Homework 2. Due Thursday, Feb. 18

1. (20 pts) The invariant probability measure for the system evolving in the double-well potential $V(x)=x^{4}-2 x^{2}+1$ according to the overdamped Langevin dynamics at temperature one is given by the Gibbs pdf

$$
\begin{equation*}
f(x)=\frac{1}{Z} e^{-\left(x^{4}-2 x^{2}+1\right)}, \quad \text { where } \quad Z=\int_{-\infty}^{\infty} e^{-\left(x^{4}-2 x^{2}+1\right)} d x \tag{1}
\end{equation*}
$$

(a) Use the standard Gaussian pdf

$$
g_{1}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

to find the normalization constant Z in Eq. (1). Use at least 10^{6} samples, better even 10^{8}. Check your answer using numerical quadrature by the composite trapezoidal rule on the interval $[-a, a]$ where a is large enough so that $e^{-\left(a^{4}-2 a^{2}+1\right)}<10^{-16}$.
(b) Find the optimal value of σ in order to use the pdf of the form

$$
g_{\sigma}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

for sampling RV with pdf $f(x)$ (Eq. (1)) by means of the acceptance-rejection method [1]. The optimal σ minimizes the constant c.
Hint: First find analytically

$$
x^{*}=\arg \max _{x \in \mathbb{R}} \frac{f(x)}{g_{\sigma}(x)}
$$

as a function of σ. Then you can find the optimal σ using e.g. the function fminbnd in MATLAB. If you use a programming language that does not have standard function to find a minimum of a function in $1 D$, plot a graph $c(\sigma)$ and pick σ close to the optimal one.
(c) Sample RV η with pdf $f(x)$ (Eq. (1)) using the acceptance-rejection method. Check that the ratio of the total number of samples and the number of accepted samples is close to C. Plot a properly scaled histogram for the obtained samples and compare it with the exact distribution (with Z found numerically). An example of generating such a histogram is given in the code in Section 3.3 in sampling.pdf.
Hint: to generate samples of $\mathcal{N}\left(0, \sigma^{2}\right)$, generate samples from $\mathcal{N}(0,1)$ and multiply them by σ.
(d) Find $E[|x|]$ for the pdf $f(x)$ using the Monte Carlo integration.

Submit a single pdf document. Link your codes to it, or print them to pdfs and append them to the main pdf.

References

[1] http://www.columbia.edu/ ks20/4703-Sigman/4703-07-Notes-ARM.pdf.
K. Sigman's lecture notes on the acceptance-rejection method for sampling random variables.

