposition
 $L=\Phi \Lambda \Psi \equiv \Phi \Lambda \Phi^{-1}$

- Understanding of the dynamics of the network: decompose it into a collection of processes with various time scales
- Extraction of quasi-invariant sets of states
- Building coarse-grained models

Interpretation of spectral decomposition $L=\Phi \Lambda \Psi \equiv \Phi \Lambda \Phi^{-1}$

$$
\Psi=\left[\begin{array}{cc}
\pi & \rightarrow \\
\psi_{1} & \rightarrow \\
\cdots & \cdots \\
\psi_{n-1} & \rightarrow
\end{array}\right] \quad \begin{aligned}
& \text { The matrix of left eigenvectors, } \\
& \pi=\left[\pi_{1}, \ldots, \pi_{n}\right]=\text { the invariant distribution }
\end{aligned}
$$

$$
\Phi=\left[\begin{array}{ccc}
e & \phi_{1} & \ldots \phi_{n-1} \\
\downarrow & \downarrow & \ldots \downarrow
\end{array}\right] \quad \begin{gathered}
\text { The matrix of right } \\
{[0}
\end{gathered}
$$

$$
\Lambda=\left[\begin{array}{cccc}
0 & & & \\
& z_{1} & & \\
& & \ddots & \\
& & & z_{n-1}
\end{array}\right] \quad \text { Eigenvalues: } \quad z_{k}=-\lambda_{k}+i \mu_{k}
$$

The Fokker-Planck equation or the Master equation

The time evolution of the probability distribution

$$
\frac{d p(t)}{d t}=p(t) L, \quad p(0)=p^{0}=\left[p_{1}, \ldots, p_{n}\right]
$$

$$
p(t)=p^{0} e^{t L}=p^{0} \Phi e^{t \Lambda} \Psi=\pi+\sum_{k=1}^{n-1}\left(p_{0} \phi_{k}\right) e^{z_{k} t} \psi_{k}
$$

Time evolution of the probability distribution

$$
p(t)=\pi+\sum_{k=1}^{n-1} \underbrace{\left(p_{0} \phi_{k}\right)}_{\substack{\text { Projection of } \\ \text { the intial distribution } \\ \text { onto right eigenvector }}} e^{-\lambda_{k} t+i \mu_{k} t} \psi_{k}
$$

Left eigenvector ψ_{k} decays uniformly across the network with rate λ_{k}

For time-reversible networks:

$L=P^{-1} Q$, where $P=\operatorname{diag}\left\{\pi_{1}, \ldots, \pi_{n}\right\}, Q$ is symmetric
Right eigenvectors: $\quad \Phi=\left[\phi_{0}, \ldots, \phi_{n-1}\right]$
Left eigenvectors: $P \Phi=\left[P \phi_{0}, \ldots, P \phi_{n-1}\right]$
Right eigenvector $\alpha_{k} \phi_{k}=$ proportion by which the states are over- or under-populated in the perturbed distribution $\pi+\alpha_{k} P \phi_{k}$

Difficulties in computing spectral decomposition

- The generator matrix is large: L in n-by- $n, n=10^{p}, p=4,5,6, \ldots$
- The pairwise rates $U_{i j}$ can vary by tens of orders of magnitude
- No special structure
- Even if we succeed, the results would be hard to interpret

Idea
Step 1: compute the asymptotic spectral decomposition
Step 2: continue eigenpairs of interest to finite temperatures

The goal

- To develop an efficient algorithm for computing the zerotemperature asymptotics for eigenvalues and eigenvectors of the generator matrices
- To develop efficient continuation techniques
- Applications to large and complex networks representing energy landscapes

Asymptotics for eigenvalues and eigenvectors

Asymptotics for eigenvalues

A. Wentzell, 1972

For a continuous-time Markov chain with pairwise rates of the form

$$
L_{i j} \sim e^{-U_{i j} / T}
$$

if all optimal W -graphs are unique, eigenvalues of the generator matrix are

$$
\begin{gathered}
0>-\lambda_{1} \geq \ldots \geq-\lambda_{N-1} \\
\lambda_{k} \asymp \exp \left(-\Delta_{k} / T\right) \\
\Delta_{k}=V^{(k)}-V^{(k+1)} \\
V^{(k)}=\sum_{(i \rightarrow j) \in g_{k}^{*}} U_{i j}
\end{gathered}
$$

where g_{k}^{*} is the optimal W-graph with k sinks

T. Gan, C., 2015

For a continuous-time Markov chain with pairwise rates of the form

$$
L_{i j}=a_{i j} e^{-U_{i j} / T}
$$

if all optimal W -graphs are unique, eigenvalues of the generator matrix are

$$
\begin{gathered}
0>-\lambda_{1} \geq \ldots \geq-\lambda_{N-1} \\
\lambda_{k}=A_{k} \exp \left(-\Delta_{k} / T\right) \\
\Delta_{k}=V^{(k)}-V^{(k+1)} \\
V^{(k)}=\sum_{(i \rightarrow j) \in g_{k}^{*}} U_{i j} \\
A_{k}=\frac{\prod_{i \rightarrow j \in g_{k}^{*}} U_{i j}}{\prod_{i \rightarrow j \in g_{k+1}^{*}} U_{i j}}+o(1)
\end{gathered}
$$

W-graphs (Wentzell, 1972)

Definition. Let $G(S, A, U)$ be a weighted directed graph.
A W-graph with k sinks is its subgraph satisfying:
(1) any sink has no outgoing arcs; any non-sink has exactly one outgoing arc;
(2) the graph has no cycles.

Example

A W-graph with two sinks

An optimal W-graph with two sinks

Optimal W-graphs with k sinks:

$\sum U_{i j}$ is minimized with respect to both k sinks and $n-k$ arcs $(i \rightarrow j) \in g$

Nested property (Gan, C., 2015)

- \{The set of sinks of $\left.g_{k}^{*}\right\} \subset \quad\left\{\right.$ The set of sinks of $\left.g_{k+1}^{*}\right\}$
- There exists a connected component S_{k} of g_{k+1}^{*} whose set of vertices contains no sink of g_{k}^{*}.
- The sets of arcs connecting vertices $S \backslash S_{k}$ in g_{k}^{*} and g_{k+1}^{*} coincide.
- In g_{k}^{*}, there is a single arc from S_{k} to $S \backslash S_{k}$

Asymptotics for eigenvectors

 (under assumption that II optimal W-graphs are unique)

Right eigenvectors: $\quad \phi_{i}^{k}= \begin{cases}1, & i \in S_{k} \\ 0, & i \notin S_{k}\end{cases}$
Left eigenvectors: $\quad \psi_{i}^{k}= \begin{cases}1, & i=b \\ -1, & i=a, \\ 0, & i \notin\{a, b\}\end{cases}$

Time- reversible case: Justification: Bovier, Eckort, Gayrard, Klein, early 2000's

Time - irreversible case: Justification:
Cameron, Gan, 2015

Algorithms on graphs for finding asymptotic for eigenvectors and eigenvalues

Algorithms for computing asymptotic spectra

Algorithm 1

(Cameron, 2014)
Valid for time-reversible networks

Precompute the minimum spanning tree

Order of computation: from smallest to largest
(Cameron, NHM, 9, 3, 383-416 (2014), arXiv:1402.2869;

Cameron. J. Chem. Phys., 141,

$\mathcal{N} E$ W! Algorithm 2

(Tingyue Gan, Cameron 2015)

Time-reversibility is not assumed

A single-sweep algorithm
(motivation: Chi-Liu/Edmond's algorithm for optimum branching for a directed graph with a selected root)

Order of computation: from largest to smallest

In preparation

The single-sweep algorithm

Input:
list of arcs with weights and prefactors
$1 \rightarrow i_{1}: U_{1 i_{1}}, \quad k_{1 i_{1}}$
\vdots
$1 \rightarrow i_{n_{1}}: U_{1 i_{n_{1}}}, \quad k_{1 i_{n_{1}}}$
\vdots
$N \rightarrow p_{1}: U_{1 p_{1}}, \quad k_{1 p_{1}}$
;
$1 \rightarrow p_{n_{N}}: U_{1 p_{n_{N}}}, \quad k_{1 p_{n_{N}}}$

Output:

$k=n-1$,	a_{n-1},	Δ_{n-1},	A_{n-1},	S_{n-1},	b_{n-1}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$k=1$,	a_{1},	Δ_{1},	A_{1},	S_{1},	b_{1}

$$
g_{k+1}^{*}
$$

The single-sweep algorithm

- Form binary trees out of sets of outgoing arcs for each vertex
- Delete the minimal outgoing arc min_arc (i) from the tree of each vertex i and add it to the main tree
- While the main tree contains more than 1 arc, keep adding arcs to build optimal W-graphs

$$
\begin{aligned}
& \Delta_{3},=1 \quad S_{3}=\{c\}, \quad \operatorname{sink}_{3}=c \\
& \Delta_{2},=3 \quad S_{2}=\{b\}, \quad \operatorname{sink}_{2}=b
\end{aligned}
$$

- If the arc $a \rightarrow b$ on the top of the main tree creates a directed cycle, do:
- Update U's of in each tree reserve outgoing arcs of vertices lying
- in the cycle according to the rule: $U_{i j}=U_{i j}+U_{a b}-U_{\text {min } \operatorname{arc}(i)}$
- Merge trees of remaining outgoing arcs from all vertices of the cycle
- Keep deleting the minimal outgoing arcs $p \rightarrow q$ from the merged tree and discard it until p and q are associated with the merged tree.
- Delete the minimal outgoing arc $p \rightarrow q$ from the merged tree and add it to the main tree.
- For all vertices i associated with the merged tree, $\min _\operatorname{arc}(i)=p \rightarrow q$

- Find optimal W-graphs: recursively trace arcs from the set that ever appear on the top of the main tree backwards starting from the sink, so that each vertex has exactly one outgoing arc

Blue arcs form
the optimal W -graph g_{1}^{*}

Initialization

$$
\begin{aligned}
B_{a} & =\{[(a \rightarrow b), 4],[(a \rightarrow c), 11]\} ; \\
B_{b} & =\{[(b \rightarrow c), 3],[(b \rightarrow a), 9]\} ; \\
B_{c} & =\{[(c \rightarrow a), 1],[(c \rightarrow d), 2],[(c \rightarrow b), 12]\} ; \\
B_{d} & =\{[(d \rightarrow c), 10]\} ;
\end{aligned}
$$

$$
B_{a}=\{[(a \rightarrow c), 11]\} ; \quad B_{b}=\{[(b \rightarrow a), 9]\} ;
$$

$$
B_{c}=\{[(c \rightarrow d), 2],[(c \rightarrow b), 12]\} ; \quad B_{d}=\emptyset ;
$$

$$
M=\{[(c \rightarrow a), 1],[(b \rightarrow c), 3],[(a \rightarrow b), 4],[(d \rightarrow c), 10]\} ;
$$

While-cycle, step 1

$$
\begin{aligned}
B_{a} & =\{[(a \rightarrow c), 11]\} ; \quad B_{b}=\{[(b \rightarrow a), 9]\} ; \\
B_{c} & =\{[(c \rightarrow d), 2],[(c \rightarrow b), 12]\} ; \quad B_{d}=\emptyset ; \\
M & =\{[(b \rightarrow c), 3],[(a \rightarrow b), 4],[(d \rightarrow c), 10]\} ; \\
s_{3}^{*} & =c ; \quad \Delta_{3}=1 ; \quad A_{3}=a_{c a} ; \\
g_{3}^{*} & =\{(c \rightarrow a)\} ;
\end{aligned}
$$

While-cycle, step 2

$$
\begin{aligned}
B_{a} & =\{[(a \rightarrow c), 11]\} ; \quad B_{b}=\{[(b \rightarrow a), 9]\} ; \\
B_{c} & =\{[(c \rightarrow d), 2],[(c \rightarrow b), 12]\} ; \quad B_{d}=\emptyset ; \\
M & =\{[(a \rightarrow b), 4],[(d \rightarrow c), 10]\} ; \\
s_{2}^{*} & =b ; \quad \Delta_{2}=3 ; \quad A_{2}=a_{b c} ; \\
g_{2}^{*} & =\{(c \rightarrow a),(b \rightarrow c)\} ;
\end{aligned}
$$

While-cycle, step 3

While-cycle, step 4

$B_{a}=\{[(a \rightarrow c), 11]\} ; \quad B_{b}=\{[(b \rightarrow a), 9]\} ;$
$B_{c}=\{[(c \rightarrow d), 2],[(c \rightarrow b), 12]\} ; \quad B_{d}=\emptyset ;$
$M=\{[(d \rightarrow c), 10]\}$;
Cycle $\{(a \rightarrow b),(b \rightarrow c),(c \rightarrow a)\}$ is created
Update B_{a}, B_{b}, and B_{c} :
$B_{a}=\{[(a \rightarrow c), 11+4-4=11]\} ; \quad B_{b}=\{[(b \rightarrow a), 9+4-3=10]\} ;$
$B_{c}=\{[(c \rightarrow d), 2+4-1=5],[(c \rightarrow b), 12+4-1=15]\} ;$

$$
\begin{aligned}
M & =\{[(d \rightarrow c), 10]\} \\
s_{1}^{*} & =a ; \quad \Delta_{1}=5 ; \\
A_{1} & =\frac{a_{c d} a_{a b}}{a_{c a}} ; \\
g_{1}^{*} & =\{(c \rightarrow d),(b \rightarrow c),(a \rightarrow b)\}
\end{aligned}
$$

Merge B_{a}, B_{b}, and B_{c} :
$B:=\{[(c \rightarrow d), 5],[(b \rightarrow a), 10],[(a \rightarrow c), 11],[(c \rightarrow b), 15]\} ;$
$B_{a}=B_{b}=B_{c}=B ;$
Remove the minimum arc from B and add it to M :
$M=\{[(c \rightarrow d), 5],[(d \rightarrow c), 10]\} ;$

Results:

$$
\begin{aligned}
& \lambda_{3} \approx a_{c a} e^{-1 / T}, \quad \phi_{3} \approx\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \psi_{3} \approx[-1,0,1,0] \\
& \lambda_{2} \approx a_{b c} e^{-3 / T}, \quad \phi_{2} \approx\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \psi_{2} \approx\left[\begin{array}{lll}
-1, & 1, & 0,0
\end{array}\right] \\
& \lambda_{1} \approx \frac{a_{c d} a_{a b}}{a_{c a}} e^{-5 / T}, \quad \phi_{1} \approx\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \psi_{1} \approx\left[\begin{array}{ll}
1,0, & 0,
\end{array}\right] \\
& \lambda_{0}=0, \quad \phi_{0}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \psi_{0} \approx\left[\begin{array}{lll}
0, & 0, & 0,1
\end{array}\right]
\end{aligned}
$$

Computational cost

N vertices, index of each vertex $\leq k$

Best case scenario:
Initialization: $O(N k \log k)$
Routine: $O(N \log N)$

Worst case scenario:

Routine: $O\left((N k)^{2} \log (N k)\right)$ due to merging trees of reserve arcs when a cycle is created

Performance

- Lennard-Jones-38 network: 71887 vertices, $\mathbf{2 3 9 7 0 6}$ arcs
- CPU time: 30 seconds,
- the number of cycles encountered: 50266
- the number of arcs having appeared on the top of the main tree: 122152
- Lennard-Jones-75 network: 169523 vertices, 441016 arcs
- CPU time: 632 seconds (10.5 minutes)
- the number of cycles encountered: 153164
- the number of arcs having appeared on the top of the main tree: 322686

Application to Lennard-Jones-75 network

Data: courtesy of David Wales

Stats

593320 vertices, 452315 edges
the maximal vertex index: $\mathbf{7 4 0}$
The maximal connected component: 169523 vertices, 227198 edges
the maximal vertex degree: $\mathbf{7 4 0}$
the number of edges that are not loops and connecting different pairs of vertices:

220508

Zero-temperature asymptotic analysis to L_{75}

Quasi-invariant sets, Freidlin's cycles, etc.

Icosahedral funnel $->$ Marks decahedron

Decomposition into maximal disjoint sets S_{k}

Largest quasi-invariant sets (> 100 local minima)

The asymptotic zero-temperature (MinMax) path

Crystalline Order Numbers (Steinharct, Nelson, Ronchetit 1983)

$$
\begin{aligned}
& Q_{l}=\left[\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l}\left|\bar{Q}_{l m}\right|^{2}\right]^{1 / 2} \quad \begin{array}{c}
\text { Bond-orientational order numbers } \\
\text { or crystalline order numbers }
\end{array} \\
& Q_{l m}(\mathbf{r}) \equiv Y_{l m}(\theta(\mathbf{r}), \phi(\mathbf{r})) \\
& Y_{l m}(\theta, \phi) \quad \text { Spherical harmonics } \\
& \theta(\mathbf{r}), \phi(\mathbf{r}) \quad \text { Polar angles of the bond } \mathbf{r} \\
& \bar{Q}_{l m} \quad \begin{array}{l}
\text { Averages over all bonds in the cluster where } \\
\\
|\mathbf{r}| \leq 1.391 r^{*}, \quad r^{*}=2^{1 / 6} \epsilon
\end{array}
\end{aligned}
$$

Following Picciani, Athenes, Kurchan, Tailleur, 2011, we use

$$
Q_{4} \text { and } Q_{6}
$$

Icosahedral and Marks decahedral basins

Spectrum of the truncated L_{75} network $\left(V_{\max }-V_{1}<10.0\right)$: 56074 vertices, 163666 arcs

Relaxation processes visible on the $\left(Q_{4}, Q_{6}\right)$-plane

Continuation to finite temperature of λ_{4395} which is responsible for the relaxation process from the icosahedral funnel to Marks decahedron funnel

Eigencurrent
 $$
F_{i j}^{k}:=\pi_{i} L_{i j} e^{-\lambda_{k} t}\left[\left(\phi_{k}\right)_{i}-\left(\phi_{k}\right)_{j}\right]
$$

The importance of currents was emphasized in works of J. Kurchan.
E. Vanden-Eijnden proposed to consider eigencurrents.

$\alpha_{k} F_{i j}^{k}=$ the net average number of transitions along the edge $(i \rightarrow j)$ per unit time at time t in the relaxation process from the initial distribution $\pi+\alpha_{k} P \phi_{k}$

The Fokker-Planck equation in terms of eigencurrents

$$
\begin{aligned}
& \frac{d p_{i}}{d t}=-\sum_{k=0}^{n-1} c_{k} \sum_{j \neq i} F_{i j}^{k} \\
& \sum_{j \neq i} F_{i j}^{k}=e^{-\lambda_{k} t} \lambda_{k} \pi_{k} \phi_{i}^{k}
\end{aligned}
$$

The emission-absorption cut

Among all possible cuts, the eigencurrent F^{k} is maximal through the emission-absorption cut

Continuation of eigenpairs to finite temperatures

- Difficulties: (1) eigenvalues are close to 0 and may cross; (2) the matrix is large with widely varying entries
- Useful fact: the eigenvectors of the symmetrized generator matrix $L_{\text {sym }}:=P^{1 / 2} L P^{-1 / 2} \equiv P^{-1 / 2} Q P^{-1 / 2}$ are orthonormal
- Rayleigh Quotient iteration with initial approximation

$$
\left(\psi_{k}^{0}\right)_{i}= \begin{cases}\sqrt{\pi_{i}}, & i \in S_{k} \\ 0, & i \notin S_{k}\end{cases}
$$

- Precaution: check whether the corresponding eigencurrent is largely emitted at the sink $\boldsymbol{s k}_{\boldsymbol{k}}{ }^{*}$ and largely absorbed at the $\operatorname{sink} t_{k}{ }^{*}$

Rayleigh Quotient Iteration

```
    rayleigh = @(x) x'*Lsym*x/(x'*x); % the Rayleigh quotient
    rtol = 1e-6;
    itermax = 12;
%% Rayleigh quotient iteration
    iter = 0;
    while abs(res) > rtol*abs(lam) & iter < itermax
        A = Lsym - lam*speye(n);
        w = (A)\v;
        v = w/norm(w);
        res = norm(A*v);
        lam = rayleigh(v);
        iter = iter + 1;
        fprintf('iter = %d: lam = %d\t res = %d\n',iter,lam,res);
    end
```


Difficulties with Lennard-Jones-75

Marks decahedron - icosahedral states solid - solid transition: $T=0.08$

Icosahedral - liquid-like states transition: $T=0.25$

The range of temperatures to which we would like to continue λ_{4395} :

$$
0.05 \leq T \leq 0.25
$$

For $T<0.17$, the matrix is badly scaled, and the results are inaccurate or NaN

For $T \geq 0.17$, convergence to a wrong eigenpair takes place

Remedy 1: lumping

The lumped network
Pick $\Delta_{\text {min }}$. Here $\Delta_{\text {min }}=\Delta_{2}$ Lump the quasi-invariant sets with $\Delta_{k}<\Delta_{\text {min }}$

Re-calculate pairwise rates S_{k}

$$
\tilde{L}_{k l}=\sum_{i \in S_{k}, j \in S_{l}} L_{i j} \frac{\pi_{i}}{\sum_{i^{\prime} \in S_{k}} \pi_{i^{\prime}}}
$$

The resulting generator matrix \tilde{L} is smaller, the largest entries of L are gone

$$
\begin{aligned}
\tilde{L}_{N \times N} & =A_{N \times n} L_{n \times n} B_{n \times N} \\
A_{k i} & = \begin{cases}\frac{\pi_{i}}{\sum_{i^{\prime} \in S_{k}} \pi_{i^{\prime}}}, & i \in S_{k} \\
0, & \text { otherwise }\end{cases} \\
B_{j l} & = \begin{cases}1, & j \in S_{l} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Remedy 2: truncation

Pick $V_{\text {max }}$, remove all states separated from the global minimum by a barrier exceeding $V_{\text {max }}$

The resulting network is smaller, the components that used to be nearly transient or make it nearly reducible
are removed

One can combine truncation and lumping: first truncate, then lump.

Eigenvalue λ_{4395} of LJ_{75}

Eigencurrent distribution in the emissionabsorption cut

The emission-absorption cut: location

Emission-absorption distribution

Emission - absorption

- States emitting 99\% of the eigencurrent
- States emitting 90% of the eigencurrent
- States absorbing 99\% of the eigencurrent
- States absorbing 90% of the eigencurrent

Highlights

- Formulas for asymptotic eigenvalues: exponents and prefactors
- Nested property of optimal W-graphs for stochastic networks with pairwise transition rates of the form $L_{i j}=k_{i j} \exp \left(-U_{i j} / T\right)$
- A single-sweep algorithm for computing asymptotic eigenvalues and eigenvectors
- Application to Lennard-Jones-75

Acknowledgements

- David Wales (Cambridge University, UK)

