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1. Brownian Motion

1.1. Definition of Brownian Motion.

Definition 1. A stochastic process (in the strict sense) is a function v(ω, t) of two argu-
ments, where ω ∈ Ω, (Ω,B, P ) is a probability space, and t ∈ R, such that

• for each ω, v(ω, t) is a function of t, and
• for each t, v(ω, t) is a random variable.

Definition 2. Brownian motion (in mathematical terminology) is a stochastic process
w(ω, t), ω ∈ Ω, 0 ≤ t <∞, that satisfies the following four axioms:

(1) w(ω, 0) = 0 for all ω.
(2) For almost all ω, w(ω, t) is a continuous function of t.
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(3) For each 0 ≤ s ≤ t, w(ω, t) − w(ω, s) is a Gaussian random variable with mean 0
and variance t− s.

(4) w(ω, t) has independent increments, i.e., if

0 ≤ t1 < t2 < . . . < tn

then

w(ω, ti)− w(ω, ti−1) for i = 2, . . . , n are independent.

Remark What is called the Brownian motion in mathematics is called the Wiener process
in physics. What is called the Brownian motion in physics is called the Ornstein-Uhlenbeck
process in mathematics.

Here is an equivalent definition of Brownian motion.

Definition 3. A process w(ω, t) on a probability space (Ω,B, P ) is called a Brownian
motion if

(1) Sample paths w(ω, t) are continuous functions of t for almost all ω ∈ Ω.
(2) For any k > 1 and 0 ≤ t1 ≤ . . . ≤ tk, the random vector (w(ω, t1), . . . , w(ω, tk)) is

Gaussian with mean 0 and covariance matrix

B(ti, tj) = E[w(ti), w(tj)] = min{ti, tj} ≡ ti ∧ tj , 1 ≤ i, j ≤ k.

Definition 4. A d-dimensional Brownian motion is defined as the vector process

w(t) = (w1(t), . . . wd(t)),

where wk(t), 1 ≤ k ≤ d are independent Brownian motions.

1.1.1. Existence of Brownian motion. The question about the existence of the Brownian
motion is not trivial. For example, if we upgrade axiom 2 in Definition 2 to require
differentiability, such process simply would not exist.

The original construction of Brownian motion (the Wiener process) was done by Norbert
Wiener (1894 - 1964). He has shown that Fourier series

(1) w(t) =
a0√
π
t+

√
2

π

∞∑
k=1

ak
k

sin(kt),

where ak, k = 0, 1, 2, . . ., are independent Gaussian random variables with mean 0 and
variance 1, converges, and its sum satisfies Definition 2 for 0 ≤ t ≤ 1.

In [2], the existence of Brownian motion follows from Kolmogorov’s theorem about ex-
istence of stochastic processes with covariance satisfying certain conditions.

The Brownian motion on 0 ≤ t ≤ 1 can be constructed by a recursive refinement
procedure [3, 2]. Consider the following collection of sets

Dn =

{
k

2n
| 0 ≤ k ≤ 2n

}
of dyadic points. At each refinement step, we will define a Gaussian random walk satisfying
the axioms of the Brownian Motion at the dyadic points (see Fig. 1).
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Figure 1. First six steps of construction a Brownian motion from Brown-
ian random walks by a refinement procedure. Here z1, . . . , z8 are indepen-
dent Gaussian random variables such that z1 ∈ N(0, 1), z2 ∈ N(0, 1/4),
z3, z4 ∈ N(0, 1

8), z5, z6, z7, z8 ∈ N(0, 1
16).

Let {z0, zn,j} where n = 1, 2, 3, . . ., j = 1, 2, . . . , 2n−1, be a collection of independent
Gaussian random variables with mean 0 and variance 1. Recall that

if z ∈ N(0, 1) then
z

2α
∈ N(0, 2−2α).

We start by constructing a Gaussian random walk on D0 by setting

B0(0) = 0 and B0(1) = z0.

Then we refine it to a Gaussian random walk B1 on D1 by setting

B1(D0) = B0(D0), B1 (1/2) =
B0(1) +B0(0)

2
+
z1,1

2
.
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Note that

B1 (1/2) =
z0

2
+
z1,1

2
.

Hence

Var (B1 (1/2)) =
1

4
+

1

4
=

1

2

as desired. Let us show that the increments of B1 restricted to the dyadic set D1 =
{0, 1/2, 1} are independent, i.e., that B1(1/2) − B1(0) and B(1) − B(1/2) are independent.
Indeed, a linear combination of independent Gaussian random variables x1 ∼ N (m1, σ

2
1)

and x2 ∼ N (m2, σ
2
2) is Gaussian: ax1 +bx2 ∼ N (am1 +bm2, a

2σ2
1 +b2σ2

2) (check it!). Then
we calculate:

B1 (1/2)−B1(0) =
z0

2
+
z1,1

2
∼ N (0, 1/2) ,

B1(1)−B1 (1/2) = z0 −
z0

2
− z1,1

2
=
z0

2
− z1,1

2
∼ N (0, 1/2) ,

E
[(z0

2
+
z1,1

2

)(z0

2
− z1,1

2

)]
= E

[(z0

2

)2
−
(z1,1

2

)2
]

=
1

2
− 1

2
= 0.

Since uncorrelated Gaussian random variables are independent, we conclude that B1(1/2)−
B1(0) and B(1)−B(1/2) are independent.

Next, we refine B1 to a Gaussian random walk B2 on D2 by setting B2(D1) = B1(D1)
and

B2 (1/4) =
1

2
[B1 (1/2) +B1(0)] +

z2,1

2
√

2
,

B2 (3/4) =
1

2
[B1(1) +B1 (1/2)] +

z2,2

2
√

2
.

Then,

Var (B2 (1/4)) = Var

(
1/2 [B1 (1/2) +B1(0)] +

z2,1

2
√

2

)
=

1

4
· 1

2
+

1

8
=

1

4
,

Var (B2 (3/4)) = Var

(
1

2
[B1(1) +B1 (1/2)] +

z2,2

2
√

2

)
= Var

(
1

2
[B1(1)−B1 (1/2) + 2B1 (1/2)] +

z2,2

2
√

2

)
=

1

4

[
1

2
+ 4

1

2

]
+

1

8
=

3

4
.

as desired. Show that the increments ofB2 restricted to the dyadic setD2 = {0, 1/4, 1/2, 3/4, 1}
are independent. First show that B2(2−2(k+1))−B2(2−2k) and B2(2−2(l+1))−B2(2−2l)
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for 0 ≤ k < l ≤ 3 are independent. If k is even, i.e., k = 2p, we have:

B2

(
p

2
+

1

4

)
−B2

(p
2

)
=

1

2

[
B1

(p
2

)
+B1

(
p+ 1

2

)]
+
z2,p+1

2
√

2
−B2

(p
2

)
=

1

2

[
B1

(
p+ 1

2

)
−B1

(p
2

)]
+
z2,p+1

2
√

2
∼ N

(
0,

1

4
· 1

2
+

1

8

)
= N

(
0,

1

4

)
.

If k is odd, i.e., k = 2p+ 1, we have:

B2

(
p+ 1

2

)
−B2

(
p

2
+

1

4

)
= B2

(
p+ 1

2

)
− 1

2

[
B1

(p
2

)
+B1

(
p+ 1

2

)]
− z2,p+1

2
√

2
=

1

2

[
B1

(
p+ 1

2

)
−B1

(p
2

)]
− z2,p+1

2
√

2
∼ N

(
0,

1

4
· 1

2
+

1

8

)
= N

(
0,

1

4

)
.

Note that both 1
2

[
B1

(
p+1

2

)
−B1

(p
2

)]
and

z2,p+1

2
√

2
are independent Gaussian random vari-

ables with mean 0 and variance 1/8. If k = 2p and l = 2p+ 1, using an argument similar
to the one used for showing that that B1(1/2)−B1(0) and B(1)−B(1/2) are independent,
we show that

B2

(
p

2
+

1

4

)
−B2

(p
2

)
and B2

(
p+ 1

2

)
−B2

(
p

2
+

1

4

)
are independent. If k and l are such that floor(k/2) < floor(l/2), then the argument above
implies that B2(2−2(k+ 1))−B2(2−2k) = x1 +x2 and B2(2−2(l+ 1))−B2(2−2l) = y1 + y2,
where x1, x2, y1, y2 are independent Gaussian random variables with mean 0 and variance
1/8. Therefore, B2(2−2(k + 1)) − B2(2−2k) and B2(2−2(l + 1)) − B2(2−2l) for 0 ≤ k <
l ≤ 3 are independent. Finally, the increments over non-overlapping (no common interior
points) of B2 restricted to D2 are independent as they are sums of mutually independent
increments.

Continuing inductively, we define (i) : Bn(Dn−1) = Bn−1(Dn−1); (ii) for Dn\Dn−1

Bn

(
k

2n−1
+

1

2n

)
=

1

2

(
Bn−1

(
k

2n−1

)
+Bn−1

(
k + 1

2n−1

))
+

zn,k+1

2(n+1)/2
,

where zn,k+1 ∼ N (0, 1). It is shown in [3] that if one continues this refinement procedure
up to infinity, the resulting process satisfies the definition of Brownian motion. The first
six steps on this procedure are illustrated in Fig. 1.

1.1.2. Elementary properties of Brownian motion.

• The covariance function of the Brownian motion is

(2) E[w(t1)w(t2)] = min{t1, t2} ≡ t1 ∧ t2.

Indeed, suppose t2 > t1. Then

E[w(t1)w(t2)] = E[w(t1)w(t1) + w(t1)(w(t2)− w(t1)]

= E[w(t1)w(t1)] + E[w(t1)(w(t2)− w(t1))] = t1.
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• Nowhere differentiability with probability 1 Consider the random

w(ω, t+ ∆t)− w(ω, t)

∆t
.

It is Gaussian with mean 0 and variance (∆t)−1, which tends to infinity as ∆t→ 0.
Hence w(ω, t) is differentiable nowhere with probability 1.
• White noise Despite the regular derivative of a Brownian motion does not exist,

one can consider its derivative in the sense of distributions. This derivative η(ω, t)
is called white noise and is defined by the property∫ t2

t1

η(ω, t)dt = w(ω, t2)− w(ω, t1).

• Scaling and Symmetry If w(t) is a Brownian motion then so are the processes
defined by

x(t) :=
1√
c
w(ct) for any positive constant c,

y(t) = −w(t).

• Time inversion Let w(t) be a Brownian motion. Then so is the process defined
by

(3) x(t) =

{
tw (1/t) , 0 < t <∞,
0, t = 0.

• Invariance under rotations and reflections (orthogonal transformations)
Let w(t) be a d-dimensional Brownian motion, and T be a d× d orthogonal matrix
(i.e., T> = T−1). Then the process

x(t) = Tw(t)

is also a d-dimensional Brownian motion.

1.1.3. Markov property of Brownian motion.

Definition 5. A stochastic process ζ(t) on [0, T ] is called a Markov process if for any
sequences 0 ≤ t0 < . . . < tn ≤ T and x0, x1, ..., xn, its transition probability distribution
function has the property

P(ζ(tn) < xn | ζ(tn−1) < xn−1, . . . , ζ(t0) < x0) = P(ζ(tn) < xn | ζ(tn−1) < xn−1).

The transition probability density function, defined by

p(xn, tn | xn−1, tn−1; . . . ;x0, t0) :=
∂

∂xn
P(ζ(tn) < xn | ζ(tn−1) < xn−1, . . . , ζ(t0) < x0)

then satisfies

(4) p(xn, tn | xn−1, tn−1; . . . ;x0, t0) = p(xn, tn | xn−1, tn−1).

For any three times t > τ > s and any three points x, y, z we can write the identities

p(y, t; z, τ | x, s) = p(y, t | z, τ ;x, s)p(z, τ | x, s) = p(y, t | z, τ)p(z, τ | x, s).
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The last equality is a consequence of the Markov property. This identity implies the
Chapman-Kolmogorov equation:

(5) p(y, t | x, s) =

∫
p(y, t; z, τ | x, s)dz =

∫
p(y, t | z, τ)p(z, τ | x, s)dz.

Theorem 1. The Brownian motion is a Markov process.

Proof. Take any sequences 0 = t0 < . . . < tn ≤ T and x0 = 0, x1, ..., xn and consider the
joint pdf of the vector

w = (w(t1), w(t2), . . . , w(tn)).

It is given by

(6) p(x1, t1;x2, t2; . . . ;xn, tn) =
n∏
k=1

exp
{
− (xk−xk−1)2

2(tk−tk−1)

}
√

2π(tk − tk−1)

 .
Recall that

p(xn, tn | xn−1, tn−1; . . . ;x1, t1) =
p(x1, t1;x2, t2; . . . ;xn, tn)

p(x1, t1;x2, t2; . . . ;xn−1, tn−1)
.

Using Eq. (6) we get

p(xn, tn | xn−1, tn−1; . . . ;x1, t1) =

∏n
k=1

 exp

{
−

(xk−xk−1)
2

2(tk−tk−1)

}
√

2π(tk−tk−1)


∏n−1
k=1

 exp

{
−

(xk−xk−1)
2

2(tk−tk−1)

}
√

2π(tk−tk−1)

 =
exp

{
− (xn−xn−1)2

2(tn−tn−1)

}
√

2π(tn − tn−1)

= p(xn, tn | xn−1, tn−1).

Hence, the Brownian motion is a Markov process. �

2. An Introduction to SDEs.

Here we follow the discussion found in [1, 4]. Consider a stochastic process x(ω, t) ≡ x(t)
obeying the following evolution law:

(7) dx(t) = b(x(t), t)dt+ σ(x(t), t)dw,

where w is the standard Brownian motion and the functions b and σ are smooth.
This evolution law is called a stochastic differential equation (SDE). If σ(x(t), t) = 0,

Eq. (7) becomes an ordinary differential equation (ODE)

(8)
dx

dt
= b(x, t).

Suppose x(0) = x0. Eq. (8) is equivalent to the following integral equation

(9) x(t) = x0 +

∫ t

0
b(x(s), s)ds.
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A solution of an ODE is a function satisfying the ODE. If the ODE is complemented
with an initial condition, then the solution to the corresponding initial-value problem is a
function satisfying the given initial condition.

Now we will discuss the meaning of SDE (7). Similarly to Eq. (10) we can write

(10) x(t) = x0 +

∫ t

0
b(x(s), s)ds+

∫ t

0
σ(x(s), s)dw(s)

First assume that the function σ is independent of x, i.e., σ(x, t) ≡ σ(t). We partition the
interval [0, t] into t0 = 0 < t1 < t2 < . . . < tn = t and denote the fineness of the partition
by ∆:

∆ := max
1≤i≤n

|ti − ti−1|.

Then we define ∫ t

0
σ(s)dw(s) = lim

n→∞
∆→0

n−1∑
i=0

σi(w(ti+1)− w(ti))

where σi is chosen so that it approximates σ(t) on the subinterval [ti, ti+1].
The case where σ depends on x is much more difficult. We can proceed as before and

write ∫ t

0
σ(x(s), s)dw(s) = lim

n→∞
τ→0

n∑
i=1

σi(w(ti+1)− w(ti)),

however, the value of this limit will depend on how we choose σi approximating σ(x(t), t) on
the interval [ti, ti+1]. There are two common choices. We will give their general definition.
Let f(w(t), t) be a smooth function depending on time and a Brownian Motion w(t). In
particular, f(w(t), t) can be chosen to coincide with σ(x(t), t) where x(t) is a solution of
SDE (7), i.e., a stochastic process depending on w(t).

• The Ito stochastic integral is defined by the choice fi = f(ti), i.e., f is evaluated
at the left end of each subinterval:∫ t

0
f(w(s), s)dw = lim

n→∞
∆→0

n−1∑
i=0

f(w(ti), ti)(w(ti+1)− w(ti)).

• The Stratonovich stochastic integral is defined by the choice fi = f(t1+1/2),

where ti+1/2 ≡ 1
2(ti + ti+1). i.e., f is evaluated at the midpoint of each subinterval.

The Stratonovich stochastic integral is marked by ◦:∫ t

0
f(w(s), s) ◦ dw = lim

n→∞
∆→0

n−1∑
i=0

f(w(ti+1/2), ti+1/2)(w(ti+1)− w(ti)).

The example below demonstrates that Ito and Stratonovich stochastic integrals are differ-
ent.
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Example 1 Calculate
∫ b
a wdw (the Ito stochastic integral) and

∫ b
a w ◦dw

(the Stratonovich stochastic integral). Let the partition be uniform, i.e.,

∆t =
b− a
n

.

We start with the Ito stochastic integral.∫ b

a
wdw = lim

∆→0

∑
i

w(ti) [w(ti+1)− w(ti)]

=
1

2
lim
∆→0

∑
i

[
w2(ti+1)− w2(ti)− (w(ti+1)− w(ti))

2
]

Note that∑
i

(w2(ti+1)− w2(ti)) = w2(tn)− w2(tn−1) + w2(tn−1)− . . .+ w2(t1)− w2(t0)

= w2(b)− w2(a).

We also compute

E

[∑
i

(w(ti+1)− w(ti))
2

]
=
∑
i

(ti+1 − ti) = b− a.

Var

(∑
i

(w(ti+1)− w(ti))
2

)
=
∑
i

[
E[(w(ti+1)− w(ti))

4
]
−
(
E[(w(ti+1)− w(ti))

2]
)2

≤
∑
i

E
[
(w(ti+1)− w(ti))

4
]

=
n√

2π∆t

∫ ∞
−∞

x4e−x
2/2∆tdx

= 3n(∆t)2 =
3n(b− a)2

n2
=

3(b− a)2

n
→ 0 as n→∞.

Here we have used the fact that the fourth central moment of N (µ, σ2) is
3σ4. Hence ∫ b

a
wdw =

w2(b)− w2(a)

2
− b− a

2
.

The expected value of this integral is zero. Indeed, w(ti) [w(ti+1)− w(ti)]
is a product of two independent Gaussian random variables with mean 0,
hence E [w(ti) [w(ti+1)− w(ti)]] = 0 for all i. Therefore,

E

[∫ b

a
wdw

]
= E

[
lim
∆→0

∑
i

w(ti) [w(ti+1)− w(ti)]

]
= 0.
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Now we will calculate the Stratonovich stochastic integral:∫ b

a
w ◦ dw = lim

∆→0

∑
i

w(ti+1/2)(w(ti+1)− w(ti))

= lim
∆→0

∑
i

[w(ti+1/2)− w(ti) + w(ti)][w(ti+1)− w(ti+1/2) + w(ti+1/2)− w(ti)]

= lim
∆→0

∑
i

(w(ti+1/2)− w(ti))
2

+ lim
∆→0

∑
i

(w(ti+1/2)− w(ti))(w(ti+1)− w(ti+1/2))

+ lim
∆→0

∑
i

w(ti) [w(ti+1)− w(ti)] .

The first limit can be evaluated by finding its mean (b− a)/2 and showing
that its variance tends to zero as n → ∞. The second limit is zero as
it is the sum of products of independent Gaussian random variables with
mean zero and vanishing variance as as n → ∞. The third limit is the Ito
stochastic integral that we have just evaluated. Hence,∫ b

a
w ◦ dw =

b− a
2

+
w2(b)− w2(a)

2
− b− a

2
=
w2(b)− w2(a)

2
.

As you see, ∫ b

a
w ◦ dw 6=

∫ b

a
wdw.

2.1. Elementary properties of stochastic integral. Here we follow the discussions in
[4, 5]. We will use a shorter notation denoting f(w(t), t) by f(t, ω) where ω is the stochastic
argument of the Brownian Motion.

We will a consider stochastic process f(t, ω) on 0 ≤ t ≤ T satisfying the following
conditions:

Condition (1): f(t, ω) is independent of the increments of the Brownian motion
w(t, ω) in the future, i.e., f(t, ω) is independent of w(t + s, ω) − w(t, ω) for all
s > 0. Such processes are called adapted to the Brownian filtration Ft.

Condition (2): ∫ T

0
E[f2(s, ω)]ds <∞.

Now we list some useful elementary properties. The first two properties are similar to
those of the Riemann integral. The other ones are specific for the Ito integral. Let f(t, ω)
and g(t, ω) be any functions satisfying conditions (1) and (2) above.

(1) Linearity:∫ t

0
(af(s, ω) + bg(s, ω))dw(s, ω) = a

∫ t

0
f(s, ω)dw(s, ω) + b

∫ t

0
g(s, ω)dw(s, ω).
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(2) Additivity. Let 0 < T1 < T . Then∫ T

0
f(s, ω)dw(s, ω) =

∫ T1

0
f(s, ω)dw(s, ω) +

∫ T

T1

f(s, ω)dw(s, ω).

(3) If f is a deterministic function, i.e., f(s, ω) ≡ f(s), then∫ t

0
f(s)dw(s, ω) ∼ N

(
0,

∫ t

0
f2(s)ds

)
.

(4) For any 0 ≤ τ ≤ t ≤ T ,

E

[∫ t

0
f(s, ω)dw(s, ω)

]
= 0;

E

[∫ t

0
f(s, ω)dw(s, ω)

∫ τ

0
f(s, ω)dw(s, ω) = x

]
= x;

E

[(∫ T

0
f(s, ω)dw(s, ω)

)2
]

=

∫ T

0
E[f2(s, ω)]ds.

(5)

E

[∫ T

0
f(s, ω)dw(s, ω)

∫ T

0
g(s, ω)dw(s, ω)

]
=

∫ T

0
E[f(s, ω)g(s, ω)]ds.

2.2. Construction of the Ito integral. First note that for any constant random function
f(ω) ∫ b

a
f(ω)dw(s) = f(ω)(w(b)− w(a)).

Therefore, it is easy to construct the Ito integral for any simple random function h(t, ω)
that assumes a finite number of values. The integrals for simple functions can be extended
to integrals for any functions satisfying conditions 1 and 2.

Theorem 2. For every function f(t, ω) satisfying Conditions 1 and 2, there is a sequence
of step functions fn(t, ω) satisfying Conditions 1 and 2 such that

(11) lim
n→∞

∫ T

0
|f(t, ω)− fn(t, ω)|2dt = 0

for almost all ω ∈ Ω, and the limit

(12) I(t, ω) := lim
n→∞

∫ t

0
fn(s, ω)dw(s, ω)

is uniform in T for almost all ω ∈ Ω and is independent of the sequence fn(t, ω) satisfying
conditions 1 and 2.
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2.3. Existence and uniqueness of solutions of the Ito SDEs. Consider the SDE

(13) dx(t) = b(x(t), t)dt+ σ(x(t), t)dw, x(0) = x0 ∈ Rd, t ∈ [0, T ],

where w is the standard Brownian motion. We assume that the functions b and σ satisfy
the following conditions. There exists a constant C such that

(14) ‖b(x, t)‖+ ‖σ(x, t)‖F ≤ C(1 + ‖x‖), for all x ∈ Rd, t ∈ [0, T ],

where ‖ · ‖F denotes the Frobenius matrix norm:

‖A‖F :=
√

tr(A>A),

and

(15) ‖b(x, t)− b(y, t)‖+ ‖σ(x, t)− σ(y, t)‖F ≤ C‖x− y‖, for all x, y ∈ Rd, t ∈ [0, T ].

The first condition says that b and σ do not grow faster than linearly in x, and the
second condition is an analogue of the Lipschitz condition. In this case, Eq. (13) with
E[‖x0‖2] <∞ has a unique solution such that

E

[∫ t

0
‖x(s)‖2ds

]
<∞ for all t ∈ [0, T ].

From now on, we will autonomize SDEs to save some writing. If b and/or σ explicitly
depend on t, we introduce a new independent variable s, declare that t is a new dependent
variable, and add the equation dt = ds. This is called “autonomization”. Therefore, the
assumption that the SDE is autonomous does not lead to the loss of generality.

2.4. Notation common in probability books. It is common in the probability com-
munity to denote stochastic processes by capital letters with subscripts specifying their
time arguments:

(16) dXt = b(Xt)dt+ σ(Xt)dw, X0 = x, t ∈ [0, T ], x ∈ Rd.

Terminology:

• Xt satisfying Eq. (16) is called a diffusion process;
• b(x) is called a drift ;
• the matrix Σ(x) = σ(x)σ>(x) is called a diffusion matrix.

Exercise Show that b and Σ satisfy:

lim
t→s

E

[
Xt −Xs

t− s
| Xs = x

]
= b(x, s)(17)

lim
t→s

E

[
[Xt −Xs][Xt −Xs]

>

t− s
| Xs = x

]
= Σ(x, s).(18)
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2.5. The Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process models the
velocity of a heavy particle pushed around by light particles. The variable Xt is the
velocity of the particle. For simplicity, we consider it in 1D:

(19) dXt = −γXtdt+
√

2Ddw, X0 = x ∈ R

where x is a fixed number, γ is the friction coefficient, and D is the diffusion coefficient.
The exact solution of Eq. (19) can be written in the closed form involving a stochastic

integral. We proceed as we do when we solve a linear non-homogeneous first order ODE.
Switch the term −γXt to the left-hand side and multiply the equation by the integrating
factor exp(γt). Then we get

d
(
eγtXt

)
=
√

2Deγtdw.

Suppose X0 = x. Integrating from 0 to t we obtain:

eγtXt − x =
√

2D

∫ t

0
eγsdws.

Hence the solution of Eq. (19) is

Xt = xe−γt +
√

2D

∫ t

0
e−γ(t−s)dws.

The solution Xt is a Gaussian random variable with mean xe−γt and variance D
γ (1−e−2γt).

The variance is found as follows. We partition the interval [0, t] into n equal subintervals
of length h = t/n and let n→∞:

Var

(√
2D

∫ t

0
e−γ(t−s)dws

)
= 2De−2γtE

[
(

∫ t

0
eγsdws)

2

]

= 2De−2γt lim
n→∞

E

n−1∑
j=0

eγ2jh[w((j + 1)h)− w(jh)]2


= 2De−2γt

∫ t

0
e2γsds = 2De−2γt 1

2γ

(
e2γt − 1

)
=
D

γ

(
1− e−2γt

)
.

As t→∞, the velocity Xt of the particle becomes a Gaussian random variable with mean
0 and variance D

γ .
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Now let us calculate the covariance function of the Ornstein-Uhlenbeck process. Suppose
t ≥ s.

Cov(Xs, Xt) = E

[(√
2D

∫ s

0
e−γ(s−τ)dwτ

)(√
2D

∫ t

0
e−γ(t−τ)dwτ

)]
= 2De−γ(t+s)E

[(∫ s

0
eγτdwτ

)(∫ s

0
eγτdwτ +

∫ t

s
eγτdwτ

)]
=
D

γ
e−γ(t+s)

(
e2γs − 1

)
=

[
−D
γ

]
e−γ(t+s) +

D

γ
e−γ(t−s).

Note that as t and s tend to infinity, the first term decays to zero. Then the covariance
function depends only on the difference t− s and is given by

R(t− s) =
D

γ
e−γ|t−s|.

The Ornstein-Uhlenbeck process (19) with the initial condition x ∼ N(0, Dγ ) can serve

as a model for a colored noise.

3. The Ito calculus

SDEs can be solved analytically only in special cases. Even if so, we often need not the
formula for the solution but the expected value of some function defined on the random
trajectories. This function can be the first passage time to a given region of the phase
space or the probability to reach first one given region rather than the other given region.
To answer such kind of questions, it is handy to be able to calculate the time evolution of
functions defined on trajectories. The Ito formula provides us with a tool to do it.

3.1. A derivation of the Ito formula. The most important result in the Ito calculus is
the Ito formula.

3.1.1. 1D case. For simplicity, we will start with the 1D case. Let x(t) be trajectory
obeying the ODE

dx

dt
= b(x).

Then any function f(x(t), t) evolves in time according to

(20)
df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
=
∂f

∂t
+ b(x)

∂f

∂x
.

Now let x(t, ω) be a trajectory of the SDE

dXt = b(Xt)dt+ σ(Xt)dw.

One could naively write

df =
∂f

∂t
dt+

∂f

∂x
dXt =

∂f

∂t
dt+

∂f

∂x
(b(Xt)dt+ σ(Xt)dw)
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but this would be WRONG. This is because dw = O(
√
dt) and (dw)2 = O(dt). The

correct differential of f is given by Eq. (21) below.
Let us derive it. We want to find the differential, i.e., the part of the increment of the

order of dt or larger for a function f(Xt, t), where dXt = b(Xt)dt+σ(Xt)dw. We will write
a formal Taylor expansion of f(Xt, t) and keep all terms of the order of dt or larger. To
save some space, the arguments (Xt, t) in all derivatives will be omitted.

f(Xt+dXt, t+dt) = f(Xt, t)+
∂f

∂t
dt+

∂f

∂x
dXt+

1

2

∂2f

∂t2
(dt)2+

∂2f

∂x∂t
dXtdt+

1

2

∂2f

∂x2
(dXt)

2+. . . .

The term dw is O(
√
dt). The term dXtdt is O((dt)3/2). The term (dw)2 contained in

(dXt)
2 is O(dt). Hence we need to keep only the term 1

2
∂2f
∂x2

(dXt)
2 out of the second order

terms. Therefore,

df(Xt, t) =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2.

Writing dXt explicitly we get:

(dXt)
2 = (b(Xt)dt+ σ(Xt)dw)(b(Xt)dt+ σ(Xt)dw)

= b2(Xt)(dt)
2 + 2b(Xt)σ(Xt)dtdw + σ2(dw)2 = σ2(Xt)dt+ o(dt).

Hence,

(21) df(Xt, t) =

[
∂f

∂t
+ b(Xt)

∂f

∂x
+

1

2
σ2(Xt)

∂2f

∂x2

]
dt+ σ(Xt)

∂f

∂x
dw.

Note that Eq. (21) can be rewritten as

(22) df(Xt, t) =

[
∂f

∂t
+ Lf

]
dt+ σ(x)

∂f

∂x
dw, where L = b(Xt)

∂

∂x
+

1

2
σ2(Xt)

∂2

∂x2
.

L is called the infinitesimal generator of the process.

3.1.2. Multidimensional case. Now we turn to the multidimensional case is stated below.
We define the generator by

(23) L = b(Xt) · ∇+
1

2
Σ(Xt) : ∇∇,

where the symbol “:” means

A : B :=
n∑
i=1

n∑
j=1

AijBij ,

and

(∇∇)ij =
∂2

∂xi∂xj
.

In the coordinate form, L can be rewritten as

(24) L =

d∑
j=1

bj(Xt)
∂

∂xj
+

1

2

d∑
i,j=1

Σij(Xt)
∂2

∂xi∂xj
.
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Theorem 3. (Ito’s formula) Assume that b and σ satisfy Eqs. (14) and (15) and
E[‖X0‖2] < ∞. Let f(x, t) be twice continuously differentiable in x in Rd and continu-
ously differentiable in t on [0, T ]. Then the process f(Xt, t) satisfies:
(25)

f(Xt, t) = f(X0, 0) +

∫ t

0

∂f(Xs, s)

∂s
ds+

∫ t

0
Lf(Xs, s)ds+

∫ t

0
∇f(Xs, s)

>σ(Xs)dws.

Eq. (25) is equivalent to

(26)
df

dt
=
∂f

∂t
+∇f · dXt

dt
+

1

2

dXt

dt
· ∇∇f dXt

dt
,

or

(27) df(Xt, t) =
∂f

∂t
dt+

d∑
i=1

∂f

∂xi
dXi +

1

2

d∑
i,j=1

∂2f

∂xi∂xj
dXidXj ,

Ito’s formula is proven e.g. in [4].

3.2. The geometric Brownian motion. The geometric Brownian motion is a stochastic
process satisfying the following SDE

(28) dXt = µXtdt+ σXtdw,

where w is the standard Brownian motion, µ (the percentage drift) and σ (the percentage
volatility) are constants. The SDE (28) is used in mathematical finance to model the stock
prices in the Black-Scholes model.

Eq. (28) has an analytic solution that can be found as follows. Introduce the new
dependent variable Yt = logXt. Using Ito’s formula (21) and taking into account that
dY
dX = 1

X and d2Y
dX2 = − 1

X2 we write the differential of Yt:

dYt =

(
µXt

dY

dX
+

1

2
σ2X2

t

d2Y

dX2

)
dt+ σXt

dY

dX
dw =

(
µ− σ2

2

)
dt+ σdw.

The right-hand side of the SDE for Yt is independent of Yt and hence Yt is found just by
integration of the right-hand side:

Yt = Y0 +

(
µ− σ2

2

)
t+ σwt.

Returning to Xt = exp(Yt) we get the exact solution of Eq. (28):

(29) Xt = X0e

(
µ−σ

2

2

)
t+σwt .

We say that a random variable X is lognormal if its logarithm is Gaussian, i.e. if
logX ∼ N(m, s2).

Exercise Check that if Y ∼ N(m, s2) then

E[eY ] = em+ s2

2 , Var(eY ) = e2m+s2(es
2 − 1),
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and the pdf of X = eY is given by

feY (x) =
1

x
√

2πs2
e−

(log x−m)2

2σ2 .

Note that

Yt = logXt ∼ N
(
Y0 +

(
µ− σ2

2

)
t, σ2t

)
,

hence the geometric Brownian motion Xt has a log-normal distribution. The mean and
the variance of Xt are

E[Xt] = X0e
µt, Var(Xt) = X2

0e
2µt
(
eσ

2t − 1
)
.

3.3. Backward Kolmogorov equation. Imagine that we are interested in some quantity
f that depends on Xt evolving according to the SDE

dXt = b(Xt)dt+ σ(Xt)dw.

Suppose that we want to find the expected value of f at a future time T given that at
the present time t, Xt = x. For example, you can think of f being an option price that
depends on the stock price X. We denote the expected value of f at time T conditioned
on Xt = x by u(x, t). Let us find the time evolution of

u(x, t) := E[f(XT ) | Xt = x] =

∫
Rd
f(y)p(y, T |x, t)dy,

In words, imagine that we start a stochastic process Xs at time t at the point x. We stop
it at a fixed time T . We want to find the expected value of f(XT ). This expected value
u(x, t) depends on the initial time t and the initial point x. Obviously, for the terminal
time t = T we have: u(x, T ) = f(x). Using Ito’s formula (25) we calculate

u(XT , T )− u(Xt, t) =

∫ T

t

∂

∂s
u(Xs, s)ds+

∫ T

t
Lu(Xs, s)ds+

∫ T

t
∇u(Xs, s)

>σ(Xs)dws.

Now we will take expected values of both parts of this equation conditioned on Xt = x.
Note that

E[u(XT , T ) | Xt = x] = E [f(XT ) | Xt = x] = u(x, t)

and

E[u(Xt, t) | Xt = x] = u(x, t).

Hence the conditional expectation of the left-hand side is 0. Also note that by property
(4) in Section 2.1,

E

[∫ T

t
∇u(Xs, s)

>σ(Xs)dws

]
= 0.

Therefore, for all x, t and T we have∫ T

t

[
∂

∂s
u(x, s) + Lu(x, s)

]
ds = 0.
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Hence for all t ≤ T , u(x, t) satisfies the PDE with the final condition:

∂

∂t
u(x, t) + Lu(x, t) = 0 u(x, T ) = f(x).

Re-defining u as

u(x, t) = E[f(Xt) | X0 = x], i.e., u(x, t) = uold(x, T − t),

we obtain that for 0 ≤ t ≤ T

(30)
∂

∂t
u(x, t) = Lu(x, t), u(x, 0) = f(x).

Eq. (30) is called the Backward Kolmogorov Equation. It describes the time evolution
of expected values. Note that in the re-definition of u we used the fact that Xt evolves
according to an autonomous SDE which is invariant with respect to a time shift.

3.4. The expected first passage time. Let A ⊂ Rd be some region. The first passage
time to A is defined as

τA = inf{t ≥ 0 | Xt ∈ A}.
Let u(x, t) be the expected first passage time to A for the process Xt starting at x, i.e.,

u(x, t) = E [τA | Xt = x] .

We calculate:

u(XτA , τA)−u(Xt, t) =

∫ τA

t

∂

∂s
u(Xs, s)ds+

∫ τA

t
Lu(Xs, s)ds+

∫ τA

t
∇u(Xs, s)

>σ(Xs)dws.

Next, we take the expected values of the left- and right-hand side of this equation condi-
tioned on Xt = x. Taking into account that

E[u(XτA , τA) | Xt = x] = E [τA | Xt = x] = u(x, t) and E[u(Xt, t) | Xt = x] = u(x, t)

we get for all t and x ∫ τA

t

∂

∂s
u(x, s)ds+

∫ τA

t
Lu(x, s)ds = 0.

We also note that
∂

∂t
u(x, t) = 1.

Finally, if x ∈ A we have τA = 0. Hence the mean first passage time u(x) satisfies the
following boundary value problem

(31) Lu = −1, x /∈ A, x(∂A) = 0.
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Example 2 Let dXt =
√

2β−1dw, X0 = x, i.e., a scaled one-dimensional
Brownian motion starting at the point x. Let us find the expected exit time
from the interval [−1, 1]. As we have shown, the expected exit time u(x)
satisfies Eq. (31), which in our case becomes

β−1u′′ = −1, −1 ≤ x ≤ 1, u(1) = u(−1) = 0.

Solving this equation we obtain

u(x) =
β

2
(1− x2).

3.5. The committor equation. Let A ⊂ Rd and B ⊂ Rd be some regions. The commit-
tor function q(x) is defined as the probability that the process starting at the point x first
reaches B rather than A [6, 7]. Let us derive a boundary-value problem for the commitor.
It is clear that q(∂A) = 0 and q(∂B) = 1. For x ∈ (A ∪ B)c let us define the first passage
time to A ∪B, i.e.,

τAB = inf{t ≥ 0 | Xt ∈ A ∪B}.
We calculate:

q(XτAB )− q(X0) =

∫ τAB

0
Lq(Xs)ds+

∫ τAB

0
∇q(Xs)

>σ(Xs)dws.

Take the expected values of the left- and right-hand side of this equation conditioned on
X0 = x. We get that for all x

q(x)− q(x) =

∫ τAB

0
Lq(x)ds = 0

Therefore, the solution of the boundary-value problem

Lq = 0, x ∈ (A ∪B)c, q(∂A) = 0, q(∂B) = 1

is the committor function.

Example 3 Let dXt = −V ′(x)dt +
√

2β−1dw, X0 = x, i.e., a particle
moving according to the overdamped Langevin dynamics in the potential
force field V (x). In the 1D case, the committor equation can be solved
exactly. We have:

−V ′(x)q′(x) + β−1q′′(x) = 0, a ≤ x ≤ b, q(a) = 0, q(b) = 1.

Multiply this equation by βe−βV (x). Then its left-hand side becomes a
complete differential: (

e−βV (x)q′(x)
)′

= 0.

Integrating this equation and taking the boundary conditions into account
we get

q(x) =

∫ x
a e

βV (y)dy∫ b
a e

βV (y)dy
.
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3.6. The generator of a Markov process. In Section 3.3, we fixed a function f and we
considered the expectation of f at time t as a function of the initial point x and time t:

u(x, t) := E[f(Xt) | X0 = x].

Now we fix the time t and consider the same expectation as a map applied to the set
of continuous and bounded functions f(x), x ∈ Rd. Therefore, we define the family of
operators indexed by t:

(Ptf)(x) := E[f(Xt) | X0 = x] =

∫
Rd
f(y)p(y, t | x, 0)dy.

We will call the operator Pt the transfer operator. It is analogous to the stochastic matrix
P in the discrete-time Markov chains. The operator Pt possesses the semigroup properties:

P0 = I, Pt+s = Pt ◦ Ps for all t, s ≥ 0.

Indeed,

(P0f)(x) := E[f(X0) | X0 = x] = f(x),

Hence P0 is the identity. Recall the Chapman-Kolmogorov equation (Eq. (5)) expressing
the Markov property. Using it, we write:

(Pt+sf)(x) =

∫
Rd
f(y)p(y, t+ s | x, 0)dy =

∫
Rd
f(y)dy

∫
Rd
p(y, t+ s | z, t)p(z, t | x, 0)dz

=

∫
Rd
dzp(z, t | x, 0)

∫
Rd
p(y, t+ s | z, t)f(y)dy = (PtPsf)(x).

Due to this, the operator Pt is often referred to as the Markov semigroup.
Now consider the limit as t ↓ 0:

(32) (Lf)(x) := lim
t→0+

(Ptf)(x)− f(x)

t
.

Assume that this limit exists. This limit is called the infinitesimal generator of the transfer
operator Pt or the generator of the Markov process Xt.

Recall that (Ptf)(x) = u(x, t). Eq. (32) implies that

∂u

∂t
= lim

s→0

Pt+sf − Ptf
s

= LPtf = Lu, u(x, 0) = f(x).

This is the Backward Kolmogorov equation that we have obtained in Section 3.3. Matching
it with Eq. (30) we see that the operator L must be given by Eq. (23).

3.7. The adjoint semigroup and the forward Kolmogorov equation. In Section 3.6
we considered the expected value of f(Xt) conditioned on X0 = x. Now we assume that
X0 does not start at x with probability 1 but the starting point is distributed according
to a pdf µ0(x). Then the expected value of f(Xt) is

E[f(Xt)] =

∫
Rd
Ptf(x)µ0(x)dx.
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Writing Ptf explicitly and switching the order of integration we obtain

E[f(Xt)] =

∫
Rd
Ptf(x)µ0(x)dx =

∫
Rd
µ0(x)dx

∫
Rd
dyf(y)p(y, t | x, 0)

=

∫
Rd
dyf(y)

∫
Rd
µ0(x)p(y, t | x, 0)dx

=:

∫
Rd
dyf(y)P ∗t µ0.(33)

In the original order of integration, we froze the pdf µ0(x) while evolved f(Xt) in time.
After switching the order of integration, we froze f and evolved the pdf µ in time. Finally,
we have defined the evolution operator for the pdf:

(34) µt(x) := (P ∗t µ0)(x) :=

∫
Rd
µ0(x)p(y, t | x, 0)dx.

The operator P ∗t is adjoint to the transfer operator Pt. Indeed, consider the inner product

(f, g) :=

∫
Rd
f(x)g(x)dx.

Then Eq. (33) shows that

E[f(Xt)] = (Ptf, µ0) = (f, P ∗t µ0).

The infinitesimal generator for the adjoint semigroup P ∗t is defined by

(35) (L∗µ0)(x) := lim
t→0

(P ∗t µ0)(x)− µ0(x)

t
.

It is easy to check that L and L∗ are adjoint, i.e., for all admissible f and g,

(36) (Lf, g) = (f, L∗g).

Eqs. (34) and (35) show that the time evolution of the probability density function is
given by

(37)
∂µ(x, t)

∂t
= L∗µ(x, t), µ(x, 0) = µ0(x).

Eq. (37) is called the forward Kolmogorov equation or the Fokker-Planck equation.
Eq. (23) allows us to find the adjoint generator L∗ explicitly. Consider the process

governed by the SDE

dXt = b(Xt)dt+ σ(Xt)dw, X(0) = x, t ≥ 0, x ∈ Rd.

For it, the generator is the differential operator given by

L = b(x) · ∇+
1

2
Σ(x) : ∇∇.
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To find the adjoint generator L∗, we consider the identity Eq. (49):

(Lf, g) =

∫
Rd

(b · ∇f +
1

2
Σ : ∇∇f)gdx

=

∫
Rd
f

(
−∇ · (gb) +

1

2
∇∇ : (Σg)

)
dx = (f, L∗g).

Here we have integrated by parts the first term once and the second term twice. Hence,

(38) L∗g = −∇ · (gb) +
1

2
∇∇ : (Σg)

Example 4 We will elaborate the procedure of obtaining L∗ in 2D. The
extension to higher dimensions in straightforward. Consider a 2D stochastic
process of the form

dXt = b1(Xt, Yt)dt+ σ11(Xt, Yt)dw1 + σ12(Xt, Yt)dw2

dYt = b2(Xt, Yt)dt+ σ21(Xt, Yt)dw1 + σ22(Xt, Yt)dw2

In the vector notations it looks as

d

(
Xt

Yt

)
=

(
b1
b2

)
dt+

(
σ11 σ12

σ21 σ22

)(
dw1

dw2

)
.

The matrix Σ = σσ> is

Σ ≡
(

Σ11 Σ12

Σ12 Σ22

)
≡
(

σ2
11 + σ2

12 σ11σ21 + σ12σ22

σ11σ21 + σ12σ22 σ2
21 + σ2

22

)
.

The generator L applied to a function f is:

Lf = b1∂xf + b2∂yf +
1

2
[Σ11∂xxf + 2Σ12∂xyf + Σ22∂yyf ] .

The adjoint generator L∗ is found from the identity (Lf, g) = (f, L∗g):

(Lf, g) =

∫
R2

[
gb1∂xf + gb2∂yf +

1

2
g [Σ11∂xxf + 2Σ12∂xyf + Σ22∂yyf ]

]
dxdy

=

∫
R2

f

[
−∂x(b1g)− ∂y(b2g) +

1

2
[∂xx(Σ11g) + 2∂xy(Σ12g) + ∂yy(Σ22g)]

]
dxdy

= (f, L∗g).

Hence

L∗g = −∂x(b1g)− ∂y(b2g) +
1

2
[∂xx(Σ11g) + 2∂xy(Σ12g) + ∂yy(Σ22g)] .
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3.8. The invariant pdf. Recall irreducible continuous-time Markov chains. The invariant
measure is the solution of πL = 0 or, equivalently, L>π> = 0. π and π>are row and
column vectors respectively. If the invariant measure is normalizable, we normalize it so
that

∑
i πi = 1 and call it the invariant distribution. For irreducible Markov chains with

a finite number of states, any probability distribution converges over time to the unique
invariant distribution π, i.e., for any initial distribution p0, the solution of

dp

dt
= pL, p(0) = p0

converges to π. Such Markov chains are called ergodic. The Markov Chain Monte Carlo
methods employ this property. Also recall that irreducibility of a continuous-time Markov
chain with a finite number of states implies that the eigenvalue 0 of L has multiplicity one.

Suppose that the equation L∗f = 0 for a Markov process Xt has a unique positive solu-
tion µ up to a multiplicative constant, and this solution is normalizable so that

∫
µ(x)dx =

1, then µ is the unique invariant pdf. In this case, for any initial pdf µ0, the pdf µt
converges to µ as t→∞:

lim
t→∞

P ∗t µ0 = µ.

Such Markov processes are also called ergodic.
The unique invariant pdf µ(x) satisfies the stationary forward Kolmogorov equation

(stationary Fokker-Planck equation):

(39) L∗µ = 0,

∫
Rd
µ(x)dx = 1.

Exercise (1) Show that the generator of the 1D Ornstein-Uhlenbeck process (19) is
given by

L = −γx d
dx

+D
d2

dx2
.

(2) Integrating by parts, derive the expression for the adjoint generator

L∗g =
d

dx
(γxg) +D

d2g

dx2
.

(3) Solve the equation

L∗µ = 0,

∫ ∞
−∞

µdx = 1

and find that the invariant pdf for the 1D Ornstein-Uhlenbeck process is

(40) µ(x) =

√
γ

2πD
e−

γx2

2D .
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4. The Langevin Dynamics

4.1. The full Langevin dynamics. The Langevin equation models the dynamics of
heavy particles in the potential force field pushed around by light particles:

dq =
p

m
dt

dp = (−∇V (q)− γp)dt+
√

2γmβ−1dw,(41)

where (q, p) ∈ R2d are the positions and momenta of the heavy particles, γ is the friction
coefficient, m is the mass of the heavy particles, and −∇V (q) is the potential force acting
on the heavy particles. Eq. (41) can be written in the form (16) by introducing

Xt =

[
q
p

]
, b(Xt) =

[
p/m

−∇V (q)− γp

]
, σ =

√
2γmβ−1

[
0 0
0 I

]
,

where I is the d× d identity matrix.

Exercise (1) Show that the infinitesimal generator for Eq. (41) is given by

L =
p

m
· ∇q −∇qV · ∇p + γ

(
−p∇p +mβ−1∆p

)
.

(2) Derive the expression for the adjoint generator

L∗g = − p

m
· ∇qg +∇qV · ∇pg + γ

(
∇p · (pg) +mβ−1∆pg

)
.

(3) Solve the stationary Fokker-Planck equation and show that the invariant pdf is
given by

µ(q, p) =
1

Z
e−βH(q,p), where H(q, p) =

|p|2

2m
+ V (q).

4.2. The overdamped Langevin dynamics. Suppose the friction coefficient γ in Eq.
(41) is large and/or the mass m is small, i.e., mγ−1 is small. We divide the equation for p
by γ:

γ−1dp = γ−1mdv = (−γ−1∇V (q)− p)dt+ γ−1
√

2mγβ−1dw.

We use that assumption that mγ−1 is small and set the left-hand side of the SDE above
to 0. Then we replace p with mdq

dt in the right-hand side and multiply both sides by γ:

mγ
dq

dt
= −∇V (q) +

√
2mγβ−1

dw

dt
or

mγdq = −∇V (q)dt+mγ

√
2β−1

mγ
dw(t)

Now we want to cancel out mγ. To do so, we rescale the time by introducing τ = (mγ)−1t.

Then dt = mγdτ . Recall that if w(t) is a Brownian motion, then for any c > 0, c−1/2w(ct)

is also a brownian motion, i.e., c1/2w(t) = w(ct). Hence

dw(t) = dw(mγτ) = (mγ)1/2dw(τ).
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Therefore, choosing the new time τ and canceling mγ we get

dq = −∇V (q)dτ +
√

2β−1dw(τ).

For the overdamped Langevin dynamics, the generator L is given by

L = −∇V · ∇+ β−1∆.

The adjoint generator L∗ is

L∗g = −∇ · (g∇V ) + β−1∆g.

The invariant pdf is

µ =
1

Z
e−βV (x).

5. Numerical integration of SDEs

Analytical solutions to SDEs can be obtained only in special cases. Therefore, it is
important to develop methods for numerical integration of SDEs. Here we will present
the Euler-Maruyama method (1955), a higher order Milstein’s method (1974), and MALA
(1996) (Metropolis Adjusted Langevin Method), and discuss some basic concepts of nu-
merical analysis of SDE solvers. An introductory text on numerical integrators for SDEs
that includes Matlab codes is the paper by D. Higham [8].

5.1. The Euler-Maruyama and Milstein’s methods. Consider the initial-value prob-
lem

(42) dXt = b(Xt)dt+ σ(Xt)dw, 0 ≤ t ≤ T, X0 = x.

We discretize the time interval [0, T ] into n equal subintervals of length h = T
n and generate

a vector w = [w1, . . . , wn] of n independent Gaussian random variables with mean 0 and
variance h to simulate the Brownian motion. In Matlab, it is convenient to do it using
the command randn. In C, I use the Box-Muller algorithm. We will denote the exact
and numerical solutions to Eq. (42) at the mesh points by Xj and Yj respectively, j =
0, 1, . . . , n. Then one can compute the numerical solution using the recurrence:

(43) Yj+1 = Yj + b(Yj)h+ σ(Yj)wj+1, Y0 = x.

This method is called the Euler-Maruyama method. It was proposed by G. Maruyama in
1955 [9].

A more accurate is Milstein’s method (1974) [10]:

(44) Yj+1 = Yj + b(Yj)h+ σ(Yj)wj+1 +
1

2
σ(Yj)σ

′(Yj)
[
w2
j+1 − h

]
, Y0 = x.

As one can see, Milstein’s method coincides with the Euler-Maruyama if σ is constant.
Milstein’s method is derived using the Ito formula [11]. The exact expression for Xj+1 is

(45) Xj+1 = Xj +

∫ tj+1

tj

b(Xs)ds+

∫ tj+1

tj

σ(Xs)dws.
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By the Ito formula (21) we have the following expressions for b(Xs) and σ(Xs) for s ∈
[tj , tj+1]:

b(Xs) = b(Xj) +

∫ s

tj

[
b(Xu)

db(Xu)

dX
+

1

2
σ2(Xu)

db2(Xu)

dX2

]
du+

∫ s

tj

σ(Xu)
db(Xu)

dX
dwu

= b(Xj) +

∫ s

tj

Lb(Xu)du+

∫ s

tj

L1b(Xu)dwu,

σ(Xs) = σ(Xj) +

∫ s

tj

Lσ(Xu)du+

∫ s

tj

L1σ(Xu)dwu,

where L1 := σ(Xu)
d

dX
.

We plug these expressions into Eq. (45) and get:

Xj+1 = Xj +

∫ tj+1

tj

[
b(Xj) +

∫ s

tj

Lb(Xu)du+

∫ s

tj

L1b(Xu)dwu

]
ds

+

∫ tj+1

tj

[
σ(Xj) +

∫ s

tj

Lσ(Xu)du+

∫ s

tj

L1σ(Xu)dwu

]
dws

= Xj + b(Xj)h+ σ(Xj)(wj+1 − wj) + L1σ(Xj)

∫ tj+1

tj

wsdws +O(h3/2)

Recall that ∫ b

a
wdw =

1

2

(
(wb − wa)2 − (b− a)

)
.

Using the fact that
L1σ(X) = σ(X)σ′(X),

and neglecting terms of order h3/2 or smaller we obtain Milstein’s method.

5.2. Strong and weak orders of convergence.

Definition 6. We say that a method for solving the initial value problem for SDEs on the
time interval [0, T ] has a strong order of convergence γ if there is a constant C such that

(46) E

[
sup

0≤tj≤T
|Xj − Yj |

]
≤ Chγ

if h = T/n is sufficiently small.

In other words, a method has a strong order of convergence γ, it the mean of errors over
realizations of Brownian motions decays as O(hγ).

Definition 7. We say that a method for solving the initial value problem for SDEs on the
time interval [0, T ] has a weak order of convergence γ if there is a constant C such that

(47) sup
0≤tj≤T

|E[Xj ]− E[Yj ]| ≤ Chγ
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if h = T/n is sufficiently small.

In other words, a method has a week order of convergence γ, if the error of the mean
over realizations of Brownian motions decays as O(hγ).

One can show that if the functions b and σ in SDE (42) are nice enough (in particular,
globally Lipschitz) then the Euler-Maruyama method has a strong order 1/2 and a weak
order 1, while Milstein’s method has both weak and strong orders 1. One can check these
orders by applying the given method to an SDE with an analytical solution, e.g., the
geometric Brownian motion, plotting weak and strong errors versus h in the log-log scale,
and estimating the slopes of the lines (see Fig. 4 in [8]) using least squares fits.

The proof of the strong orders of convergence of the Euler-Maruyama and Milstein’s
methods is not short and simple unlike basic methods for ODEs. Exact formulations and
exact proofs of the strong convergence results for Euler-Maruyama and Milstein’s methods
can be found e.g. in [12].

5.3. MALA. In 1996, Roberts and Tweedie [13] proposed the Metropolis Adjusted Langevin
Algorithm (MALA) to fight the problem of instability due to failure of the global Lipschitz
condition in the SDEs where the invariant pdf is known. The idea of this algorithm is to
treat each step of a basic integrator (e.g. the Euler-Maruyama) as a proposed step in the
Metropolis-Hastings algorithm. Then it can be accepted or rejected in a similar way as it
is done in the Metropolis-Hastings Monte Carlo algorithm. In many interesting examples,
the function b fails to satisfy global Lipschitz conditions. For example, if the drift in the
overdamped Langevin dynamics of particles interacting according to the Lennard-Jones
pair potential V (r) = r−6 − r−12 is not globally Lipschitz. Suppose you are using Euler-
Maruyama. Occasional large values of dw may put two particles too close to each other,
i.e., make r too small. Then, in the next step, as the function b = −∇V is huge, the par-
ticles are thrown far away from each other, so that the interaction between them becomes
negligible as ∇V is very small for large r. The MALA algorithm would reject steps where
dw is too large.

Consider the overdamped Langevin dynamics [14]

(48) dx = −∇V (x)dt+
√

2β−1dw.

The invariant pdf is

(49) π(x) =
1

Z
e−βV (x).

Let h be the time step. The proposed Euler-Maruyama move from position x to a new
position y is

(50) y = x−∇V (x)dt+
√

2β−1w, where w ∼ N(0, h).

As in the Metropolis-Hastings algorithm, we accept the proposed move with the probability

(51) α(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
,
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where q(x, y) and q(y, x) are the probabilities to move from x to y and from y to x following
the Euler-Maruyama method respectively. The ratio π(y)/π(x) is easily found from Eq.
(49). The probabilities q(x, y) and q(y, x) are found from the fact that

y − x+ h∇V (x)√
2β−1

∼ N(0, h) and
x− y + h∇V (y)√

2β−1
∼ N(0, h).

Hence

q(x, y) ∝ exp

(
−|y − x+ h∇V (x)|2

4β−1h

)
,

where ∝ means “proportional to”, and

q(y, x) ∝ exp

(
−|x− y + h∇V (y)|2

4β−1h

)
Therefore, the acceptance ratio is given by

α :=
π(y)q(y, x)

π(x)q(x, y)

= exp

(
−β
[
V (y)− V (x) +

|x− y + h∇V (y)|2

4h
− |y − x+ h∇V (x)|2

4h

])
.(52)

Thus, MALA proceeds as follows.
For step indices k = 1, 2, . . . n

(1) Propose the Euler-Maruyama move from from the current position x to a new
position y.

(2) Calculate the acceptance ratio α according to Eq. (52).
(3) If α ≥ 1, move to the proposed position y. Otherwise, if α < 1, move to y with

probability α and stay in x with probability 1− α.
(4) Set k = k + 1.

end for
The strong order of convergence of MALA is 3/4 [14].

References

[1] A. Chorin and O. Hald, Stochastic Tools in Mathematics and Science, 3rd edition, Springer 2013
[2] L. Koralov and Ya. Sinai, theory of probability and stochastic processes, 2nd edition, Springer, 2007
[3] Peter Moertens and Yuval Peres, Brownian Motion, electronic book, 2008
[4] Zeev Schuss, Theory and Applications of Stochastic Processes, An analytical approach, Springer, 2010
[5] Grigorios Pavliotis, Stochastic processes and Applications, Diffusion Processes, the Fokker-Planck, and

Langevin Equations, Springer, 2014
[6] W. E and E. Vanden-Eijnden, J. Stat. Phys., 123 (2006), 503
[7] W. E and E. Vanden-Eijnden, Ann. Rev. Phys. Chem., 61 (2010), 391
[8] Desmond J. Higham, An Algorithmic Introduction to Numerical Simulation of Stochastic Differential

Equations, SIAM Review, 43, 3, (2001) 525-546
[9] Gisiro Maruyama, Continuous Markov processes and stochastic equations, Rendiconti del Circolo

Matematico di Palermo JanuaryD̄April 1955, Volume 4, Issue 1, pp 48-90
[10] Milshtejn, G. N. (1975). ”Approximate Integration of Stochastic Differential Equations”. Theory of

Probability and Its Applications 19 (3): 557D̄000

http://umaryland.worldcat.org/title/stochastic-tools-in-mathematics-and-science/oclc/656394942&referer=brief_results
http://umaryland.worldcat.org/title/theory-of-probability-and-random-processes/oclc/191466712&referer=brief_results
http://www.stat.berkeley.edu/~peres/bmbook.pdf
http://umaryland.worldcat.org/title/theory-and-applications-of-stochastic-processes-an-analytical-approach/oclc/663096471&referer=brief_results
http://www.springer.com/?SGWID=0-102-24-0-0&searchType=EASY_CDA&queryText=grigorios+pavliotis&submit=Submit
http://www.springer.com/?SGWID=0-102-24-0-0&searchType=EASY_CDA&queryText=grigorios+pavliotis&submit=Submit
http://www.caam.rice.edu/~cox/stoch/dhigham.pdf
http://www.caam.rice.edu/~cox/stoch/dhigham.pdf
http://link.springer.com.proxy-um.researchport.umd.edu/journal/12215/4/1/page/1
http://link.springer.com.proxy-um.researchport.umd.edu/journal/12215/4/1/page/1


29

[11] Mark Richardson, Stochastic Differential Equations Case Study, (2009)
[12] H. Tanaka, T. Yamada, Strong Convergence for Euler-Maruyama and Milsteil Schemes with asymptotic

Method, arXiv:1210.0670v2 (2013)
[13] Roberts, G.O., Tweedie, R.L., 1996. Exponential convergence of Langevin distributions and their

discrete approximations. Bernoulli 2, 341D̄363.
[14] N. Bou-Rabee, E. Vanden-Eijnden, Pathwise Accuracy and Ergodicity of Metropolized Integrators for

SDEs, Commun Pure Appl Math, 63, 655-696, 2010
[15] Wikipedia

http://people.maths.ox.ac.uk/richardsonm/SDEs.pdf
http://arxiv.org/pdf/1210.0670v2.pdf
http://arxiv.org/pdf/1210.0670v2.pdf
https://stat.duke.edu/~scs/Courses/Stat376/Papers/Langevin/RobertsTweedieBernoulli1996.pdf
https://stat.duke.edu/~scs/Courses/Stat376/Papers/Langevin/RobertsTweedieBernoulli1996.pdf
https://arxiv.org/pdf/0905.4218.pdf
https://arxiv.org/pdf/0905.4218.pdf

	1. Brownian Motion
	1.1. Definition of Brownian Motion

	2. An Introduction to SDEs. 
	2.1. Elementary properties of stochastic integral
	2.2. Construction of the Ito integral
	2.3. Existence and uniqueness of solutions of the Ito SDEs
	2.4. Notation common in probability books.
	2.5. The Ornstein-Uhlenbeck process

	3. The Ito calculus
	3.1. A derivation of the Ito formula
	3.2. The geometric Brownian motion
	3.3. Backward Kolmogorov equation
	3.4. The expected first passage time
	3.5. The committor equation
	3.6. The generator of a Markov process
	3.7. The adjoint semigroup and the forward Kolmogorov equation
	3.8. The invariant pdf

	4. The Langevin Dynamics
	4.1. The full Langevin dynamics
	4.2. The overdamped Langevin dynamics

	5. Numerical integration of SDEs
	5.1. The Euler-Maruyama and Milstein's methods
	5.2. Strong and weak orders of convergence
	5.3. MALA

	References

