Maria Cameron

Homework 3. Due Thursday, March 4

1. (5 pts)

(a) Suppose you have n independent samples x_1, \ldots, x_n of a random variable η . Prove that the estimate for the variance

$$S_2^2 := \frac{1}{n-1} \sum_{k=1}^n (x_k - m)^2$$
, where $m = \frac{1}{n} \sum_{i=1}^n x_i$,

is unbiased.

- (b) An exponential random variable η with parameter λ has pdf $f(x) = \lambda e^{-\lambda x}$, $\lambda > 0$. Suppose that the parameter λ is unknown, but you have n independent samples x_1, \ldots, x_n of η . What is the maximum likelihood estimate for λ ?
- 2. (5 pts) The maximum likelihood estimation is used for finding reaction rates from molecular dynamics simulations (see e.g. [1]).

The time interval $[t_0, t_M]$ is split into equal intervals $\Delta t = t_{m+1} - t_m, m = 0, 1, 2, \dots, M - 1$. The number of reactions of type j that happen in each interval $[t_m, t_{m+1}]$ is modeled as a Poisson random variable \mathcal{P}_j with parameter μ_j , i.e.,

$$P(\mathcal{P}_j = n) = \frac{\mu_j^n}{n!} e^{-\mu_j}.$$
(1)

The parameter μ_j is proportional to the length of the time interval Δt , the reaction rate k_j that needs to be found, and $h_j(\mathbf{X}(t))$, a combinatorial number that can be easily calculated given the vector of concentrations of the chemical species:

$$\mu_j = k_j h_j(\mathbf{X}(t)) \Delta t. \tag{2}$$

We assume that the time interval Δt is small enough so that $h_j(\mathbf{X}(t))$ can be approximated by a constant $h_j(\bar{\mathbf{X}}_{m+1/2})$ within it.

We record the numbers of reactions $n_j([t_m, t_{m+1}])$ of type j occurring within each interval $[t_m, t_{m+1}]$. Given the datasets $n_j([t_m, t_{m+1}])$ and $h_j(\bar{\mathbf{X}}_{m+1/2})$, find the maximum likelihood estimate for the reaction rate k_j .

3. (5 pts) (This problem is based on an example from [2].) Consider the integral

$$I = \int_0^1 \cos(x/5) e^{-5x} dx.$$

The exact value of I is

$$\frac{1}{626} \left(125 - 125e^{-5}\cos(1/5) + 5e^{-5}\sin(1/5) \right).$$

(a) Evaluate I by Monte-Carlo (MC) as $I = E[\cos(\eta/5)e^{-5\eta}]$, where η is a random variable uniformly distributed on [0, 1]. Make your code estimate the standard deviation $\sqrt{\operatorname{Var}(\cos(\eta/5)e^{-5\eta})}$. Estimate error of your MC result. Estimate the numbers of samples required to achieve relative errors of 1% and 0.1%.

(b) Evaluate I by Monte-Carlo using importance sampling, i.e, as $I = I_1 E[\cos(\xi/5)]$, where ξ is a random variable with the pdf

$$f_{\xi}(x) = \begin{cases} I_1^{-1} e^{-5x} & , x \in [0, 1] \\ 0, & x \notin [0, 1], \end{cases}$$

where $I_1 = \int_0^1 e^{-5x} dx$. Make your code estimate the standard deviation $\sqrt{\operatorname{Var}(\cos(\xi/5))}$. Estimate error of your MC result. Estimate the numbers of samples required to achieve relative errors of 1% and 0.1%.

4. (5 pts) Consider the Markov chain associated with the graph shown in the Figure below. For any vertex i, $P_{ij} > 0$ iff i and j are connected by an edge, and $P_{ij} = 1/d(i)$, where d(i) is the number of edges emanating from i (the degree of i). Denote the state at the center by 0. Find the expected hitting times $k_i^{\{0\}}$ to hit 0 from each state $i \neq 0$. Hint: using the symmetry of the problem you can dramatically decrease the number of equations in the system to be solved.

- 5. (5 pts) Consider the discrete time Markov chain with the infinite set of states $S = \{0, 1, 2, ...\}$ and the transition matrix P such that $P_{i,i-1} = q$, $P_{i,i+1} = p$, i = 1, 2, ..., where p + q = 1, and all other entries are zero. Note that 0 is absorbing.
 - (a) Assume that p = q = 1/2. Show that the expected hitting times $k_i^{\{0\}} = \infty$ to hit 0 for all $i \ge 1$.
 - (b) Assume that q > p. Find the expected hitting times k_i^0 for $i \ge 1$.

References

- Qian Yang, Carlos A. Sing-Long, and Evan J. Reed, Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics, Chemical Science, Chem. Sci., 2017, 8, 5781-5796
- [2] A. Chorin and O. Hald, Stochastic Tools in Mathematics and Science, 2nd edition, Springer 2009