Homework 5. Due March 25

1. (5 pts) The Metropolis-Hastings algorithm is a modification of the Metropolis algorithm in which the transition matrix Q generating proposed moves does not need to be symmetric (see the last paragraph in Section 3.1 in markov_chains.pdf). Prove that the frequencies of visits of states in the Metropolis-Hastings algorithm approach the invariant distribution.
2. (5 pts) A random variable $\eta: \Omega \rightarrow[0, \infty]$ has an exponential distribution if

$$
\mathbb{P}(\eta>t)=e^{-\lambda t} \text { for all } t \geq 0
$$

where $\lambda \geq 0$ is a parameter.
Prove that a random variable $\eta: \Omega \rightarrow(0, \infty]$ has an exponential distribution if and only if it has the following memoryless property:

$$
\begin{equation*}
\mathbb{P}(\eta>t+s \mid \eta>s)=\mathbb{P}(\eta>t) \text { for all } s, t \geq 0 \tag{1}
\end{equation*}
$$

Hint: To deduce an exponential distribution from Eq. (1), you may proceed as follows. Introduce

$$
F(t):=\mathbb{P}(\eta>t) \quad \text { and define } \quad \lambda:=-\log F(1) .
$$

Then write $F(1)=F\left(\frac{1}{n}+\ldots+\frac{1}{n}\right)$ and apply the memoryless property. Establish the exponential form for F for all rational t. Then use the fact that any real number can be approximated by rational numbers. Etc.
3. (5 pts) Consider a continuous-time Markov chain with a generator matrix L with all diagonal entries being equal to $-\lambda$ where $\lambda>0$. Prove that the number of jumps occurring in the corresponding Markov jump process in a time interval $[0, t]$ is distributed according to the Poisson distribution with parameter λt, i.e.,

$$
\mathbb{P}\left(J_{k} \leq t, J_{k+1}>t\right)=e^{-\lambda t} \frac{(\lambda t)^{k}}{k!}
$$

Hint: First show that for a small time interval $[0, h], \mathbb{P}\left(J_{1} \leq h, J_{2}>h\right)=\lambda h+o(h)$ and $\mathbb{P}\left(J_{2} \leq h\right)=o(h)$ where o (h) denotes any function $f(h)$ such that $\lim _{h \rightarrow 0} h^{-1} f(h)=$ 0 . Then partition the interval $[0, t]$ into n subintervals where n is large. Show that $\mathbb{P}\left(J_{k} \leq t, J_{k+1}>t\right)=\mathbb{P}(A)+\mathbb{P}(B)$ where A is the event that exactly k subintervals contain one jump and the rest contain no jumps, and B is the event that at least one of the subintervals contains more than one jump and there are k jumps in total. Let n tend to ∞ and prove that $\mathbb{P}(B) \rightarrow 0$ while $\mathbb{P}(A) \rightarrow e^{-\lambda t}(\lambda t)^{k}(k!)^{-1}$.

