Homework 3. Due Thursday, March 4

1. (5 pts)

(a) Suppose you have n independent samples x_{1}, \ldots, x_{n} of a random variable η. Prove that the estimate for the variance

$$
S_{2}^{2}:=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-m\right)^{2}, \quad \text { where } \quad m=\frac{1}{n} \sum_{i=1}^{n} x_{i},
$$

is unbiased.
(b) An exponential random variable η with parameter λ has pdf $f(x)=\lambda e^{-\lambda x}, \lambda>0$. Suppose that the parameter λ is unknown, but you have n independent samples x_{1}, \ldots, x_{n} of η. What is the maximum likelihood estimate for λ ?
2. ($\mathbf{5} \mathbf{~ p t s}$) The maximum likelihood estimation is used for finding reaction rates from molecular dynamics simulations (see e.g. [1]).
The time interval $\left[t_{0}, t_{M}\right]$ is split into equal intervals $\Delta t=t_{m+1}-t_{m}, m=0,1,2, \ldots, M-1$. The number of reactions of type j that happen in each interval $\left[t_{m}, t_{m+1}\right]$ is modeled as a Poisson random variable \mathcal{P}_{j} with parameter μ_{j}, i.e.,

$$
\begin{equation*}
P\left(\mathcal{P}_{j}=n\right)=\frac{\mu_{j}^{n}}{n!} e^{-\mu_{j}} . \tag{1}
\end{equation*}
$$

The parameter μ_{j} is proportional to the length of the time interval Δt, the reaction rate k_{j} that needs to be found, and $h_{j}(\mathbf{X}(t))$, a combinatorial number that can be easily calculated given the vector of concentrations of the chemical species:

$$
\begin{equation*}
\mu_{j}=k_{j} h_{j}(\mathbf{X}(t)) \Delta t . \tag{2}
\end{equation*}
$$

We assume that the time interval Δt is small enough so that $h_{j}(\mathbf{X}(t))$ can be approximated by a constant $h_{j}\left(\overline{\mathbf{X}}_{m+1 / 2}\right)$ within it.
We record the numbers of reactions $n_{j}\left(\left[t_{m}, t_{m+1}\right]\right)$ of type j occurring within each interval $\left[t_{m}, t_{m+1}\right]$. Given the datasets $n_{j}\left(\left[t_{m}, t_{m+1}\right]\right)$ and $h_{j}\left(\overline{\mathbf{X}}_{m+1 / 2}\right)$, find the maximum likelihood estimate for the reaction rate k_{j}.
3. (5 pts) (This problem is based on an example from [2].) Consider the integral

$$
I=\int_{0}^{1} \cos (x / 5) e^{-5 x} d x
$$

The exact value of I is

$$
\frac{1}{626}\left(125-125 e^{-5} \cos (1 / 5)+5 e^{-5} \sin (1 / 5)\right)
$$

(a) Evaluate I by Monte-Carlo (MC) as $I=E\left[\cos (\eta / 5) e^{-5 \eta}\right]$, where η is a random variable uniformly distributed on $[0,1]$. Make your code estimate the standard deviation $\sqrt{\operatorname{Var}\left(\cos (\eta / 5) e^{-5 \eta}\right)}$. Estimate error of your MC result. Estimate the numbers of samples required to achieve relative errors of 1% and 0.1%.
(b) Evaluate I by Monte-Carlo using importance sampling, i.e, as $I=I_{1} E[\cos (\xi / 5)]$, where ξ is a random variable with the pdf

$$
f_{\xi}(x)= \begin{cases}I_{1}^{-1} e^{-5 x} & , x \in[0,1] \\ 0, & x \notin[0,1]\end{cases}
$$

where $I_{1}=\int_{0}^{1} e^{-5 x} d x$. Make your code estimate the standard deviation $\sqrt{\operatorname{Var}(\cos (\xi / 5))}$. Estimate error of your MC result. Estimate the numbers of samples required to achieve relative errors of 1% and 0.1%.
4. (5 pts) Consider the Markov chain associated with the graph shown in the Figure below. For any vertex $i, P_{i j}>0$ iff i and j are connected by an edge, and $P_{i j}=1 / d(i)$, where $d(i)$ is the number of edges emanating from i (the degree of i). Denote the state at the center by 0 . Find the expected hitting times $k_{i}^{\{0\}}$ to hit 0 from each state $i \neq 0$. Hint: using the symmetry of the problem you can dramatically decrease the number of equations in the system to be solved.

5. (5 pts) Consider the discrete time Markov chain with the infinite set of states $S=\{0,1,2, \ldots\}$ and the transition matrix P such that $P_{i, i-1}=q, P_{i, i+1}=p, i=1,2, \ldots$, where $p+q=1$, and all other entries are zero. Note that 0 is absorbing.
(a) Assume that $p=q=1 / 2$. Show that the expected hitting times $k_{i}^{\{0\}}=\infty$ to hit 0 for all $i \geq 1$.
(b) Assume that $q>p$. Find the expected hitting times k_{i}^{0} for $i \geq 1$.

References

[1] Qian Yang, Carlos A. Sing-Long, and Evan J. Reed, Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics, Chemical Science, Chem. Sci., 2017, 8, 5781-5796
[2] A. Chorin and O. Hald, Stochastic Tools in Mathematics and Science, 2nd edition, Springer 2009

