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Networks with pairwise rates of the form
Li=ajexp(-U;/ T), T =asmall parameter (temperature)

Time - reversible Time - irreversible

1. Stochastic networks representing 1. Molecular motors. (Astumian (2009))
energy landscapes of atomic and
molecular clusters and proteins

(Wales’s group (Cambridge Univ.)) 3. Stochastically oscillating energy
landscapes.

2. Aggregation of interacting particles.

2. Evolutionary genetics: fithess
landscapes. (Kimura, Ewens,
Gillespie) (A. Morozov & M. Manhart)

3. Markov State Model in Molecular
Dynamics. (Schuette, Swope, Pande,
Noe, etc)




Reversible networks o c
where Vi; = Vi, kij = kj;

The generator matrix: The invariant distribution:
_ Vz‘j—Vi T L
Li' — (kzj/kz)e ( )/ y 1 J S k-e_‘/i/T
’ 0, otherwise vt

Ly = — ZLz'j

J7#1



Irreversible networks: Molecular motors
(Astumian, 2005)
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Molecular motors, cont’d (Astumian, 2005)
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Significance of the spectral decomposition
L=®AV =dADP !

- Understanding of the dynamics of the network:
decompose it into a collection of processes with various
time scales

- Extraction of quasi-invariant sets of states

- Building coarse-grained models



Interpretation of spectral decomposition
L =0AY = PAD !

™ = The matrix of left eigenvectors,
U = 77b1 —
V1 _> T = [771, co., T n] = the irlvari_ant distribution
) ) 1
i ] The matrix of right .
| i eigenvectors, .
O » i
21 . .
A= ‘ Eigenvalues: 2k = —Ak + ipk
| 0<A<A<...< A
| Zn—1

The Fokker-Planck equation dp(t) 0
or the Master equation dt p(t) L, p(0) =p" = p1;-- -, pal

n—1

The time evolution of

_O0tL _  Og tA, 2it
the probability distribution p(t) =pe” =p PV =7+ ]; (Podr) €7 1y




Time evolution of the probability distribution

n—1
k=1

Projection of Left eigenvector
the initial distribution

onto right eigenvector

[ Left eigenvector % decays uniformly across the network with rate )\k j

For time-reversible networks:

[, = P_lQ where P = diag{m, “o ,7Tn}, Q IS symmetric
Right eigenvectors: P = [¢0, ce ey ¢n_1]
Left eigenvectors: PP — [P(bO, o ,qun—l]

Right eigenvector (¢ gbk; = proportion by which the states

are over- or under-populated in the perturbed distribution 7T + Q¢f P ¢k




Difficulties in computing spectral decomposition

The generator matrix is large: L in n-by-n, n = 10°, p = 4,5,0,...
The pairwise rates Uj can vary by tens of orders of magnitude

No special structure

Even if we succeed, the results would be hard to interpret

ldea

Step 1: compute the asymptotic spectral decomposition

Step 2: continue eigenpairs of interest to finite temperatures



The goal

- To develop an efficient algorithm for computing the zero-
temperature asymptotics for eigenvalues ana
eigenvectors of the generator matrices

- To develop efficient continuation technigues

- Applications to large and complex networks representing
energy landscapes



Asymptotics for eigenvalues and eigenvectors



Asymptotics for eigenvalues

A. Wentzell, 1972

For a continuous-time Markov chain
with pairwise rates of the form

Lij ~ e VilT

if all optimal W-graphs are unique,
eigenvalues of the generator matrix are

0> —XA\>...> —An_1
)\k = exp(—Ak/T)

A, = VE) _y D)

v =3y Uy
(i—3j)€g;
where gy, is the optimal W-graph
with k sinks

T. Gan, C., 2015

For a continuous-time Markov chain
with pairwise rates of the form

—~U;; /T
Lij — Qjj€ i/

if all optimal W-graphs are unique,
eigenvalues of the generator matrix are

0> —)\1 > .02 —)\N—l
)\k — Ak eXp(—Ak/T)
A, = VE) _y kD)

v = 3" Uy

(i—J)€Eg;

Hz’—>j€g* Uij
k

1
U, + o(1)

Ay =

Hi—)ngZ+1



W-graphs (Wentzell, 1972)

Definition. Let G(S,4,U) be a weighted directed graph.
A W-graph with k sinks is its subgraph satisfying:
(1) any sink has no outgoing arcs; any non-sink has exactly one outgoing arc;

(2) the graph has no cycles.

Example
A W-graph with two sinks An optimal W-graph with two sinks
sink
@ ®
3
10

sink @



Optimal W-graphs with k sinks:

Z U;; is minimized with respect to both k sinks and n-k arcs
(i—j)eg
G(S,E,V) 12 g3




Nested property (Gan, C., 2015)

® {The set of sinks of gy } C (The set of sinks of gi+1 )

® There exists a connected component Sk of 9x+1 whose set of vertices
contains no sink of gx.

® The sets of arcs connecting vertices S\Sk in g; and g5, coincide.
e In gi, there is a single arc from Sk to S\S,

Qe ® i e D
@ 1 512 y S1

0-5\@ 20 ()




Asymptotics for eigenvectors
(under assumption that Il optimal W-graphs are unique)

>k
941

',

Right eigenvectors: ¢} =

Left eigenvectors: P, =

g
b
f a

1 €S Time- reversible case:
¢ S Justification: Bovier, Eckort,
i & Sk Gayrard, Klein, early 2000’

1 =10 Time - irreversible case:

1= a, Justification:

Cameron, Gan, 2015

i ¢ {a,b}



Algorithms on graphs for finding asymptotic for
elgenvectors and eigenvalues



Algorithms for computing asymptotic spectra

Algorithm 1
(Cameron, 2014)

Valid for time-reversible
networks

Precompute the
minimum spanning tree

Order of computation:
from smallest to largest

(Cameron, NHM, 9, 3, 383-416
(2014), arXiv:1402.2869;
Cameron. J. Chem. Phys., 141,

NEW!

Algorithm 2

(Tingyue Gan, Cameron 2015)

Time-reversibility is

not assumed

A single-sweep algorithm
(motivation: Chi-Liu/Edmond’s algorithm
for optimum branching for a directed
graph with a selected root)

Order of computation:
from largest to smallest

In preparation




The single-sweep algorithm (Cameron, Gan., 2015)

Input: Output:

list of arcs with weights k=n-—1,

An—1, An—lv An—17 Sn—la bn—l
and prefactors

. k: 17 ai, Al) Al) Slv bl
1 — 11 : Ulz'la klil

1 — inl : Ul’inlv ]{17;”1
N — P1 - U1p17 klpl

1 — Pny - UlpnN7 klpnN



The single-sweep algorithm (T. Gan, C., 2015)

e Form binary trees out of sets of outgoing arcs for each vertex
e Delete the minimal outgoing arc min_arc(7) from the tree
of each vertex + and add it to the main tree
e While the main tree contains more than 1 arc, keep adding arcs
to build optimal W-graphs

As, =1 S3={c}, sinks =c
, =3 Sy ={b}, sinky =b

e




e Ifthe arc a — b on the top of the main tree creates a directed cycle, do:
- Update U’s of in each tree reserve outgoing arcs of vertices lying
+in the cycle according to the rule: U;; = U;j + Uap — Umin _arc(i)
- Merge trees of remaining outgoing arcs from all vertices of the cycle
- Keep deleting the minimal outgoing arcs P — ¢ from the merged tree
and discard it until p and g are associated with the merged tree.
- Delete the minimal outgoing arc p — ¢q from the merged tree and
add it to the main tree.
For all vertices i associated with the merged tree, min arc(i)= p — q

12+4-1=15




e Find optimal W-graphs:
recursively trace arcs from
the set that
ever appear on the top
of the main tree backwards
starting from the sink, so that
each vertex has exactly one
outgoing arc

A3, =1 Sg = {C}, Sinkg — C @

AQ, =3 SQ — {b}, Sinkg =0
Al, =95 Sl = {CL, b, C}, Sinkl =a

Sinkg =d

Blue arcs form
the optimal W-graph g;



Initialization

B, ={lla—=¢), 1]} By ={[(b = a),9]};
B, ={[(c = d),2],[(c = b),12]}; By =0;
M = {[(¢ = a),1], [(b = ¢), 3], [(a = b),4], [(d = ), 10]};

While-cycle, step 2

A1} By = {[(b— a), 9]}

{ 1

{l(c=d),2],[(c —>b),12]};  Ba=10;
M ={[(b— ¢),3],[(a = b),4],[(d — ¢),10]};

c; 1, A3 = aeq;

{




While-cycle, step 3 While-cycle, step 4
2

12

=0
10 1 4
2 9

By ={[(a = ¢),11]}; By = {[(b = a),9]};
Be ={[(c = d),2],[(c = b),12]};  Ba=10;
M = {[(d — ¢),10]}; M = {[(d = ¢),10]};

Cycle {(a = b),(b = c¢),(c —a)} is created st=a; Ay =5;

Update B,, By, and B, : Ay = QcdQab
B, ={[(a—¢),11+4—-4=11]}; By={[b—a),9+4-3=10]} Gca
Be={[(c—d),24+4—1=5],[(c—b),124+4—1=15]}; g1 ={le—=d),(b—c),(a—b)}

Merge B,, By, and B, :
B :={[(c = d),5],[(b = a),10],[(a = ¢), 11],[(¢ — b), 15]};
B, = By = B. = B;
Remove the minimum arc from B and add it to M :
M ={[(c = d),5], [(d — ¢), 10]};



Results:

0
A3 & acee” T, p3 & (1)
L O i
"0
e, | L] sm 100
0
o
A~ a(jaabe T g~ 1 gy~ 0,0, —1]
0

>\O:07 ¢0: ) ¢0%[070a07 1]

—_




Computational cost

N vertices, index of each vertex < k

Best case scenario:
Initialization: O(Nk log k)
Routine: O(N log N)

Worst case scenario:
Routine: O((INk)? log(Nk)) due to merging trees
of reserve arcs when a cycle Is created



Performance

- Lennard-Jones-38 network: 71887 vertices, 239706 arcs

- CPU time: 30 seconds,

- the number of cycles encountered: 50266

- the number of arcs having appeared on the top of the main tree: 122152
- Lennard-Jones-75 network: 169523 vertices, 441016 arcs

- CPU time: 632 seconds (10.5 minutes)

- the number of cycles encountered: 153164

- the number of arcs having appeared on the top of the main tree: 322686



-385.00

-386.00

-387.00

Application to
Lennard-Jones-75
network

-391.00

Data: courtesy of David Wales

-392.00

Stats -393.00
593320 vertices, 452315 edges
the maximal vertex index: 740

-394.00

-395.00

The maximal connected component:
169523 vertices, 227198 edges

the maximal vertex degree: 740 t Marks
the number of edges that are not loops and ™™ decahedron
connecting different pairs of vertices: lcosahedral —~
* ™ 220508 packing 5/55%
Wk




Zero-temperature asymptotic analysis to LJzs



Quasi-invariant sets, Freidlin’s cycles, etc.

S1 ={s5} '
_fo*1 92
Cr = {s3} P’ s




—219
S* V >k
k+1 Sk+1  — Ay /T

Asymptotics for eigenvalues: A = 5——5-e
Pi.ai Yy a;

lcosahedral funnel —> Marks decahedron

141 AvA\\\

“V“ R —7.897/T
N
10! “\'.‘i/ 4395

i

(P1395 — Q1395) = (25811 — 73992)
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Decomposition into maximal disjoint sets Sk




Largest quasi-invariant sets ( > 100 local minima)

511190 37470

3.8

388572

34097 " 397264
28356

69910

12.2

Minimum: 92
|Quasi-invariant set| = 92883

|Freidlin’s cycle| = 28032 59013

PN

N
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Y

wggglk-—-

2.8
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85257



path

The asymptotic zero-temperature (MinMax)
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CryStalliﬂe Order Numbers (Steinhardt, Nelson, Ronchetti, 1983)

Q) =

21—|—1

l 1/2
E \Q lm‘2 Bond-orientational order numbers
or crystalline order numbers

m=—I

Qim (r) = Y (0(r), ¢(r))
Yim(0,¢)  Spherical harmonics
O(r), ¢(r) Polar angles of the bond r

le Averages over all bonds in the cluster where

r| < 1.391r%, r* =26

Following Picciani, Athenes, Kurchan, Tailleur, 2011, we use

Q4 and Qs



lcosahedral and Marks decahedral basins
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Spectrum of the truncated LJ7s network
(Vmax - V1 < 10.0): 56074 vertices, 163666 arcs

_avma
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5 Purple dots: all deltas
Large black dots: deltas corresponding
4 to transitions visible on the (Q4,Qg)-plane
3k
2%
1+
0




Relaxation processes visible on the (Q4,Qs)-plane
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Continuation to finite temperature of A4395
which Is responsible for the relaxation process
from the icosahedral funnel

to Marks decahedron funnel



Figencurrent  Ff == mLije ™" [(¢r): — (¢n);]

The importance of currents
was emphasized
in works of J. Kurchan.

E. Vanden-Eijnden proposed to
consider eigencurrents.

k
895 F ij = the net average number of transitions

along the edge (z — 9 )
per unit time at time ¢

in the relaxation process from
the initial distribution T + Ok PO,

The Fokker-Planck equation
INn terms of eigencurrents

n—1
P >k ) F
dt k=0  j#i

D El = e M midf
j#i



The emission-absorption cut

The emission-absorption cut

Consider the total eigencurrent Fk
Absorbing states S* through the vertex i

Z F,Ll; :[G_Akt)\k’m;qbf

J71

always >0 >0or<0O

S =8k us*
SPi={ieS : (¢x): >0}

. Sk.={ieS : (¢p); <0}
Emitting states S
Among all possible cuts, the eigencurrent [’ k Is maximal

through the emission-absorption cut

Ref.: M. Cameron, J. Chem. Phys. (2014), 141, 184113, arXiv: 1408.5630



Continuation of eigenpairs to finite temperatures

- Difficulties: (1) eigenvalues are close to O and may cross; (2)
the matrix is large with widely varying entries

- Useful fact: the eigenvectors of the symmetrized generator
matrix Lgym := PY/2LP~Y2 = p712QpP~1/2 g
orthonormal

- Rayleigh Quotient iteration with initial approximation
(

T, 1€ S
()i = < .
\O, [/ §§ Sk
 Precaution: check whether the corresponding eigencurrent

IS largely emitted at the sink sx* and largely absorbed at the
SINK #*




Rayleigh Quotient lteration

rayleigh = @(x) x’'*Lsym*x/(x’'*x); % the Rayleigh quotient

rtol = le-6;
itermax = 12;

$% Rayleigh quotient iteration
iter = 0;
while abs(res) > rtol*abs(lam) & iter < itermax

A = Lsym - lam*speye(n);
w = (A)\v;

v = w/norm(w);

res = norm(A*v);

lam = rayleigh(v);

iter = iter + 1;

fprintf('iter = %d: lam = %d\t res = %d\n',iter,lam,res);
end



Difficulties with Lennard-Jdones-75

Cy = = Marks decahedron - icosahedral states

or  oT e~ Ei/T [k,
3007 | | > / solid - solid transition: T = 0.08
solid —— solid
280r
%260 lcosahedral - liquid-like states
g transition: 7 = 0.25
?3 240 solid — liquid
I
220 The range of temperatures to which
o0l we would like to continue )\4395 ;
0O 005 01 015 02 025 03 035 04 045 0.5

Temperature

0.0 <71 <0.25

0.8
- — Marks decahedron For T < 0.17, the matrix is badly
= 0.6 ___lcosaherdal states
8 (-397 <V < -395.2) scaled, and the results are
o] L . .
204 R A inaccurate or NaN
0.2
For T > 0.17, convergence
% 005 01 015 02 025 03 035 04 045 05 to a wrong eigenpair takes place

Temperature



Remedy 1: lumping

The lumped network

Pick Amin . Here  Amin = As

Lump the quasi-invariant sets
with Ak < Amin

Re-calculate pairwise rates Sy

~ 7'(-2
Ly = E Li; 5 —
i'eS

1€SK,1ES

The resulting generator matrix L is smaller,
the largest entries of L are gone

-Z:/NXN — Aan Lan anN

( o 1 € Sk

Api = { Zires, ™t
L0, otherwise
)

1, 5 € S

Bji = < / :

\O, otherwise




Remedy 2: truncation

) )
\ /\ A/ Pick Vimax, remove all states
Vinax N separated from
4 the global minimum
— by a barrier exceeding Vimax
remove
The resulting network is smaller,
- J the components that
remove used to be nearly transient
or make it nearly reducible
are removed
keep
N J

One can combine truncation and lumping:
first truncate, then lump.



Eigenvalue Ag395 Of Ld7s

—

OI
N
o

-k
o

A (ICO — MARKS)

1/0.23

1/0.20 1/0.18

801

e [Iruncation: Vmax = 10.0; lumping: Amin = 6.0
Truncation: Vmax = 12.0; lumping: Amin = 4.0
® Lumping: Amin = 4.0

® Full network

— Best linear fit: TIOO%MARKS(T) = 1.55- 1()2 . 6—7‘96/T

-= Theoretical prediction for the rate ICO —> MARKS

rrcosmarks(T) = 1.47-10% . ¢~ 790/T

— Best linear fit: ryarxs—rco(T) =4.3-10% . ¢ 218/

-- Theoretical prediction for the rate MARKS —> ICO
rvarks—ico(T) =7.7-107 - e 1/T

10_ J\\\\H\\l\\l | |l
1/0.25 1/0.15 1010 T

1/0.07

1/0.06 1/0.05



Eigencurrent distribution in the emission-
absorption cut

—T1=017

=
O —T1=019
3 |
. —T=021
> T |
= T_o.23E
< T=025
S |
c :
9 ;
3
2 |
O |

10° 10’ 10° 10° 10* 10

Edge index in the emission—absorption cut



The emission-absorption cut: location

0.17=T<0.235 The highest barrier

mw

= 8898
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Emission-absorption distribution

The distribution functions

107"°

1

_____

Emission, T=0.17
Absorption, T=0.17
Emission, T=0.19
Absorption, T=0.19
—— Emission, T=0.21
- - = Absorption, T=0.21
—— Emission, T=0.23
- - = Absorption, T=0.23
—— Emission, T=0.25

- - = Absorption, T=0.25

0° 10"

A
- -
\ R
-~
-
-y \\
-
N Na ~
b “
-
\ A S
- - N EN
e “ -~
A - kS
- - S
N ~ TS O
~
< - ~
~,
N N e
hY ~
- N
A o
-~ ~
AL S : ~
~
-~
~
N
~
A
~
[ I i i IR

Vertex index



Emission - absorption

States emitting 99% of the eigencurrent
e States emitting 90% of the eigencurrent
e States absorbing 99% of the eigencurrent

e States absorbing 90% of the eigencurrent

C

).

0.15 0.2

. !"
5. 8¢

0.25

0.15 0.2



Highlights

Formulas for asymptotic eigenvalues: exponents and prefactors

Nested property of optimal W-graphs for stochastic networks with pairwise
transition rates of the form L; = k; exp(-U;/T)

A single-sweep algorithm for computing asymptotic eigenvalues and eigenvectors

Application to Lennard-Jones-75
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