Homework 1. Due Thursday, Feb. 11

1. ($\mathbf{5 p t s}$) Consider a particle in 1 D in contact with a heat bath whose states follow the canonical distribution:

$$
\begin{equation*}
\mu(x, p)=\frac{1}{Z} e^{-\beta H(x, p)}, \quad \text { where } \quad Z=\int_{\mathbb{R}^{2}} e^{-\beta H(x, p)} d x d p \tag{1}
\end{equation*}
$$

where $H(x, p)=V(x)+\frac{p^{2}}{2}$ is its energy and $\beta=\left(k_{B} T\right)^{-1}$ (k_{B} is Boltzmann's constant).
(a) Show that the mean kinetic energy equals to $k_{B} T / 2$, i.e., calculate the expected value of

$$
E\left[\frac{p^{2}}{2}\right]=\frac{1}{Z} \int_{\mathbb{R}^{2}} \frac{p^{2}}{2} e^{-\beta\left(V(x)+p^{2} / 2\right)} d x d p .
$$

Solution

$$
\begin{aligned}
Z & =\int_{R^{2}} d x d p \exp \left(-\beta(V(x)) \exp \left(-\beta p^{2} / 2\right)\right. \\
& =\left[\int_{-\infty}^{\infty} d x \exp (-\beta(V(x))]\left[\int_{-\infty}^{\infty} d p \exp \left(-\beta p^{2} / 2\right)\right]=Z_{x} Z_{p}\right. \\
t & =p \sqrt{\beta / 2}, \quad d p=d t \sqrt{2 / \beta}, \quad \int_{-\infty}^{\infty} \exp \left(-t^{2}\right) d t=\sqrt{\pi} \\
Z_{p} & =\int_{-\infty}^{\infty} d t \sqrt{2 / \beta} \exp \left(-t^{2}\right)=\sqrt{2 \pi / \beta} \\
E\left[p^{2} / 2\right] & =Z_{x}^{-1} Z_{p}^{-1}\left[\int_{-\infty}^{\infty} d x \exp (-\beta(V(x))]\left[\int_{-\infty}^{\infty} \frac{p^{2}}{2} d p \exp \left(-\beta p^{2} / 2\right)\right]\right. \\
& =\sqrt{\beta / 2 \pi} \int_{-\infty}^{\infty} \frac{p^{2}}{2} d p \exp \left(-\beta p^{2} / 2\right), \\
& \int_{-\infty}^{\infty} t^{2} \exp \left(-t^{2}\right) d t=\sqrt{\pi} / 2
\end{aligned}
$$

(b) Use your result to show that for a system consisting of n particles of unit mass each of which is moving in 3D, the mean kinetic energy is $(3 / 2) n k_{B} T$. The canonical distribution of this system is given by

$$
\begin{gather*}
\mu(x, p)=\frac{1}{Z} e^{-\beta H(x, p)}, \quad x, p \in \mathbb{R}^{3 n}, \quad Z=\int_{\mathbb{R}^{6 n}} e^{-\beta H(x, p)} d x d p, \tag{2}\\
H(x, p)=V(x)+\frac{1}{2} \sum_{i=1}^{3 n} p_{i}^{2} .
\end{gather*}
$$

2. (5pts) Let η be the number that comes up when you throw a die ${ }^{1}$. Evaluate

$$
E\left[\eta \mid(\eta-3)^{2}\right] .
$$

Hint: You may want to represent your answer as a table of values of $E\left[\eta \mid(\eta-3)^{2}\right]$ for different values of $(\eta-3)^{2}$.

[^0]
References

[1] A. Chorin and O. Hald, Stochastic Tools in Mathematics and Science, 2nd edition, Springer 2009. You can download a pdf file with the whole book from the UMD library.

[^0]: ${ }^{1}$ Problem 11 from Chorin \& Hald, 2nd edition [1], Chapter 2, p. 45.

