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1. Discrete-time Markov chains

Think about the following problem.

Example 1 (Gambler’s ruin). Imagine a gambler who has $1 initially.
At each discrete moment of time t = 0, 1, . . ., the gambler can play $1 if he
has it and win one more $1 with probability p or lose it with probability
q = 1− p. If the gambler runs out of money, he is ruined and cannot play
anymore. What is the probability that the gambler will be ruined?

The gambling process described in this problem exemplifies a discrete-time Markov chain.
In general, a discrete-time Markov chain is defined as a sequence of random variables
(Xn)n≥0 taking a finite or countable set of values and characterized by the Markov property:
the probability distribution of Xn+1 depends only of the probability distribution of Xn and
does not depend on Xk for all k ≤ n− 1. We will denote the this discrete set of values by
S and call it the set of states.

Definition 1. We say that a sequence of random variables (Xn)n≥0, where

Xn : Ω→ S ⊂ Z,
is a Markov chain with initial distribution λ and transition matrix P = (pij)i,j∈S if

(1) X0 has distribution λ = {λi | i ∈ S} and
(2) the Markov property holds:

P(Xn+1 = in+1 | Xn = in, . . . , X0 = i0) = P(Xn+1 = in+1 | Xn = in) = pinin+1 .

We will denote the Markov chain by Markov(P, λ). Note that the ith row of P is the
probability distribution for Xn+1 conditioned on the fact that Xn = i. Therefore, all entries
of the matrix P are nonnegative, and the row sums are equal to one:

pij ≥ 0,
∑
j∈S

P(Xn+1 = j | Xn = i) =
∑
j∈S

pij = 1.

A matrix P satisfying these conditions in called stochastic.
Some natural questions about a Markov chain are:

• What is the equilibrium probability distribution, i.e., the one that is preserved from
step to step?
• Does the probability distribution of Xn tend to the equilibrium distribution?
• How one can find the probability to reach some particular subset of states A ⊂ S?

What is the expected time to reach this subset of states?
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• Suppose we have selected two disjoint subsets of states A and B. What is the
probability to reach first B rather than A starting from a given state? What is the
expected time to reach B starting from A?

Prior to addressing these question, we will go over some basic concepts.

1.1. Time evolution of the probability distribution. If the set of states S is finite,
i.e., if |S| = N , then Pn is merely the nth power of P . If S is infinite, we define Pn by

(Pn)ij ≡ p(n)
ij =

∑
i1∈S

. . .
∑

in−1∈S
pii1pi1i2 . . . pin−1j .

Notation Pi(Xn = j) denotes the probability that the Markov process starting at i at
time 0 will reach state j at time n:

Pi(Xn = j) := P(Xn = j | X0 = i).

Theorem 1. Let (Xn)n≥0 be a Markov chain with initial distribution λ and transition
matrix P . Then for all n,m ≥ 0

(1) P(Xn = j) = (λPn)j;

(2) Pi(Xn = j) = P(Xn+m = j | Xm = i) = p
(n)
ij .

Proof. (1)

P(Xn = j) =
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j,Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1, . . . , X0 = i0)P(Xn−1 = in−1, . . . , X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
P(Xn = j | Xn−1 = in−1)P(Xn−1 = in−1 | Xn−2 = in−1) . . .P(X0 = i0)

=
∑
i0∈S

. . .
∑

in−1∈S
λi0pi0i1 . . . pin−1j = (λPn)j .

(2) The second statement is proven similarly.
�

1.2. Communicating classes and irreducibility. We say that state i leads to state j
(denote it by i −→ j) if

Pi(Xn = j for some n ≥ 0) > 0.

If i leads to j and j leads to i we say that i and j communicate and write i ←→ j. Note
that i leads to j if and only if one can find a finite sequence i1, . . . , in−1 such that

pii1 > 0, pi1i2 > 0, . . . , pin−1j > 0.

This, in turn, is equivalent to the condition that p
(n)
ij > 0 for some n.

The relation ←→ is an equivalence relation as it is

(1) symmetric as if i←→ j then j ←→ i;
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(2) reflective, i.e., i←→ i;
(3) transitive, as i←→ j and j ←→ k imply i←→ k.

Therefore, the set of states is divided into equivalence classes with respect to the relation
←→ called communicating classes.

Definition 2. We say that a communicating class C is closed if

i ∈ C, i −→ j imply j ∈ C.
Once the chain jumps into a closed class, it stays there forever.
A state i is called absorbing if {i} is a closed class. In the corresponding network, the

vertex i has either only incoming edges, or no incident edges at all.

Example 2 Let us identify the states in the Gambler’s ruin Markov
chain 1 with the number of dollars at each of them. It is easy to see that
states {1, 2, . . .} =: C1 constitute a communication class. The class C1 is
not closed because state 1 ∈ C1 leads to state 0 /∈ C1. State 0 is a closed
communicating class {0} =: C0 and an absorbing state.

Definition 3. A Markov chain whose set of states S is a single communicating class is
called irreducible.

Example 3 Let us consider a set of 7 identical particles shaped like
balls interacting according to a sticky potential. I.e., the particles do not
interact, when they do not touch each other, and they stick together as
they touch forming a bond. Some amount of energy needs to be spent in
order to break a bond. One example of such a system is a toy constructor
consisting of magnetic sticks and steel balls. Another example is micron-
size styrofoam balls immersed in water. M. Brenner’s and V. Manoharan’s
group (Harvard University) conducted a number of physical experiments
with such balls. M. Holmes-Cerfon and collaborators developed an efficient
numerical algorithm for enumeration all possible configurations of particles
and calculating transition rates between the configurations. A complete
enumeration has been done for up to 14 particles, an a partial one for
up to 19 [13]. One can model the dynamics of such a particle system as a
continuous-time Markov chain which, in turn, can be converted into a jump
chain, i.e., a discrete-time Markov chain. Such a jump chain for 7 particles
is displayed in Fig. 1. The numbers next to the arrows are the transition
probabilities. This chain was obtained from Fig. 6 in [12]. This Markov
chain is irreducible because the process starting at any configuration, can
reach any other configuration. While there are no direct jumps between
states 2 and 4, the transitions between them can happen in two jumps. So
is true for states 1 and 5. The transition matrix for this chain is given by:

https://www.amazon.com/CMS-MAGNETICS-Magnetic-Building-Sets/dp/B000IOK5I0/ref=sr_1_3?ie=UTF8&qid=1550423016&sr=8-3&keywords=magnet+balls+and+sticks
https://www.amazon.com/CMS-MAGNETICS-Magnetic-Building-Sets/dp/B000IOK5I0/ref=sr_1_3?ie=UTF8&qid=1550423016&sr=8-3&keywords=magnet+balls+and+sticks
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Figure 1. A jump chain for 7 particles interacting according to a sticky
potential obtained from Fig. 6 in [12].

(1) P =


0.7395 0.0299 0.0838 0.1467 0
0.1600 0.1520 0.4880 0 0.2000
0.1713 0.1865 0.4893 0 0.1529
0.8596 0 0 0 0.1404

0 0.2427 0.4854 0.1553 0.1165


1.3. Hitting times and absorption probabilities.

Definition 4. Let (Xn)n≥0 be a Markov chain with transition matrix P . The hitting time
of a subset A ⊂ S is the random variable τA : Ω→ {0, 1, 2, . . .} ∪ {∞} given by

τA = inf{n ≥ 0 | Xn ∈ A},
where we agree that inf ∅ =∞.
Definition 5. • The probability that (Xn)n≥0 ever hits A starting from state i is

(2) hAi = Pi(τA <∞).

• If A is a closed class, hAi is called the absorption probability.
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• The mean time taken for (Xn)n≥0 to reach A starting from i is

(3) kAi = Ei[τ
A] ≡ E[τA|X0 = i] =

∑
n<∞

nPi(τA = n) +∞Pi(τA =∞).

Example 4 In the Gambler’s ruin example 1, a good question to ask is
what is the probability that the gambler will eventually run out of money if
initially he has i dollars. If p ≤ 1/2, this probability is 1. The next question
is what is the expected time for the gambler to run out of money. Using

the just introduced notations, one needs to find h
{0}
i and, if h

{0}
i = 1, what

is k
{0}
i .

The quantities hAi and kAi can be calculated by solving certain linear equations.

Theorem 2. The vector of hitting probabilities hA = {hAi | i ∈ S} is the minimal non-
negative solution to the system of linear equations

(4)

{
hAi = 1, i ∈ A
hAi =

∑
j∈S pijh

A
j , i /∈ A.

(Minimality means that if x = {xi | i ∈ S} is another solution with xi ≥ 0 for all i, then
hAi ≤ xi for all i.)

Proof. First we show that the hitting probabilities satisfy Eq. (4). Indeed, if i ∈ A then
τA = 0 and hence Pi(τA <∞) = 1. If i /∈ A, then

Pi(τA <∞) =
∑
j∈S

Pi(τA <∞ | X1 = j)Pi(X1 = j)

=
∑
j∈S

Pj(τA <∞)pij =
∑
j∈S

hAj pij .

Now we show that if x = {xi | i ∈ S} is another nonnegative solution of Eq. (4) then
xi ≥ hAi for all i ∈ S. If i ∈ A then hAi = xi = 1. If i /∈ A, we have

xi =
∑
j∈S

pijxj =
∑
j∈A

pij +
∑
j /∈A

pijxj =
∑
j∈A

pij +
∑
j /∈A

pij
∑
k∈S

pjkxk

=
∑
j∈A

pij +
∑
j /∈A

pij

(∑
k∈A

pjk +
∑
k/∈A

pjkxk

)
=Pi(τA = 1) + Pi(τA = 2) +

∑
j /∈A

∑
k/∈A

pijpjkxk.
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Continuing in this manner we obtain

xi =

n∑
k=1

Pi(τA = k) +
∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnxjn

=Pi(τA ≤ n) +
∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnxjn .

Since xj ≥ 0 for all j ∈ S, the last term in the last sum is nonnegative. Therefore,

xi ≥ Pi(τA ≤ n) for all n.

Hence

xi ≥ lim
n→∞

Pi(τA ≤ n) = Pi(τA <∞) = hi.

�

Theorem 3. The vector of mean hitting times kA = {kAi | i ∈ S} is the minimal non-
negative solution to the system of linear equations

(5)

{
kAi = 0, i ∈ A
kAi = 1 +

∑
j∈S pijk

A
j , i /∈ A.

Proof. First we show that the mean hitting times satisfy Eq. (5). Indeed, if i ∈ A the
kAi = 0 as τA = 0. Let us consider two cases.
Case 1: there is i∗ ∈ S\A such that hAi∗ < 1.
Case 2: for all i ∈ S\A such that hAi = 1.
In Case 1, Eq. (4) implies that all hAi < 1 for i /∈ A such that i −→ i∗. In this case, all
kAi = ∞ such that i −→ i∗ by Eq. (3). Hence Eq. (5) holds. Let us consider Case 2. If
i /∈ A then

kAi =Ei[τ
A] =

∞∑
n=1

nP(τA = n | X0 = i)

=
∞∑
n=1

n
∑
j∈S

P(τA = n | X1 = j, X0 = i)Pi(X1 = j)

We can switch order of summation because all terms are positive (this follows from the
monotone convergence theorem). Also the Markov property implies that

P(τA = n | X1 = j, X0 = i) = P(τA = n | X1 = j).
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We continue:

kAi =
∑
j∈S

∞∑
n=1

nP(τA = n | X1 = j)Pi(X1 = j)

=
∑
j∈S

( ∞∑
m=0

(m+ 1)P(τA = m | X0 = j)pij

)

=
∑
j∈S

( ∞∑
m=0

mP(τA = m | X0 = j)pij +
∞∑
m=0

P(τA = m | X0 = j)pij

)

=
∑
j∈S

pijk
A
j +

∑
j∈S

pij

∞∑
m=0

P(τA = m | X0 = j).

Now we use the observe that
∞∑
m=0

P(τA = m | X0 = j) = hAj = 1

since we are considering Case 2. Finally,∑
j∈S

pij = 1

as this is a row sum of the transition matrix. As a result, we obtain what we have desired:

kAi = 1 +
∑
j∈S

pijk
A
j .

Now we show that if {yi | i ∈ S} with yi ≥ 0 for every i ∈ S is another solution of Eq.
(5) then kAi ≤ yi for all i ∈ S. If i ∈ A, then kAi = yi = 0. For i /∈ A we have:

yi =1 +
∑
j∈S

pijyj = 1 +
∑
j /∈A

pijyj = 1 +
∑
j /∈A

pij

(
1 +

∑
k/∈A

pjkyk

)
=Pi(τA ≥ 1) + Pi(τA ≥ 2) +

∑
j /∈A

∑
k/∈A

pijpjkyk.

Continuing in this manner we obtain:

yi =Pi(τA ≥ 1) + Pi(τA ≥ 2) + . . .Pi(τA ≥ n) +
∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnyjn

=Pi(τA) = 1 + 2Pi(τA = 2) + . . .+ nPi(τA ≥ n) +
∑
j1 /∈A

. . .
∑
jn /∈A

pij1pj1j2 . . . pjn−1jnyjn .

Since yi ≥ 0, so is the last term. Hence

yi ≥ Pi(τA = 1) + 2Pi(τA = 2) + . . . nPi(τA ≥ n) for all n.
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Therefore,

yi ≥
∞∑
n=1

nPi(τi = n) = Ei[τ
A] = kAi .

�

Example 5 Consider a particle wandering along the edges of a cube Fig.
2(a). If the particle reaches vertices (0, 0, 0) and (1, 1, 1), it disappears.
From each of the other vertices (colored with a shade of grey in Fig. 2(a)),
it moves to any vertex connected to it via an edge with equal probabilities.
Suppose that the particle is initially located at the vertex (0, 0, 1). Find the
probability that it will disappear at vertex (0, 0, 0).
Hint: consider four subsets of vertices:
0 ≡ {(0, 0, 0)},
1 ≡ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
2 ≡ {(0, 1, 1), (1, 0, 1), (0, 1, 1)}, and
3 ≡ {(1, 1, 1)}
as shown in the Fig. 2(b). Find the probabilities to jump along each arrow
in Fig. 2(b). Denote by Pi the probability for the particle to disappear at
vertex (0, 0, 0) starting from subset i, i = 0, 1, 2, 3. Write an appropriate
system of equations for Pi and solve it.
Solution 1: Transition probabilities between the subsets 0, 1, 2 and 3 are

(a)

(0,0,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,0)

(1,1,1)

(b)

0 1 2 3

1/3 2/3

2/3

1/3

Figure 2. Illustration for Example 5

shown in Fig. 2(b). Let Pi be the probability for the particle to disappear
at (0, 0, 0) provided that it is initially at the subset of vertices i. Then we
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have:

P0 = 1;

P1 =
1

3
P0 +

2

3
P2;

P2 =
2

3
P1 +

1

3
P3;

P3 = 0.

The solution of this system is P0 = 1, P1 = 3
5 , P2 = 2

5 , P3 = 0.
Solution 2: Transition probabilities between the subsets 0, 1, 2 and 3 are
shown in Fig. 2(b). The probability to get to 0 starting from 1 is the sum
of probabilities to get to 0 from nth visit of 1:

P1 =

∞∑
n=1

1

3

(
2

3

)2(n−1)

=
1

3

1

1− 4
9

=
3

5
.

Answer: 3
5 .

Example 6 Consider a particle wandering along the edges of a cube like
in Example 5 except for now the only absorbing state is the vertex (0, 0, 0).
If particle is at any other vertex, it goes to one of the vertices connected to
it by an edge with equal probability. Find the expected time for a process
starting at each vertex to be absorbed at (0, 0, 0).

Solution: Taking symmetry into account, we define a reduced Markov

0 1 2 3

1/3 2/3

2/3 1/3

1

Figure 3. Illustration for Example 6

chain shown in Fig. 3. Let ki = Ei[τ0] be the expected first passage time
to (0, 0, 0) provided that it is initially at the subset of vertices i. Then we
have:

k0 = 0;

k1 = 1 +
1

3
k0 +

2

3
k2;

k2 = 1 +
2

3
k1 +

1

3
k3;

k3 = 1 + k2.
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The solution of this system is k0 = 0, k1 = 7, k2 = 9, k3 = 10.

1.4. Solving recurrence relationships. In the case where the Markov chain has an
infinite set of states, Z or {0, 1, 2, . . .}, and only transitions between nearest neighbors are
possible, Eqs. (4) and (5) become linear 2nd order recurrence relationships, homogeneous
and nonhomogeneous respectively. A recipe for solving linear recurrence relationships
with constant coefficients, homogeneous and nonhomogeneous, can be found e.g. here (a
presentation by Niloufar Shafiei).

Second order recurrence relationships can be solved uniquely if one has two initial
(boundary) conditions. However, if the set of states S = {0, 1, 2, . . .} and A = {0} (as
in the Markov chain Gambler’s ruin 1), Eqs. (4) and (5) have only one boundary condi-
tion. The solutions hA and kA are determined by the additional requirements that they
must be minimal and nonnegative.

Now we consider the “birth-and-death” Markov chain where the coefficients are of the
transition matrix P are

P00 = 1, Pi,i+1 = pi, Pi,i−1 = qi, pi + qi = 1, i ≥ 1.

In this chain, 0 is an absorbing state, and we wish to calculate the absorption probability
starting from an arbitrary state i. Eq. (4) gives:

h0 = 1, hi = qihi−1 + pihi+1, i ≥ 1.

This recurrence relationship cannot be solved by the tools for the case of constant coeffi-
cients. However, another technique works in this case. Consider

ui := hi−1 − hi.
Subtracting hi from both parts of hi = qihi−1 + pihi+1 and taking into account that
qi + pi = 1 we get:

piui+1 = qiui.

Therefore,

ui+1 =

(
qi
pi

)
ui =

(
qiqi−1 . . . q1

pipi−1 . . . p1

)
u1 =: γiu1.

Then

u1 + u2 + . . .+ ui = h0 − h1 + h1 − h2 + . . .+ hi−1 − hi = h0 − hi.
Hence

hi = h0 − u1(1 + γ1 + . . .+ γi−1) = 1− u1

i−1∑
j=0

γj ,

as h0 = 1. Here we have defined γ0 = 1. Note that u1 cannot be determined from the
boundary condition h0 = 1. It has to be determined from the condition that h is the
minimal nonnegative solution. Therefore, we need to consider two cases.∑∞

j=0 γj =∞: In this case, u1 must be 0. Hence hi = 1 for all i ≥ 0. Hence the
absorption probability is 1 for every i.

http://www.eecs.yorku.ca/course_archive/2008-09/S/1019/Website_files/21-linear-recurrences.pdf
http://www.eecs.yorku.ca/course_archive/2008-09/S/1019/Website_files/21-linear-recurrences.pdf
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j=0 γj <∞: In this case, the minimal nonnegative solution will be the one where

hi → 0 as i→∞.

This will take place if we set

u1 =

 ∞∑
j=0

γj

−1

.

Then

hi = 1−
∑i−1

j=0 γj∑∞
j=0 γj

=

∑∞
j=i γj∑∞
j=0 γj

.

Therefore, the absorption probabilities hi < 1 for i ≥ 1.

Example 7 A gambler has $1 initially. At each round, he either wins
$1 with probability p or loses $1 with probability q = 1− p playing agains
an infinitely rich casino. Find the probability that he gets broke, i.e., his
capital is down to $0.
Solution: Let Pi be the probability to get to the situation of having $0
provided that the initial amount is $i. We have:

P0 = 1;

Pi = pPi+1 + qPi−1, 1 ≤ i <∞.

Observe that the probability to get to $0 starting from $1 is the same as the
one to get to $1 starting from $2. Therefore, the probability to get to $0
starting from $2 is the product of the probabilities to get to $1 from $2 and
to get to $0 from $1, i.e., P2 = P 2

1 . Hence, we get the following quadratic
equation for P1, taking into account that P0 = 1 and q = 1− p:

P1 = pP 2
1 + 1− p.

Solving it, we get two roots: 1 and 1−p
p . If p ≤ 1/2, then 1−p

p ≥ 1, hence

the only suitable solution is P1 = 1. If p > 1/2, then 1−p
p < 1, and we

should pick the root P1 = 1−p
p . One can see it as follows. Suppose that

there is a maximal amount of money $N that the gambler can get from the
casino. Performing a calculation similar to the one in the previous problem
and letting N →∞, one can get that P1 → q/p = (1− p)/p as N →∞.

Answer: P1 = 1 if p ≤ 1/2, and P1 = 1−p
p if p > 1/2.
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1.5. Recurrence and transience.

Definition 6. Let (Xn)n≥0 be a Markov chain with transition matrix P . We say that a
state i is recurrent if

(6) Pi(Xn = i for infinitely many n) = 1.

We say that a state i is transient if

(7) Pi(Xn = i for infinitely many n) = 0.

Surprisingly at the first glance, one can show that every state is either recurrent or
transient. This is the consequence of the Markov property. To prove this, we will need the
following definitions.

Definition 7. • The first passage time to state i is the random variable Ti defined
by

Ti(ω) = inf{n ≥ 1 | Xn(ω) = i}, where inf ∅ =∞.
• The rth passage time to state i is the random variable T

(r)
i defined inductively by

T
(0)
i = 0, T

(r+1)
i = inf{n ≥ T (r)

i + 1 | Xn(ω) = i}, r = 0, 1, 2, . . . .

• The length of rth excursion to i is

S
(r)
i =

{
T

(r)
i − T (r−1)

i if T
(r−1)
i <∞

0 otherwise.

• The return probability is defined by

fi = Pi(Ti <∞).

• The number of visits Vi of state i is the random variable that can be written as the
sum of indicator functions

Vi =
∞∑
n=0

1{Xn=i}.

Note that

Ei[Vi] =Ei

[ ∞∑
n=0

1{Xn=i}

]
=

∞∑
n=0

E
[
1{Xn=i}|X0 = i

]
=

∞∑
n=0

Pi(Xn = i) =
∞∑
n=0

p
(n)
ii .(8)

Also note that the conditions for a state to be recurrent or transient can be written as

• state i is recurrent if Pi(Vi =∞) = 1;
• state i is transient if Pi(Vi =∞) = 0.

Theorem 4. The following dichotomy holds:

(1) if Pi(Ti <∞) = 1, then i is recurrent and
∑∞

n=0 p
(n)
ii =∞;
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(2) if Pi(Ti <∞) < 1, then i is transient and
∑∞

n=0 p
(n)
ii <∞.

In particular, every state is either transient or recurrent.

Proof. (1) Let us denote Pi(Ti <∞) by fi. First show that

Pi(Vi > r) = f ri .

Pi(Vi > r) =Pi(T
(r)
i <∞) = Pi(S

(r)
i <∞ | T (r−1)

i <∞)Pi(T
(r−1)
i <∞)

=Pi(S
(r)
i <∞ | T (r−1)

i <∞)Pi(S
(r−1)
i <∞ | T (r−2)

i <∞) . . .Pi(Ti <∞)

=f ri .

(2) If fi = Pi(Ti <∞) = 1, then

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f ri = lim
r→∞

1 = 1.

Hence i is recurrent and
∑∞

n=0 p
(n)
ii = Ei[Vi] =∞.

(3) If fi = Pi(Ti <∞) < 1, then

Pi(Vi =∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f ri = 0.

Hence i is transient and
∞∑
n=0

p
(n)
ii = Ei[Vi] =

∞∑
r=0

Pi(Vi > r) =

∞∑
r=0

f ri =
1

1− fi
<∞.

�

Now I will list some facts about recurrence and transience. I will not prove them. Proofs
can be found e.g. in [1].

• In a communicating class, states are either all transient or all recurrent.
• Every recurrent class is closed.
• Every finite closed class is recurrent.
• For a simple random walk on Z, where the entries of the transition matrix are all

zeros except for pi,i+1 = q, pi,i−1 = 1− q, all states are transient if q 6= 1/2, and all
states are recurrent if q = 1/2.
• For a simple symmetric random walk on Z2, all states are recurrent.
• For a simple symmetric random walk on Zn, n ≥ 3, all states are transient.

1.6. Invariant distributions and measures.

Definition 8. A measure on a Markov chain is any vector λ = {λi ≥ 0 | i ∈ S}. A
measure is invariant (a. k. a stationary or equilibrium) if

λ = λP.

A measure is a distribution if, in addition,
∑

i∈S λi = 1.
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Theorem 5. Let the set of states S of a Markov chain (Xn)n≥0 be finite. Suppose that for
some i ∈ S

Pi(Xn = j) = p
(n)
ij → πj as n→∞ for all j ∈ S.

Then π = {πj | j ∈ S} is an invariant distribution.

Proof. Since p
(n)
ij ≥ 0 we have πj ≥ 0. Show that

∑
j∈S πj = 1. Since S is finite, we can

swap the order of taking limit and summation:∑
j∈S

πj =
∑
i∈S

lim
n→∞

p
(n)
ij = lim

n→∞

∑
i∈S

p
(n)
ij = 1.

Show that π = πP :

πj = lim
n→∞

p
(n)
ij = lim

n→∞

∑
k∈S

p
(n−1)
ik pkj =

∑
k∈S

lim
n→∞

p
(n−1)
ik pkj =

∑
k∈S

πkpkj .

�

Remark If the set of states is not finite, then the one cannot exchange summation and

taking limit. For example, limn→∞ p
(n)
ij = 0 for all i, j for a simple symmetric random walk

on Z. {πi = 0 | i ∈ Z} is certainly an invariant measure, but it is not a distribution.

The existence of an invariant distribution does not guarantee convergence to it. For
example, consider the two-state Markov chain with transition matrix

P =

(
0 1
1 0

)
.

The distribution π = (1/2, 1/2) is invariant as

(1/2, 1/2)

(
0 1
1 0

)
= (1/2, 1/2).

However, for any initial distribution λ = (q, 1− q) where q ∈ [0, 1/2) ∪ (1/2, 1], the limit

lim
n→∞

Pn

does not exist as
P 2k = I, P 2k+1 = P.

In order to eliminate such cases, we introduce the concept of aperiodic states.

Definition 9. Let us call a state i aperiodic, if p
(n)
ii > 0 for all sufficiently large n.

Theorem 6. Suppose P is irreducible and has an aperiodic state i. Then for all states j

and k, p
(n)
jk > 0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. Since the chain is irreducible, there exist such r and s that p
(r)
ji > 0 and p

(s)
ik > 0.

Then for sufficiently large n we have

p
(r+n+s)
jk =

∑
i1,...,in∈S

p
(r)
ji1
pi1i2 . . . pin−1inp

(s)
ink
≥ p(r)

ji p
(n)
ii p

(s)
ik > 0.

�
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Definition 10. We will call a Markov chain aperiodic if all its states are aperiodic.

Theorem 7. Suppose that (Xn)n≥0 is a Markov chain with transition matrix P and initial
distribution λ. Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution π. Then

P(Xn = j)→ πj as n→∞ for all j.

In particular,

p
(n)
ij → πj as n→∞ for all i, j.

A proof of this theorem is found in [1]. In the case where the set of states is finite,
this result can be proven by means of linear algebra. A building block of this proof is the
Perron-Frobenius theorem.

Theorem 8. Let A be an N ×N matrix with nonnegative entries such that all entries of
Am are strictly positive for all m > M . Then

(1) A has a positive eigenvalue λ0 > 0 with corresponding left eigenvector x0 where all
entries are positive;

(2) if λ 6= λ0 is any other eigenvalue, then |λ| < λ0.
(3) λ0 has geometric and algebraic multiplicity one.

Let P be the stochastic matrix for a Markov chain with N states. For sufficiently large
n, all entries of Pn for stochastic irreducible aperiodic matrices P become positive. The
proof of this fact is similar to the one of Theorem 6. Furthermore, the largest eigenvalue
of a stochastic matrix is equal to 1. Indeed, since the row sums of P are ones, λ0 = 1 is an
eigenvalue with the right eigenvector e = [1, . . . , 1]>.

Now let us show that the other eigenvalues do not exceed λ0 = 1 in absolute value. Let
(λ, v) be an eigenvalue and a corresponding right eigenvector of a stochastic matrix P . We
normalize v so that

vi = max
k∈S
|vk| = 1.

Since

λvi =
∑
k∈S

pikvk,

we have

|λ| =
∣∣∣∣∣ 1

vi

∑
k∈S

pikvk

∣∣∣∣∣ ≤ 1

vi

∑
k∈S

pik|vk| ≤
∑
k∈S

pik = 1.

Remark The fact that the eigenvalues of a stochastic matrix do not exceed 1 in absolute
value is an instance of the Gershgorin Circle Theorem.

Theorem 9. Every irreducible aperiodic Markov chain with a finite number of states N
has a unique invariant distribution π. Moreover,

(9) lim
n→∞

qPn = π

for any initial distribution q.

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem


MARKOV CHAINS 17

Proof. The Perron-Frobenius theorem applied to a finite stochastic irreducible aperiodic
matrix P implies that the largest eigenvalue of P is λ0 = 1 and all other eigenvalues are
strictly less than 1 in absolute value. The left eigenvector π, corresponding to λ0 has
positive entries and can be normalized so that they sum up to 1. Hence,

π = πP,

N∑
i=1

πi = 1.

Now let us establish convergence. First we consider the case when P is diagonalizable:

P = V ΛU,

where Λ is the matrix with ordered eigenvalues along its diagonal:

Λ =


1

λ1

. . .

λN−1

 , 1 > |λ1| ≥ . . . ≥ |λN−1|,

V is the matrix of right eigenvectors of P : PV = V Λ, such that its first column is
e = [1, . . . , 1]>. U = V −1 is the matrix of left eigenvectors of P : UP = ΛU . The
first row of U is π = [π1, . . . , πN ]. One can check that if UV = IN , these choices of the
first column of V and the first row of U are consistent. Therefore, taking into account that∑N

i=1 qi = 1, we calculate:

lim
n→∞

qPn

= lim
n→∞

[q1 q2 . . . qN ]


1 ∗ ∗ ∗
1 ∗ ∗ ∗

. . .
1 ∗ ∗ ∗




1
λn2

. . .

λnN



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗



= [1 0 . . . 0]


1

0
. . .

0



π1 π2 . . . πN
∗ ∗ ∗ ∗

. . .
∗ ∗ ∗ ∗


= [π1 π2 . . . πN ].

In the case when P is not diagonalizable, the argument is almost identical, just a bit
more tedious. We consider the Jordan decomposition of P

P = V JU
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where U = V −1 and J is the Jordan form of of P , i.e., a block-diagonal matrix of the form:

J =


1

J1

. . .

Jr

 ,
with the first block being 1×1 matrix J0 ≡ 1, and respectively, the first column of V being
[1, . . . , 1]>, and the first row of U being π – the right and left eigenvectors corresponding
to the eigenvalue 1, and the other blocks Ji of sizes mi ×mi, where 1 ≤ mi ≤ N − 1 and
m1 + . . .+mr = N − 1, of the form

(10) Ji =


λi 1

λi 1
. . .

. . .

λi

 =: λiImi×mi + E.

Exercise (1) Check that the matrix E in Eq. (10) with ones right above the diagonal
and all other entries zero is nilpotent. More precisely, Emi = 0mi×mi .

(2) Check that the matrices λiImi×mi and E commute.
(3) Check that

Jni =

mi−1∑
k=0

(
n
k

)
λn−ki Ek.

(4) Argue that

lim
n→∞

Jni = 0mi×mi

provided that |λi| < 1.
(5) Now prove Eq. (9) for the case when P is not diagonalizable.

�

2. Time reversal and detailed balance

For Markov chains, the past and the future are independent given the present. This
property is symmetric in time and suggests looking at Markov chains with time running
backwards. On the other hand, convergence to equilibrium shows that the behavior is
asymmetric in time. Hence, to complete the symmetry in time, we need to start with the
equilibrium distribution.

For convenience, we will use the following notations:
Markov(λ, P ) denotes the discrete-time Markov chain with initial distribution λ and tran-
sition matrix P .
Markov(λ, L) denotes a continuous-time Markov chain initial distribution λ and generator
matrix L.
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Theorem 10. Let (Xn)0≤n≤N be Markov(π, P ), where P is irreducible and π is invariant.

Define Yn = XN−n. Then (Yn)0≤n≤N is Markov(π, P̂ ) where the transition matrix P̂ =
(p̂ij) defined by

πjpji = πip̂ij for all i, j ∈ S.
Proof. Note that, since P is irreducible, all components of π are positive. We need to check
the following three facts.

(1) Check that P̂ is a stochastic matrix (i.e., all its entries are nonnegative and its row
sums are equal to 1):

p̂ij =
πj
πi
pji ≥ 0.∑

j∈S
p̂ij =

1

πi

∑
j∈S

πjpji =
πi
πi

= 1.

In the last equation, we used the fact that π is invariant for P .
(2) Check that π is invariant for P̂ , i.e., that πP̂ = π:∑

j∈S
πj p̂ji =

∑
j∈S

πipij = πi
∑
j∈S

pij = πi for all i ∈ S.

(3) Check that (Yn)0≤n≤N satisfies Markov property.

P(Y0 = i0, Y1 = i1, . . . , YN = iN ) = P(X0 = iN , X1 = iN−1, . . . , XN = i0)

=πiNpiN iN−1 . . . pi1i0 = p̂iN iN−1πiN−1piN−1iN−2 . . . pi1i0
= . . . = p̂iN−1iN . . . p̂i0i1πi0 .

Therefore, (Yn)0≤n≤N satisfies Markov property.

�

Definition 11. The chain (Yn)0≤n≤N is called the time-reversal of (Xn)0≤n≤N .

Definition 12. A stochastic matrix P and a measure λ are in detailed balance if

λipij = λjpji.

Suppose the set of states S is finite, the matrix P is irreducible, and the system is
distributed according to the invariant distribution π. The condition of detailed balance
means the following. Let Ni→j(n) be the number of transitions from i to j observed by
time n. Then for all i, j ∈ S,

lim
n→∞

Ni→j(n)

Nj→i(n)
= 1,

if P is in detailed balance with π. In words, over large intervals of times, on average, one
observes equal numbers of transitions from i to j and from j to i for all i, j ∈ S given the
detailed balance.

The detailed balance condition gives us another way to check whether a given measure
λ is invariant.

Theorem 11. Let P and λ be in detailed balance. Then λ is invariant for P .
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Proof.

(λP )i =
∑
j∈S

λjpji = λi
∑
j∈S

pij = λi.

Hence λP = λ. �

Definition 13. Let (Xn)n≥0 be Markov(λ, P ) where P is irreducible. We say that (Xn)n≥0

is reversible if for all N ≥ 1, (XN−n)0≤n≤N is Markov(λ, P ).

Theorem 12. Let P be an irreducible stochastic matrix and let λ be a distribution. Suppose
that (Xn)n≥0 is Markov(λ, P ). Then the following are equivalent:

(1) (Xn)n≥0 is reversible;
(2) P and λ are in detailed balance.

Proof. Both (1) and (2) imply that λ is invariant for P . Then both (1) and (2) are

equivalent to the statement that P̂ = P . �

3. Markov Chain Monte Carlo methods

As we have discussed, Monte Carlo methods are those where random numbers are used
in order to evaluate something nonrandom. Markov Chain Monte Carlo methods (MCMC)
are those where the estimation is done via constructing a Markov Chain whose invariant
distribution is the desired distribution. MCMC methods are used for numerical approx-
imation of multidimensional integrals. Such integrals arise, e.g., in Bayesian parameter
estimation, computational physics, and computational biology. For example, consider the
problem of finding the expected value of g(η) where η is a random variable with pdf π(x),
x ∈ Rd:

(11) E[g(η)] =

∫
x∈Rd

g(x)π(x)dx.

Or, consider the problem of finding the expected value of g(η) in the case where Ω is finite
but huge, i.e., |Ω| = N where N is huge. Let π(ω) be the probability distribution on Ω,
then

(12) E[g(η)] =
∑
ω∈Ω

g(η(ω))π(ω),

Note that in both of the cases, one rarely knows π per se. Instead, often only a measure f
proportional to π is known. For example, think about the canonical pdf for n particles in
3D:

µ(x, p) =
1

Z
e−β(V (x)+|p|2/2), Z =

∫
R6n

e−β(V (x)+|p|2/2)dxdp.

The normalization constant Z, except for some simple cases, cannot be evaluated analyt-
ically. Therefore, µ(x, p) is, strictly speaking, unknown. However, for each (x, p) one can
calculate the measure

f(x, p) = e−β(V (x)+|p|2/2)

that is proportional to µ(x, p)
Therefore, the problem is two-fold:
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• The expected value is hard-to-evaluate due to either high dimensionality of the
integral, so that numerical quadrature methods are unappreciable, or due to the
huge number of summands in the sum (think about numbers like N = 2n where
n ∼ 10k, k = 2, 3, 4 . . .). Moreover, π is often far from being uniform, and some
kind of importance sampling is necessary to be able to obtain a satisfactory estimate
using a reasonable number of samples of η.
• The pdf or the probability distribution π is unknown. Instead, f , that is propor-

tional to π, is given.

3.1. Metropolis and Metropolis-Hastings algorithms. We will explain the idea of
the Metropolis algorithm on the example of the task of numerical approximation of the
sum in Eq. (12) where Ω is a finite set, |Ω| = N , N is huge. We wish to construct a
discrete-time Markov chain (Xn)n≥0, Xn : Ω → {1, . . . , N}, i.e., where the each random
variable Xn is simply an enumeration of the set of outcomes. Therefore, we may think
that the set of states S and the set of outcomes Ω are identical. In order to be able to
approximate the sum in Eq. (12), we need to design a transition matrix P so that the
the desired measure f is invariant, and for any initial distribution λ, λPn converges to
π := Z−1f (where Z =

∑
i∈S fi) as n → ∞. Choosing P irreducible and aperiodic, we

guarantee the achievement of the convergence to the unique invariant distribution. To
make P to have the desired invariant measure f , it suffices to pick P being in detailed
balance with the measure f , i.e., the transition probabilities should satisfy

fipij = fjpji.

Such a transition matrix is constructed in two steps. As A. Chorin puts it, first do some-
thing stupid and then improve it.

(1) Suppose at time n, Xn = k. Propose a move from state k according to some
irreducible aperiodic transition matrix Q = (qij)ij∈S made-up by you. In the
original Metropolis algorithm, the matrix Q must be symmetric, i.e., qij = qji.
Suppose the proposed move is from state k to state l.

(2) To guarantee that the condition fipij = fjpji holds, accept the proposed move with
the probability

(13) α = min

{
fl
fk
, 1

}
.

I.e., if the proposed state l is more likely than the current state k, move to the
new state. Otherwise, move there with probability fl/fk or stay at state k with
probability 1− fl/fk.

As a result, the transition probabilities pij are given by

(14) pij = qij min

{
fj
fi
, 1

}
, pii = 1−

∑
j 6=i

qij min

{
fj
fi
, 1

}
.
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Let us check that P is in detailed balance with f . Assume i 6= j. Let fj/fi ≤ 1.
Then

fipij = fiqij
fj
fi

= fjqij = fjqji = fipji.

If fj/fi > 1 then

fipij = fiqij = fiqji = fipji
fj
fi

= fjpij .

Therefore, we have constructed a discrete-time Markov chain converging to the
desired equilibrium distribution.

The Metropolis-Hastings algorithm is a generalization of the Metropolis algorithms for
the case where the matrix Q is not symmetric, i.e, qij 6= qij for at least one pair of states
(i, j). It differs from the Metropolis algorithm only by the definition of the acceptance
probability α: in the Metropolis-Hastings, α is given by

(15) α = min

{
fl
fk

qlk
qkl
, 1

}
Therefore, the transition probabilities pij are

(16) pij = qij min

{
fj
fi

qji
qij
, 1

}
, pii = 1−

∑
j 6=i

qij min

{
fj
fi

qji
qij
, 1

}
.

Exercise Check that P = (pij)i,j∈S and f are in detailed balance.

3.2. Ising Model. A description of the Ising model is found in A. Chorin’s and O. Hald’s
book [5] (see sections 5.4 and 5.4 in the 2nd edition). The 2D Ising model is a popular
toy example for learning the Metropolis algorithm. Due to its simplicity, and interest-
ing theoretical analysis of this model has been conducted. Numerous internet resources
can be readily found. You can find some details regarding its behavior near the critical
temperature e.g. here, here, and here.

The Ising model is also considered on other kinds of lattices and on graphs. Variations
of the Ising model are used, for example, to model opinion dynamics (e.g., click here and
here).

3.3. MCMC for cryptography. The Metropolis algorithm can also be used to decipher
encrypted messages. A popular description of this application can be found e.g. in P.
Diaconis’s paper1.

1I thank P. Wertheimer (a graduate student, UMD, MATH) for referring me to cryptography applications
of MCMC and this article in particular.

https://www.math.arizona.edu/~tgk/541/chap1.pdf
https://www.springer.com/cda/content/document/cda_downloaddocument/9783319210537-c2.pdf?SGWID=0-0-45-1522375-p177545420
http://stp.clarku.edu/notes/chap5.pdf
https://theiscientist.com/2017/03/07/BasinskiFerrisComparison.html
https://arxiv.org/pdf/0705.0891.pdf
https://math.uchicago.edu/~shmuel/Network-course-readings/MCMCRev.pdf
https://math.uchicago.edu/~shmuel/Network-course-readings/MCMCRev.pdf


MARKOV CHAINS 23

4. Continuous time Markov chains

We will restrict our attention to the case where the set of states S is finite: |S| = N ∈ N.
Consider a weighted directed graph G(S,E,L), were S is the set of vertices, E is the set
of arcs (directed edges), and L = {Lij}(i→j)∈E is the set of weights. We assume that there
are self-loops of the form (i→ i). Abusing notations, we define the generator matrix L as
follows:

(17) Lij =


Lij , (i→ j) ∈ E,
0, i 6= j, and (i→ j) /∈ E,
−∑k 6=i Lik, i = j.

Note that the row sums of the matrix L are zero, all off-diagonal entries of L are nonneg-
ative, while all diagonal entries are nonpositive. For convenience, we will denote the sums
of off-diagonal entries of row i by Li, i.e.,

Li :=
∑
j 6=i

Lij . Note that Lii = −Li.

We define the matrix P (t) for t ≥ 0 to be the matrix exponential

P (t) = etL :=

∞∑
k=0

(tL)k

k!
.

Exercise Show that

(1) P (t) satisfies the semigroup property:

P (s+ t) = P (s)P (t) for all s, t ≥ 0;

(2) P (t), t ≥ 0, satisfies the forward equation

d

dt
P (t) = P (t)L, P (0) = I;

(3) P (t), t ≥ 0, satisfies the backward equation

d

dt
P (t) = LP (t), P (0) = I;

(4) for k = 0, 1, 2, . . ., we have (
d

dt

)k
t=0

P (t) = Lk;

(5) P (t) is a stochastic matrix for any t ≥ 0, i.e., its row sums are ones, and all its
entries are nonnegative.

Therefore, we can define a discrete-time Markov chain on the graph G(S,E,L) as follows.
Pick an interval of time h and an initial probability distribution λ. Then at the moments
of time 0, h, 2h, . . . we will have a discrete-time Markov chain with the initial distribution
λ and the transition matrix P = ehL.
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4.1. Right-continuous random processes.

Definition 14. • Let S be a discrete set. A continuous-time random process (Xt)t≥0

with values in S is a family of random variables

Xt : Ω→ S.

• A random process is right-continuous if for all ω ∈ Ω and all t ≥ 0 there exists
ε > 0 such that

Xs(ω) = Xt(ω) for all t ≤ s < t+ ε.

(I.e., if the system is at state i at time t then there exists an interval of time [t, t+ε)
during which the system will stay at i.)

The reason for considering right-continuous random processes is that the probability of
any event depending on such a process can be determined in terms of its finite-dimensional
distributions, i.e., from the probabilities

P(Xt0 = i0, Xt1 = i1, . . . , Xtn = in)

for n ≥ 0, 0 < t0 < t1 < . . . < tn and i0, i1, . . . , in ∈ S.
Definition 15. The jump times J0, J1, ... of (Xt)t≥0 and holding times S1, S2, ... are
defined by

J0 = 0, Jn+1 = inf{t ≥ Jn | Xt 6= XJn}, n = 0, 1, 2, . . . , inf ∅ ≡ ∞,

Sn =

{
Jn − Jn−1, if Jn−1 <∞,
∞, otherwise

.

4.2. The exponential distribution. We interpret the absolute values of the diagonal
entries of the generator matrix L as the escape rates: Li is the escape rate from the state
i. Correspondingly, if Li > 0, L−1

i is the expected holding time at state i. The off-diagonal
entries Lij , i 6= j of L are often called the pairwise transition rates.

Now we will go over some important properties of exponential random variables. Suppose
the jump time T from i to j is an exponentially distributed random variable with parameter
Li, i.e.,

P(T > t) = e−Lit for all t ≥ 0.

If Li > 0, then T has pdf

fT (t) =

{
Lie
−Lit, t ≥ 0,

0, t < 0.

The expected value of T is

E[T ] =

∫ ∞
0

Lie
−Littdt =

1

Li
,

i.e., Li is the reciprocal of the expected jump time.
Why did we choose the exponential distribution for the jump times? The reason is that

the exponential random variable is the only random variable that possesses the memoryless
property.
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Theorem 13. A random variable T : Ω → [0,∞] has an exponential distribution if and
only if it has the following memoryless property:

(18) P(T > t+ s | T > s) = P(T > t) for all s, t ≥ 0.

Exercise Prove it.

Exercise Show that if T is an exponential random variable with parameter λ and a > 0
then T

a is an exponential random variable with parameter λa.

Theorem 14. Let S be a countable set and let Tk, k ∈ S, be independent exponential
random variables with parameters qk. Let

0 < q :=
∑
k∈S

qk <∞.

Set

T := inf
k∈S

Tk.

Then this infimum is attained at a unique random value K ∈ S, with probability 1. More-
over, T and K are independent, and T is exponential with parameter q, and

P(K = k) =
qk
q
.

Proof. Set K = k if Tk < Tj for all j 6= k, otherwise let K be undefined. Then

P(K = k & T > t) = P(Tk > t & Tj > Tk for all j 6= k)

=

∫ ∞
t

qke
−qksP(Tj > s for all j 6= k)ds

=

∫ ∞
t

qke
−qks

∏
j 6=k

e−qjsds

=

∫ ∞
t

qke
−qsds =

qk
q
e−qt.

Hence

P(K = k for some k) = 1

and T and K have the claimed joint distribution. �

4.3. Jump chains and holding times. Given a generator matrix L one can define the
jump matrix Π = (πij | i, j ∈ S) as follows:

(19) πij =

{
Lij

Li
, i 6= j and Li 6= 0,

0, i 6= j and Li = 0
, πii =

{
0, Li 6= 0,

1, Li = 0
.

Now we can give a definition of a continuous-time Markov chain in terms of its jump chain
and holding times.
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Definition 16. A right-continuous process (Xt)t≥0 on S is a continuous-time Markov
chain with initial distribution λ and generator matrix L if its jump chain is discrete-time
Markov chain (Yn)n≥0 with initial distribution λ and transition matrix Π defined from L
by Eq. (19) and if for each n ≥ 1, conditional on Y0, ..., Yn−1, its holding times S1, ..., Sn
are independent exponential random variables with parameters LY0, ..., LYn−1 respectively.

Given a discrete-time Markov chain (Yn)n≥0 with initial distribution λ and transition
matrix Π, and independent random variables T1, T2, ... with parameter 1, one can construct
a continuous time random chain (Xt)t≥0 with the same set of states and the same initial
distribution as follows. Set the holding times and the jump times according to:

Sn =
Tn

LYn−1

, Jn = S1 + . . .+ Sn.

Then define

Xt = Yn where n is such that Jn ≤ t < Jn+1.

Given a continuous-time Markov chain (Xt)t≥0 with initial distribution λ and generator
matrix L, one can construct a discrete-time random chain (Yn)n≥0 with the same set of
states and the same initial distribution as follows. We begin with an initial state X0 = Y0

with distribution λ, and with an array (T jn | n ≥ 1, j ∈ S) of independent exponential
random variables with parameter 1. Then, inductively, for n = 0, 1, 2, . . ., if Yn = i we set

Sjn+1 =
T jn+1

Lij
, for j 6= i,(20)

Sn+1 = inf
j 6=i

Sjn+1,(21)

Yn+1 = j = arg min
j 6=i

Sjn+1.(22)

Then, conditional on Yn = i, the random variables Sjn+1 are independent exponential
random variables with parameters Lij for all j 6= i. So, conditional on Yn = i, Sn+1 is
exponential with parameter Li =

∑
j 6=i Lij . Furthermore, Yn+1 has distribution (πij | j ∈

S), and Sn+1 and Yn+1 are independent, and independent of Y0, ..., Yn and S1, ..., Sn as
required. This construction shows why we call Li the rate of leaving i (or the escape rate
from i) and Lij the rate of going for i to j (or the transition rate from i to j).

Example 8 Let us convert the continuous-time Markov chain in Fig. 4
(left) to a corresponding jump chain. The result is shown in Fig. 4 (right).
The continuous-time Markov chain on the right has the generator matrix L
given by

L =


0 0 0 0
7 −15 2 6
0 1 −5 4
0 5 3 −8

 .
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Figure 4. Conversion of a continuous-time Markov chain (left) into the
corresponding jump chain (right). The jump rates are calculated the pair-
wise transition rates using Eq. (19).

Using Eq. (19) we calculate the jump rates for the corresponding jump
chain on the right:

Π =


1 0 0 0

7/15 0 2/15 6/15
0 1/5 0 4/5
0 5/8 3/8 0

 .
Note that the any jump chain is a discrete-time Markov chain, where the
probability to stay at any state unless it is an absorbing state is zero. Vice
versa, given a jump matrix Π and the escape rates Li, i ∈ S, one can
construct the generator matrix L for the corresponding continuous-time
Markov chain.

Theorem 15. Let (Xt)t≥0 be a right-continuous random process with values in a finite
set S. Let L be a generator matrix on S with jump matrix Π. Then the following three
conditions are equivalent:

(1) (jump chain/holding time definition) conditional on X0 = i, the jump chain
(Yn)n≥0 of (Xt)t≥0 is a discrete-time Markov chain and for each n ≥ 1, conditional
on Y0, ..., Yn−1, the holding times S1, ..., Sn are independent exponential random
variables with parameters LY0, ..., LYn−1 respectively;
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(2) (infinitesimal definition) for all t, h ≥ 0, conditional on Xt = i, Xt+h is inde-
pendent of (Xs | s < t) and, as h ↓ 0, uniformly in t, for all j

P(Xt+h = j | Xt = i) = δij + Lijh+ o(h),

where δij is the Kronecker symbol:

δij =

{
1, i = j

0, i 6= j

(3) (transition probability definition) for all n = 0, 1, 2, . . ., all times
0 < t0 < t1 < . . . < tn+1 and all states i0, . . . , in+1

P(Xtn+1 = in+1 | Xt0 = i0, . . . , Xtn = in) = P(Xtn+1 = in+1 | Xtn = in)

= pinin+1(tn+1 − tn),(23)

where {pij(t) | i, j ∈ S, t ≥ 0} is the solution of the forward equation

P ′(t) = P (t)L, P (0) = I.

If (Xt)t≥0 satisfies any of these three conditions, we say that it is a continuous-time
Markov chain with the generator matrix L.

Proof. (1) Suppose (1) holds and prove (2). As h ↓ 0,

Pi(Xh = i) ≥ Pi(J1 > h) = e−Lih = 1 + Liih+ o(h),

(recall that Lii = −Li), and for j 6= i,

Pi(Xh = j) ≥ Pi(J1 ≤ h, Y1 = j, S2 > h)

= (1− e−Lih)πije
−Ljh = Lijh+ o(h).

Thus, for every state j there is an inequality

Pi(Xh = j) ≥ δij + Lijh+ o(h).

By taking the finite sum over j we see that these must be equalities: the left-hand
sides sum up to 1 while the right-hand sides sum up to 1 + o(h). Then, by Markov
property, for any t, h ≥ 0, conditional on Xt = i, Xt+h is independent of (Xs | s ≤ t)
and, as h ↓ 0, uniformly in t

P(Xt+h = j | Xt = i) = Pi(Xh = j) = δij + Lijh+ o(h).

(2) Suppose (2) holds and prove (3). Set pij(t) = Pi(Xt = j) = P(Xt = j | X0 = i).
For all t, h ≥ 0, as h ↓ 0, uniformly in t

pij(t+ h) =
∑
k∈S

Pi(Xt = k)P(Xt+h = j | Xt = k)

=
∑
k∈S

pik(t)(δkj + Lkjh+ o(h)).
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Since S is finite we have

pij(t+ h)− pij(t)
h

=
∑
k∈S

pik(t)Lkj + o(1).

So, letting h ↓ 0, we see that pij(t) is differentiable on the right. Then by uniformity
we replace t by t− h in the above and let h ↓ 0 to see first that pij(t) is continuous
on the left, then differentiable on the left, hence differentiable, and satisfies the
forward equations

p′ij(t) =
∑
k∈S

pik(t)Lkj , pij(0) = δij .

Since S is finite, pij(t) is the unique solution of the forward equation. Also, if (2)
holds then Eq. (23) holds.

(3) Suppose (3) holds and prove (1). Condition (3) determines the finite-dimensional
distributions of (Xt)t≥0 and hence the distribution of jump chain and holding times.
Hence condition (1) is satisfied.

�

4.4. Class structure. The concepts i leads to j (i −→ j), i communicates with j (i←→ j),
communicating class, closed class, absorbing state, and irreducibility are inherited from
discrete-time Markov chains.

Theorem 16. For distinct states i, j ∈ S the following are equivalent:

(1) i −→ j;
(2) i −→ j for the jump chain;
(3) Lii1Li1i2 . . . Lin−1j > 0 for some states i1, ..., in−1;
(4) pij(t) > 0 for all t > 0;
(5) pij(t) > 0 for some t > 0.

Proof. Implications (4) ⇒ (5) ⇒ (1) ⇒ (2) are clear. If (2) holds then there are states

i1, . . . , in−1 such that πii1πi1i2 . . . πin−1j > 0,

which implies (3).
If Lij > 0, then

pij(t) ≥ Pi(J1 ≤ t, Y1 = j, S2 > t) = (1− e−Lit)πije
−Ljt > 0 for all t.

So, if (3) holds, then

pij(t) ≥ pii1(t/n)pi1i2(t/n) . . . pin−1j(t/n) > 0 for all t.

Hence (4) holds. �
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4.5. Hitting times and absorption probabilities.

Definition 17. Let (Xt)t≥0 be a Markov chain with generator matrix L. The hitting time
of a subset A ⊂ S is the random variable

τA(ω) = inf{t ≥ 0 | Xt(ω) ∈ A}
with the usual convention inf ∅ =∞.

The probability that, starting from i, (Xt)t≥0 ever hits A is then

hAi = Pi(τA <∞).

When A is a closed class, hAi is called the absorption probability.
Note that the hitting probabilities are the same as in the jump chain. Therefore, we can

calculate them as we have done it for discrete-time Markov chains.

Theorem 17. The vector of hitting times is the minimal nonnegative solution of

(24)

{
hAi = 1, i ∈ A,∑

j∈S Lijh
A
j = 0, i /∈ A.

Proof. Since the hitting probabilities are the same for continuous-time Markov chains and
the corresponding jump chains, we will start with Eq. (4) where πij are the transition
probabilities. Consider i /∈ A. First assume Li > 0. Then πij = Lij/Li and πii = 0. Then,
taking into account that Lii = −Li and Li =

∑
j 6=i Lij we have:

hAi =
∑
j∈S

πijh
A
j =

∑
j 6=i

Lij
Li
hAj =

∑
j 6=i

Lij
Li
hAj + hAi

Lii
Li

+ hAi .

Canceling hAi in the right- and left-hand side and then canceling Li we get∑
j∈S

Lijh
A
j = 0.

If Li = 0 then i is an absorbing state. Then πii = 1, πij = 0 for j 6= i. Then Eq. (4) gives
hAi = hAi while Eq. (24) gives 0 = 0. �

The mean hitting times kAi are defined as they were for discrete-time chains.

kAi = Ei[τ
A] = E[τA | X0 = i]

Theorem 18. Assume that Li > 0 for all i /∈ A. The vector of mean hitting times
kA = {kAi | i ∈ S} is the minimal nonnegative solution of

(25)

{
kAi = 0, i ∈ A,∑

j∈S Lijk
A
j = −1, i /∈ A.
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The proof follows the same lines as the one for the case of discrete-time Markov chains.
Here we will verify that Eq. (25) must be satisfied. If X0 ∈ A then τA = 0 and hence
kAi = 0. If X0 /∈ A then τA ≥ J1, so, by Markov property of the jump chain

Ei[τ
A − J1 | Y1 = j] = Ej [τ

A].

Therefore,

kAi = Ei[τ
A] = Ei[J1] +

∑
j 6=i

Ei[τ
A − J1 | Y1 = j]Pi(Y1 = j)

= L−1
i +

∑
j 6=i

πijk
A
j

= L−1
i +

∑
j 6=i

Lij
Li
kAj = L−1

i +
∑
j∈S

Lij
Li
kAj + kAi .

Canceling kAi and then Li, we obtain∑
j∈S

Lijk
A
j + 1 = 0

Which implies Eq. (25).

4.6. Recurrence and transience. We say that a state i is recurrent if

Pi({t ≥ 0 | Xt = i} is unbounded) = 1.

We say that a state i is transient if

Pi({t ≥ 0 | Xt = i} is unbounded) = 0.

Theorem 19. Let (Xt)t≥0 be a Markov chain with generator matrix L, and (Yn)n≥0 be the
corresponding jump chain.

(1) If i is recurrent for the corresponding jump chain (Yn)n≥0 then i is recurrent for
the continuous-time chain (Xt)t≥0.

(2) If i is transient for the corresponding jump chain (Yn)n≥0 then i is transient for
the continuous-time chain (Xt)t≥0.

(3) Every state is either transient or recurrent.
(4) Recurrence and transience are class properties.

The first passage time to i is defined by

Ti(ω) = inf{t ≥ J1(ω) | Xt(ω) = i}.

Theorem 20. The following dichotomy holds:

(1) if Li = 0 or Pi(Ti <∞) = 1, then i is recurrent and
∫∞

0 pii(t)dt =∞;

(2) if Li > 0 and Pi(Ti <∞) < 1, then i is transient and
∫∞

0 pii(t)dt <∞.
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4.7. Invariant distributions and convergence to equilibrium. Since we are consid-
ering only Markov chains where the set of states is finite, all invariant measures can be
normalized so that the sum of their entries is one, and therefore, every invariant measure
can be made into an invariant distribution.

Definition 18. We say that λ = {λi | i ∈ S} is an invariant measure if λi ≥ 0 for all i,

λL = 0.

Theorem 21. Let L be the generator matrix and let λ be a measure. Then the following
are equivalent:

(1) λ is invariant;
(2) µΠ = µ where µi = λiLi.

Proof. Recall:

• πij = Lij/Li if i 6= j and Li > 0;
• πij = 0 if i 6= j and Li = 0;
• πii = 0 if Li > 0;
• πii = 1 if Li = 0.

This can be written as in one line as

Li(πij − δij) = Lij .

The equality µ = µΠ is equivalent to µ(Π− I) = 0. We have

(µ(Π− I))j =
∑
i∈S

µi(πij − δij) =
∑
i∈S

λiLi(πij − δij) =
∑
i∈S

λiLij = (λL)j .

This proves the theorem. �

Theorem 22. Let L be an N ×N irreducible generator matrix, and λ be a measure. Let
s > 0 be given. Then the following are equivalent:

(1) λL = 0;
(2) λP (s) = λ.

Proof. By the backward equation

d

ds
λP (s) = λ

d

ds
P (s) = λLP (s).

Hence λL = 0 implies
λP (s) = λP (0) = λI = λ for all s.

On the other hand, λP (s) = λ implies that d
dsλP (s) = 0. Since P (s) is invertible as it is

the fundamental solution matrix of a first order linear differential equation with constant
coefficients, λLP (s) = 0 implies that λL = 0.

�

Theorem 23. Let L be an N×N irreducible generator matrix. Then there exists a unique
invariant distribution π and for all states i, j ∈ S

lim
t→∞

pij(t) = πj .
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Proof. Existence and uniqueness of the invariant distribution follows from its existence and
uniqueness for the matrix P (t) = etL. Let us show this.

All entries of P (t) are positive for all t > 0 owing to irreducibility and Theorem 16. Ap-
plying the Perron-Frobenius theorem (Theorem 8) we conclude that P (t) has an eigenvalue
µ0 = 1 whose algebraic multiplicity is equal to 1 and µ0 > |µk| for all other eigenvalues µk
of P . The unique invariant distribution π is the left eigenvector of P (t) corresponding to
the eigenvalue µ0 = 1, i.e.,

π = πP (t).

By Theorem 22, this is equivalent to πL = 0. Hence there exists a unique invariant
distribution π such that πL = 0.

Now we will show convergence to π. We conduct the proof for the case when L is diago-
nalizable. It it is not, the proof is similar but a bit more tedious (see the proof of the anal-
ogous theorem (Theorem 9) for discrete-time Markov chains.) Let λ0 = 0, λ1, . . . , λN−1

be eigenvalues of L. If

L = V ΛU

is the eigendecomposition of L then P (t) has the eigendecomposition

P (t) ≡ etL = V


1

eλ1t

. . .

eλN−1t

U.
Therefore, the eigenvalues of P (t) are

µ0 = 1, µ1 = eλ1t, . . . , µN−1 = eλN−1t.

Since |µk| < 1 for 1 ≤ k ≤ N − 1, we conclude that the real parts of λk, k = 1, 2, . . . , N − 1
are negative, i.e.,

Re(λk) < 0 for k = 1, 2, . . . , N − 1.

Hence

lim
t→∞

eλkt = 0 for k = 1, 2, . . . , N − 1.

V is the matrix of right eigenvectors of L. Since row sums of L are zeros, the first
eigenvector corresponding to the zero eigenvalue, i.e. the first column of V , must be
e = [1 1 . . . 1]>. The first row of U , the matrix of left eigenvectors of L must be the
invariant distribution π. We will denote the rest of right eigenvectors by vk and the rest
of left eigenvectors by φk, i.e.,

V = [e v1 . . . vN−1], U =


π
φ1
...

φN−1

 .
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Then

P (t) = [e v1 . . . vN−1]


1

eλ1t

. . .

eλN−1t




π
φ1
...

φN−1


=

 1
...
1

 [π1 . . . πN ] +
N−1∑
k=1

vke
λktφk(26)

→

 π1 . . . πN
...

...
π1 . . . πN

 as t→∞.

�

4.8. Time reversal and detailed balance for continuous-time Markov chains. For
continuous-time Markov chains analogous results for time reversal and detailed balance take
place. Let L be an irreducible generator matrix and π be an invariant distribution. The
generator matrix L̂ for the time-reversal is defined by

πiL̂ij = πjLji.

The detailed balance condition reads

πiLij = πjLji.

Analogs of Theorems 10, 11, 12 hold.

5. Transition Path Theory

The Transition Path Theory (TPT) was introduced by W. E and E. Vanden-Eijnden
in 2006 [10, 11] in the context of stochastic differential equations. They contraposed it
to the Transition State Theory (TST) developed by Eyring and Polanyi in 1930s. In a
nutshell, TPT is a conceptual apparatus for describing reactive events. The key concept of
the TPT, the committor function, is a solution of a boundary value problem of a certain
elliptic PDE. It cannot be solved in practice in dimensions higher than 3 by means of finite
difference or finite element methods. However, recent successes in solving PDEs by means
of neural networks did open new horizons.

Metzner, Schuette, and Vanden-Eijnden (2009) [14] extended TPT to continuous-time
Markov chains (a.k.a Markov jump processes (MJP)). Since the application of the TPT to
MJP is hinged to finding the committor that, in this case, is the solution to a system of
linear algebraic equations which, in practice, can be either readily done or done after some
additional work, the TPT has become a powerful practical tool for analysis of transition
processes in complex networks. For example, one of the benchmark problems in chemical
physics, the rearrangement of the Lennard-Jones cluster of 38 atoms was analyzed using
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the TPT and resulted in a detailed description of the transition mechanism between the
two lowest potential energy minima [8].

5.1. Settings. We will consider a continuous-time Markov chain with a finite set of states
S, |S| = N , and irreducible generator matrix L. This Markov chain can be represented as
a network, where states correspond to the vertices of the graph, two vertices i and j are
connected by a directed edge if an only if Lij > 0. If both Lij > 0 and Lji > 0, we will
draw an undirected edge between i and j.

Let A and B be selected nonintersecting subsets of S. For simplicity, we assume that
there exists no edge (i, j) such that i ∈ A and j ∈ B, i.e., one cannot get from A to B
without spending some time in S\(A∪B) ≡ (A∪B)c. The sets A and B can be interpreted
as the reactant set and the product set respectively. For example, if you are modeling a
protein folding, A can be a collection of unfolded states, while B – a collection of folded
states.

There exists a unique invariant distribution π = (πi)i∈S , i.e., πL = 0. We do not
assume that π and L are in detailed balance. We will also need to consider a family
of time reversed chains (X̂t)t∈R, X̂t = Xτ−t where τ is some moment of time. The generator

matrix for the time reversed process is L̂ = (L̂ij)i,j∈S defined by

L̂ij =
πj
πi
Lji.

5.2. Reactive trajectories. The subject of TPT is reactive trajectories that are defined
as follows. Consider a very long trajectory starting from an arbitrary state i, i.e., (Xt)t∈R
such that X0 = i. Since the Markov chain is irreducible and finite, every state is recurrent.
Hence this trajectory will visit all of the states infinitely many times with probability 1.
Let us prune those pieces of it that go from A to B, i.e., we will detect the collections of
moments of time {tAn }n∈N and {tBn }n∈N such that

tAn < tBn < tAn+1 n ∈ N,

lim
t↑tAn

X(t) = xAn ∈ A, X(tBn ) = xBn ∈ B,

for any t ∈ [tAn , t
B
n ) X(t) ∈ (A ∪B)c.

In words, tAn is the moment of time when the trajectory leaves A nth time so that it does
not return to A prior reaching B, and tBn is the nth time when the trajectory enters B.
The intervals [tAn , t

B
n ) are called reactive times. The union of the reactive times is denoted

by R:

R :=
⋃
n∈Z

(tAn , t
B
n ).

Now consider the corresponding jump chain and the jump trajectory (Yk)k≥0.

Definition 19. The ordered sequence

φn = [xAn , x
1
n, . . . , x

kn
n ≡ xBn ]
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consisting of successive states of the jump chain (Yk)k∈Z visited during the nth transition
from A to B is called the nth reactive trajectory. The set of all such sequences is called the
set of reactive trajectories.

The concept of reactive trajectory is illustrated in Fig. 5.
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Figure 5. Two examples of reactive trajectories are shown in red. Re-
active trajectory 1: [19, 2, 3, 7, 6, 2, 4, 6, 12, 23]. Reactive trajectory 2:
[22, 17, 16, 14, 9, 5, 8, 13, 15, 25].

5.3. The forward and backward committors.

Definition 20. The forward committor q+ = (q+
i )i∈S is the probability that the process

starting at state i will first reach B rather than A, i.e.,

q+
i = Pi(τ+

B < τ+
A ),

where

τ+
A = inf{t > 0 | X(t) ∈ A}, τ+

B = inf{t > 0 | X(t) ∈ B}
are the first entrance times to A and B respectively.

The backward committor q− = (q−i )i∈S is the probability that the process arriving at state

i last came from A rather than B. Equivalently, the backward committor q− = (q−i )i∈S is
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the probability that the time-reversed process starting at state i will first reach B rather
than A, i.e.,

q−i = Pi(τ−A < τ−B ),

where

τ−A = inf{t > 0 | X̂(t) ∈ A}, τ−B = inf{t > 0 | X̂(t) ∈ B},
are the last exit times from A and B respectively. Here (X̂t)t∈R is the time-reversed process

for (Xt)t∈R, i.e., X̂t = X−t, t ∈ R.

The forward and backward committors satisfy the following equations:

(27)


∑

j∈S Lijq
+
j = 0, i ∈ (A ∪B)c,

q+
i = 0, i ∈ A,
q+
i = 1, i ∈ B,

and

(28)


∑

j∈S L̂ijq
−
j = 0, i ∈ (A ∪B)c,

q−i = 1, i ∈ A,
q−i = 0, i ∈ B,

where L̂ is the generator matrix for the time-reversed process.
Eq. (27) is justified as follows. Let us modify out network and make all states in A

absorbing, i.e., Lij = 0 for all i ∈ A. The other Lij ’s are unchanged. Then Eq. (27)
becomes the equation for the hitting probabilities for the set B for the modified network.
I. e., q+

i is the probability that the process starting at i will hit B prior being absorbed by
one of the states in A. This is exactly what the forward committor is. A similar argument
applied to the reversed process shows that the backward committor satisfies Eq. (28).

5.4. Probability distribution of reactive trajectories. What is the probability to find
a reactive trajectory at state i at any time t? To answer this question, consider an infinitely
long trajectory (Xt)t∈R where X0 is distributed according to the invariant distribution π.
For any fixed time t, the probability to find Xt at state i is πi. If Xt = i where i ∈ A or
i ∈ B, time t is not reactive, hence this probability is 0. If Xt = i where i ∈ (A ∪ B)c, we
need to take the probability πi to find Xt at i and multiply it by the probability that Xt

came to i from A and will go next to B, i.e., by q−i q
+
i . Therefore, the probability to find a

reactive trajectory at state i at any time t is given by

(29) mR
i = πiq

−
i q

+
i .

In [14], mR
i is called the probability distribution of reactive trajectories. Note that mR is

not a distribution, as it is not normalized. It is a measure. The normalization constant for
mR
i ,

ZR =
∑
i∈S

mR
i =

∑
i∈S

πiq
−
i q

+
i ,
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is the probability that any given t belongs to the set of reactive times, i.e.,

ZR = P(t ∈
⋃
n∈Z

(tAn , t
B
n )) ≡ P(t ∈ R).

5.5. Probability current of reactive trajectories. The probability current of reactive
trajectories along edge (i → j) is defined as the average number of transitions for i to j
per unit time performed by reactive trajectories. This probability current denoted by fij
is given by

(30) fij =

{
πiq
−
i Lijq

+
j , i 6= j,

0, i = j.

Indeed, the product πiq
−
i gives the probability that the trajectory arrived at i from A rather

than from B. Lij is the transition rate from i to j, and the factor q+
j is the probability

that the trajectory from j will go next to B rather than to A.
It follows from Eq. (30) that the probability current of reactive trajectories along every

edge (i, j) is nonnegative. Note that for an edge (i, j) where i, j ∈ (A ∪ B)c both fij and
fji can be positive. This reflects the fact that reactive trajectories can go many times back
and forth across the edge (i, j) on their way from A to B. The next theorem says that the
probability current in neither produced nor absorbed at any state j ∈ (A ∪B)c.

Theorem 24. For all i ∈ (A ∪ B)c, the probability current is conserved, i.e., the amount
of current coming to state i equals to the amount of current going out of state i:

(31)
∑
j∈S

(fij − fji) = 0 for all i ∈ (A ∪B)c.

Proof. Let i ∈ (A ∪B)c. Plugging in Eq. (30) to Eq. (31) we obtain∑
j∈S

(fij − fji) =
∑
j 6=i

(πiq
−
i Lijq

+
j − πjq−j Ljiq+

i )

= πiq
−
i

∑
j 6=i

Lijq
+
j − q+

i

∑
j 6=i

πjLjiq
−
j .

It follows from Eqs. (27) and (28) that∑
j 6=i

Lijq
+
j = Liq

+
i

and ∑
j 6=i

πjLjiq
−
j =

∑
j 6=i

πi
πj
πjL̂ijq

−
j = πiL̂iq

−
i = πiLiq

−
i .

Therefore, ∑
j∈S

(fij − fji) = πiq
−
i Liq

+
i − q+

i πiLiq
−
i = 0.

�
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5.6. Effective current. As we have mentioned, the reactive trajectories can go back in
forth along an edge (i, j) where i, j ∈ (A ∪B)c on their way from A to B making both fij
and fji positive. The difference fij − fji is the net current from i to j carried by reactive
trajectories from i to j. The nonnegative part of fij − fji, denoted by f+

ij , is called the
effective current :

(32) f+
ij := max{fij − fji, 0}.

Note that the effective current for time-irreversible Markov chains can be cyclic. Indeed,
the probability current of reactive trajectories contains all kinds of cycles, and going to
effective current removes only all cycles of of length 2, but not of length 3, 4, etc. In
contrast, effective current for reversible Markov chains is acyclic. We will discuss this in
more details below.

5.7. Transition rate. The transition rate from A to B (the reaction rate) is the average
number of transitions per unit time performed by an infinite trajectory (Xt)t∈R. It is equal
to the total reactive current coming out of A which is the same as the total reactive current
going into B, i.e.,

νR =
∑

i∈A, j∈S
fij =

∑
i∈A, j∈S

f+
ij

=
∑

i∈S, j∈B
fij =

∑
i∈S, j∈B

f+
ij .(33)

One can obtain another expression for the reaction rate νR as the total reactive current
through an arbitrary cut. A cut in a network G(S,E) is a partition of the nodes in S
into two disjoints subsets that are joint by at least one edge in E. The set of edges whose
endpoints are in different subsets of the partition is referred to as the cut-set. Here we will
focus on A-B-cuts that are such that A and B are on different sides of the cut-set. Any
A-B-cut leads to the decomposition S = SA ∪ SB such that SA ⊇ A and SB ⊇ B (see Fig.
6).

Theorem 25. The transition rate νR is given by

(34) νR =
∑
i∈SA

∑
j∈SB

Fi,j ,

where Fi,j := fij − fji and SA ∪ SB is an arbitrary AB-cut.

Proof. We will use the fact that for any subset S′ ⊂ S,

(35)
∑

i∈S′,j∈S′
Fi,j = 0
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A B

CL CRSA
SB

Figure 6. Illustration for the concept of an A-B-cut. The edges of the
cut-set are shown with dashed lines.

because for every term Fi,j = fij − fji in this sum there is a term −Fi,j = fji − fij . We
have: ∑

i∈SA,j∈SB

Fi,j =
∑

i∈A∪(SA\A)
j∈(S\SA)

Fi,j

=
∑
i∈A
j∈S

Fi,j +
∑

i∈SA\A
j∈S

Fi,j −
∑
i∈SA
j∈SA

Fi,j(36)

= νAB + 0− 0 = νAB.(37)

The second sum in (36) is zero by current conservation, while the third sum is zero by
(35). �

5.8. Reaction pathways. The effective current f+ = (f+
ij )i,j∈S defined by Eq. (32)

induces a directed graph with the set of states S. In other words, we connect states i and
j by a directed edge (i→ j) if and only if f+

ij > 0. We denote this graph by G{f+}.

Definition 21. A reaction pathway w = (i0, i1, . . . , in) is a simple (containing no loops)
directed path in the graph G{f+} such that

i0 ∈ A, in ∈ B, ik ∈ (A ∪B)c, 1 ≤ k ≤ n− 1.

5.9. Simplifications for time-reversible Markov chains. The case where the Markov
chain is time reversible, i.e., L̂ = L which is equivalent to the statement that L and π are
in detailed balance, i.e.,

πiLij = πjLji
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is worth of special consideration. Many interesting systems possess this property, and the
formulas for the backward committor, the reactive current and for the transition rate can
be given in terms of the forward committtor.

Exercise (1) Show that the forward and backward committor are related via

q−i = 1− q+
i , i ∈ S.

Hence we can simplify the notations: denote the forward commuter by q = (qi)i∈S .
Then the backward commuter is merely 1− q.

(2) Show that the reactive current Fij := fij − fji is given by

Fij = πiLij(qj − qi).
(3) Starting from the expression for the transition rate from A to B (the reaction rate)

νR =
∑

i∈A,j∈S Fij , show that it can be rewritten as

(38) νR =
1

2

∑
i,j∈S

πiLij(qj − qi)2.

Besides the transition rate νR, one can consider the rates kA,B and kB,A defined as the
inverse of the average times the last set hit by the trajectory was A or B, respectively.
These rates are given by

(39) kA,B = νR/ρA, kB,A = νR/ρB,

where

(40) ρA =
∑
i∈S

πi(1− qi), ρB =
∑
i∈S

πiqi (ρA + ρB = 1)

are the proportions of time such that the trajectory last hit A or B, respectively.
The directed graph G{f+} induced by the effective current contains no directed cycles in

the case of detailed balance because every its directed edge connects a state with a smaller
value of the committor q with a state with a large value of the committor. As a result, the
committor is strictly increasing along every directed path in the graph G{f+} (see Fig. 7).

We can use cuts to characterize the width of the transition tube carrying the current
of reactive trajectories. A specific set of cuts is convenient for this purpose, namely the
family of isocommittor cuts which are such that their cut-set C is given by

(41) C(q∗) = {(i, j) | qi ≤ q∗, qj > q∗}, q∗ ∈ [0, 1).

Isocommittor cuts [8] are special because if i ∈ CL and j ∈ CR, the reactive current
between these nodes is nonnegative, Fij ≥ 0, which also mean that every reaction pathway
(no-detour reactive trajectory) contains exactly one edge belonging to an isocommittor cut
since the committor increases monotonically along these transition paths. Therefore, we
can sort the edges in the isocommittor cut C(q) according to the reactive current they
carry, in descending order, and find the minimal number of edges N(q) carrying at least
p% of this current. By doing so for each value of the committor 0 ≤ q ≤ 1 and for different
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A

B

Figure 7. Examples of reaction pathways in the case of detailed balance
are shown by blue arrows. The values of the committor are coded by color:
green: q = 0, blue: q = 1. Note that the sequences of values of the commuter
strictly increase along reaction pathways.

values of the percentage p ∈ (0, 100), one can then analyze the geometry of the transition
channel - how broad is it, how many sub-channels are they, etc.

Remark In the case of time-reversible Markov chains, the forward committor strictly
increases along the edges of the graph G({f+}) (check this!). Therefore, the committor
strictly increases along the reaction pathways. The reaction pathways were dubbed no-
detour reactive trajectories in [8].

5.10. Sampling reactive trajectories and no-detour reactive trajectories. In this
section, we assume that the Markov chain under consideration is time-reversible (i.e., π
and L are in detailed balance). The probability current of reactive trajectories fij and
effective current f+

ij allow us to sample reactive trajectories and reaction pathways.
Recall that he probability current of reactive trajectories fij is the mean number of

transitions performed by the reactive trajectories along the edge (i, j) per unit time, i.e.,
the transition rate for the reactive trajectories along the edge (i, j), we can replace the
original generator matrix L with the generator matrix F whose off-diagonal entries are fij
and the diagonal ones are defined so that the row sums of F are zeros.
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Then one can convert the generator matrix F into the corresponding jump matrix ΠF
according to Eq. (19) and generate a collection of reactive trajectories starting from states
in A having outgoing edges.

One can do the same procedure but using the effective current f+ instead of the prob-
ability current of reactive trajectories f . The detailed balance condition guaranties that
these pathways are simple and the committer strictly increases along them.

Propositions justifying these instructions are found in [8].

Example 9 Consider the continuous-time Markov chain generated by a
discretization of the overdamped Langevin dynamics

dx

dt
= − ∂

∂x
V (x, y) +

√
2Tηx,

dy

dt
= − ∂

∂y
V (x, y) +

√
2Tηy,

where ηx and ηy are independent white noises, on a 2D regular mesh with
step h:

{(yi, xj) | 1 ≤ i, j ≤ N, yi = ymin + (i− 1)h, xj = xmin + (j − 1)h}.

We assume that the boundaries of the domain [x1, xN ]× [y1, yN ] are reflect-
ing. From any non-boundary mesh point (state) (i, j) only transitions to its
four nearest neighbors (i+ 1, j) (North), (i− 1, j) (South), (i, j+ 1) (East),
and (i, j − 1) (West) are possible. The corresponding pairwise transition
rates are

(i, j)→ (i+ 1, j) : LN (i, j) = − 1

2h

∂V

∂y
(i, j) +

T

h2
(42)

(i, j)→ (i− 1, j) : LS(i, j) =
1

2h

∂V

∂y
(i, j) +

T

h2
(43)

(i, j)→ (i, j + 1) : LE(i, j) = − 1

2h

∂V

∂x
(i, j) +

T

h2
(44)

(i, j)→ (i, j − 1) : LW (i, j) =
1

2h

∂V

∂x
(i, j) +

T

h2
(45)

For the top and bottom boundaries LN and LS are modified as

LN (N, j) = 0, LN (1, j) =
2T

h2
,(46)

LS(1, j) = 0, LS(N, j) =
2T

h2
,(47)
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while LE and LW are found by Eqs. (44)-(45). For the left and right
boundaries LE and LW are modified as

LE(i,N) = 0, LE(j, 1) =
2T

h2
,(48)

LW (i, 1) = 0, LW (i,N) =
2T

h2
,(49)

while LN and LS are found by Eqs. (42)-(43). Therefore, the generator
matrix L is 5-diagonal. Its diagonal entries are all equal to −4T/h2. The
forward and backward committors for this system are shown in Fig. 10 (a)
and (b) respectively. A reactive trajectory superimposed with the probabil-
ity distribution of reactive trajectories is shown in Fig. 10 (c). A collection
of reaction pathways superimposed with the probability distribution of re-
active trajectories is shown in Fig. 10 (d).

6. Metastability

In this Section, we will discuss the definition of metastability proposed by A. Bovier’s
group and their results regarding approximations for eigenvalues and eigenvectors [2, 3, 4].

Suppose we are considering a Markov Chain (discrete-time or continuous-time) with a
finite set of states S. Let π be the invariant distribution. We assume that the chain is
time-reversible. Let M ⊂ S be a selected subset of states. Then the Markov chain is
said to be metastable with respect to the set M if for any state i ∈ M and for any state
j ∈ S\M , the probability that the process starting in at i will first reach some other state in
M rather than come return to i is much less than the probability that the process starting
at j will first reach any state in M rather than return to j. This definition of metastability
can be written symbolically as follows.

Definition 22. A Markov chain is metastable with respect to the subset of states M if

(50) max
i∈M

Pi(τM\i < τi)� min
j∈S\M

Pj(τM < τj).

An alternative formulation can be given in terms of mean hitting times. Recall that
Ei[τA] is the the mean hitting time for the subset of states A for the process starting at
state i.

Definition 23. A Markov chain is metastable with respect to the subset of states M if

(51) min
i∈M

Ei[τM\i]� max
j∈S\M

Ej [τM ].

Definition 24. If a Markov chain under consideration is metastable with respect to a
subset of states M ⊂ S then the subset of states M is called a metastable set.

The main result of A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein is the theorem
giving sharp estimates for the eigenvalues and eigenvectors of the generator matrix L in
the continuous-time case and of the matrix P − I in the discrete-time case. Recall that the
eigenvalues of L and P − I are real and nonpositive.
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Figure 8. Example 9. Thin white curves show level sets of the 7-well po-
tential. Thick white curves represent the boundaries of the sets A and B.
(a): The forward committor. (b): The backward committor. (c): A reac-
tive trajectory superimposed with the probability distribution of reactive
trajectories. (d): A collection of reaction pathways superimposed with the
probability distribution of reactive trajectories.

Theorem 26. Assume that we can construct a sequence of metastable sets

M0 = {i0}
M1 = {i0, i1}
M2 = {i0, i1, i2}
. . .

Mp = {i0, i1, i2, . . . , ip}.
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Denote by ν(A,B) the transition rate νR from A to B defined by Eq. (38), and by qA,B

the forward committor with respect to the subsets of states A and B. Assume that one can
find δ � 1 such that for 0 ≤ k ≤ p

(52) δ2 ν(ik,Mk\{ik})
‖qMk\{ik},ik‖22,π

≥ max
ij∈Mk\{ik}

ν(ij ,Mk\{ij})
‖qMk\{ij},ij‖22,π

.

Then L has p eigenvalues −λ1, . . . ,−λp,
0 < λ1 < . . . < λp,

and

(53) λk =
ν(ik,Mk−1)∑
j∈V alley(ik) πj

(1 +O(δ)) =
(
Eik [τMk−1

]
)−1

(1 +O(δ)).

The corresponding eigenvector is given by

(54) φkj =
q
Mk−1,ik
j

‖qMk−1,ik‖2,π
+
k−1∑
l=1

O(δ)
q
Ml−1,ik
j

‖qMl−1,ik‖2,π
.

The norm ‖ · ‖2,π used in Theorem 26 is defined by

‖x‖2,π =

√∑
i∈S

πix2
i .

To understand the statement of Theorem 26 we need the concept of Valley.

Definition 25. Let i ∈M be a state in the metastable set M . The valley of i is the subset
of states j in S such that given that the process starting at j has reached M , it is most
likely that the process has reached the state i. I.e.,

(55) V alley(i) := {j ∈ S | Pj(τi = τM ) = max
k∈M

Pj(τk = τM )}.

The definitions of the metastable set and the valley are illustrated in Fig. 9.
Theorem 26 says the following.

• Each eigenvalue −λk corresponds to the escape process from V alley(ik) to Mk−1.
• The quantity

ν(ik,Mk\{ik})
‖qMk\{ik},ik‖22,π

in Eq. (52) is approximately the escape rate from ik to Mk\{ik} ≡Mk−1. Therefore,
the condition given by Eq. (52) says that the expected time to reach Mk−1 for the
process starts at ik is much less (at least by the factor δ2) than the expected time
to reach Mk\{ij} starting from ij for any ij ∈Mk−1.
• The number δ in this theorem is a small parameter. If the Markov chain represents

an energy landscape where the pairwise transition rates are of the form

(56) Lij =
bij
bi

exp

(
−Vij − Vi

T

)
,
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94

Valley(i1) Valley(i0)

V Pairwise transition rates:  
Li,i±1 = (ki,i±1 / ki)exp(-(Vi,i±1 - Vi )/T)

Metastable set:    M = {i0, = 9, i1 = 4}  

1 32 11108765 12

Figure 9. An illustration for the definitions of the metastable set and the
valley on the example of a chain-of-states network with pairwise transition
rates of the form Li,i±1 = (ki,i±1/ki) exp(−(Vi,i±1 − Vi)/T ), where T is the
temperature.

where T is the temperature (measured in reduced units where kB = 1), δ → 0 as
T → 0. In Eq. (56), Vi is the potential energy at the local minimum i, Vij is the
potential energy at the saddle separating i from the adjacent local minimum j, the
factors bi and bij are obtained using certain geometric characteristics of minimum
i and saddle ij respectively.

The mean hitting times of sets Mk−1 starting from states ik are approximated
by

(57) λk ≈
(
Eik [τMk−1

]
)−1 ≈

bp∗kq
∗
k

bik
e−(Vp∗q∗−Vik )/T ,

where Vp∗q∗ is the lowest possible highest potential barrier separating ik and the
set Mk−1, and bp∗kq

∗
k

and bik are the pre-exponential factors present in Eq. (56)

corresponding to the edge (p∗kq
∗
k) and the state ik respectively. Eq. (57) was

originally presented in [6] (see Eqs. (13)–(19)). A detailed proof of this fact is
found in [7].
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Example 10 Consider the “chain-of-states” network shown in Fig. 9
with pairwise transition rates of the form Lij = (bij/bi) exp(−(Vij−Vi)/T ),
where T is the temperature. In this example, M0 = {i0} and Mi = {i0, i1}.
Assume that the temperature is small. The eigenvalue corresponding to the
escape process from the V alley(i1) is approximated by

λ1 ≈ (Ei1 [τi0 ])−1 ≈ b67

b4
exp

(
−V67 − V4

T

)
.

The corresponding eigenvector is approximated by the indicator function of
V alley(i1), i.e.,

φ1
j ≈

{
1, j ∈ V alley(i1),

0, j /∈ V alley(i1).

7. More on spectral analysis: eigencurrents

The next three sections are taken from [9].
In this Section, we discuss what can we learn from the spectral decomposition of the

generator matrix describing the dynamics of a stochastic network.

7.1. The eigenstructure of networks with detailed balance. In this Section, we
provide some background and introduce some notations. Let G(S,E,L) be a network,
where S and E are its sets of states and edges respectively. We assume that the number
of states is finite and denote it by N . The dynamics of this network is described by the
generator matrix L = {Lij}Ni,j=1. If states i and j (i 6= j) are connected by an edge, then
Lij is the pairwise transition rate from i to j, otherwise Lij = 0. The diagonal entries Lii
are defined so that the row sums of the matrix L are zeros. This fact implies that L has a
zero eigenvalue λ0 = 0 whose right eigenvector can be chosen to be e := [1, 1, . . . , 1]>, i.e.,
Le = 0. The corresponding left eigenvector can be chosen to be the equilibrium probability
distribution π = [π1, π2, . . . , πN ]:

πL = 0,
N∑
i=1

πi = 1.

The generator matrices of networks representing energy landscapes possess the detailed
balance property, i.e., πiLij = πjLji which means that on average, there is the same
numbers of transitions from i to j and from j to i per unit time. The detailed balance
implies that the matrix L can be decomposed as

L = P−1Q

where P is the diagonal matrix

P = diag{π1, π2, . . . , πN},
and Q is symmetric. Hence L is similar to a symmetric matrix:

(58) Lsym := P 1/2LP−1/2 = P−1/2QP−1/2.
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Using Eq. (58) and that Lii = −∑j 6=i Lij where Lij ≥ 0, one can show that eigenvalues of
L are real and nonpositive. Furthermore, we assume that the network is connected. Hence
L is irreducible and the zero eigenvalue has algebraic multiplicity one. We will denote the
nonzero eigenvalues of L by −λk, k = 1, 2, . . . , N − 1, and order them so that

0 < λ1 ≤ λ2 ≤ . . . ≤ λN−1.

The eigendecomposition of a generator matrix L leads to a nice representation of the
time evolution of the probability distribution. The matrix L can be written as

(59) L = ΦΛΦ>P,

where Φ = [φ0, φ1, . . . , φN−1] is a matrix of right eigenvectors, normalized so that P 1/2Φ is

orthogonal. Note that P 1/2Φ is the matrix of eigenvectors of Lsym. Therefore,

‖P 1/2φk‖2 =
N∑
j=1

πj |φkj |2 = 1,(60)

N∑
j=1

πjφ
k
jφ

l
j = 0, k 6= l,(61)

and in particular, φ0 = e and Pφ0 = π.
The probability distribution evolves according to the Forward Kolmogorov (a. k. a. the

Fokker-Planck) equation
dp

dt
= pL, p(0) = p0,

where p0 is the initial distribution. Using Eqs. (59)–(61) we get

(62) p(t) =
N−1∑
k=0

cke
−λkt

(
Pφk

)>
, where ck = p0φ

k.

Note that c0 = p0[1, . . . , 1]> =
∑N

j=0(p0)j = 1. Eq. (62) shows that the k-th eigen-

component of p(t) remains significant only on the time interval O(λ−1
k ). Eventually, all

eigen-components, except for the zeroth, decay. Hence p(t)→ π as t→∞.

7.2. Interpretation of eigenvalues and eigenvectors. For k > 0, the left and right
k-th eigenvectors of L, [Pφk]> and φk respectively, can be understood from a recipe for
preparing the initial probability distribution so that only the coefficients c0 and ck in Eq.
(62) are nonzero. Imagine n� 1 particles distributed in the stochastic network according

to the equilibrium distribution π. Since (φ0)>Pφk =
∑N

j=1 πjφ
k
j = 0 for any k > 0, the set

of states S can be divided into two parts:

Sk+ := {i ∈ S : φki ≥ 0} and

Sk− := {i ∈ S : φki < 0}.(63)

In order to create a component of the initial distribution parallel to the left eigenvector
[Pφk]>, we pick some α satisfying αφkj ≤ 1 for all j ∈ Sk−, remove αnπj |φkj | particles from
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each state j ∈ Sk− and distribute them in Sk+ so that each state j ∈ Sk+ gets αnπjφ
k
j particles.

The resulting distribution p0 is π + α[Pφk]>. Therefore, the left eigenvector α[Pφk]> is
a perturbation of the equilibrium distribution decaying uniformly across the network with
the rate given by the corresponding eigenvalue λk. (The keyword here is “uniformly”.) The
corresponding right eigenvector αφk shows for each state j ∈ S, by which proportion of πj
state j is over- or underpopulated in the perturbed distribution π + α[Pφk]>. Therefore,
φk is, in essence, a fuzzy signed indicator function of the perturbation [Pφk]>.

7.3. Eigencurrents. The importance of probability currents for the quantitative descrip-
tion of transition processes in the system was emphasized in works of J. Kurchan (see
e.g. Six out of equilibrium lectures). For example, the reactive current is one of the key
concepts of the Transition Path Theory [14, 8]. In the context of spectral analysis, E.
Vanden-Eijnden proposed to consider the eigencurrent [8]. While eigenvectors determine
the perturbations to the equilibrium distribution decaying with the rates given by the cor-
responding eigenvalues, eigencurrents give a quantitative description of the escape process
from these perturbed distributions.

Eigencurrents are defined as follows. The time derivative of the i-th component of the
probability distribution p(t) is

(64)
dpi
dt

=

N∑
j=1

Ljipj =
∑
j 6=i

(Ljipj − Lijpi).

Plugging in expressions for pi and pj from Eq. (62) into Eq. (64) and using the detailed
balance property πiLij = πjLji we obtain

(65)
dpi
dt

=
N−1∑
k=0

cke
−λkt

∑
j 6=i

πiLij [φ
k
j − φki ].

The collection of numbers

(66) F kij := πiLije
−λkt[φki − φkj ]

is called the eigencurrent associated with the k-th eigenpair. (Here we have switched the
sign and incorporated the factor e−λkt into the definition in comparison with the one in
Ref. [8] in order to make its physical sense more transparent.) In terms of the eigencurrent
F kij , Eq. (65) can be rewritten as

(67)
dpi
dt

= −
N−1∑
k=0

ck
∑
j 6=i

F kij .

Hence, the eigencurrent F kij is the net probability current of the k-th perturbation Pφk

along the edge (i, j) per unit time. In other words, if the system is originally distributed
according to p0 = π + αPφk then the current αF kij gives the difference of the average
numbers of transitions from i to j and from j to i per unit time.

https://www.pmmh.espci.fr/~jorge/publications1.html
https://arxiv.org/abs/0901.1271
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The eigencurrent F kij can be compared to the reactive current Fij in Ref. [8] (which is

the same as the quantity fABij − fABji in Ref. [14]). The reactive current Fij is conserved at

every node of the network [14] except for the specially designated subsets of source states
A and sink states B. Contrary to it, the eigencurrent is either emitted or absorbed in all
states i where φki 6= 0. Indeed, for any i ∈ S we have

∑
j 6=i

F kij =πie
−λkt

φki ∑
j 6=i

Lij −
∑
j 6=i

Lijφ
k
j


=πie

−λkt

− N∑
j=1

Lijφ
k
j

 = e−λktλkπiφ
k
i .(68)

Therefore, every state i emits or absorbs (depending on the sign of φki ) e
−λktλkπi|φki | units

of the eigencurrent F kij per unit time.

Let’s partition the set of states S into Sk+ and Sk− (see Eq. (63)). The corresponding

cut-set (a. k. a. cut) consists of all edges (i, j) where φki ≥ 0 and φkj < 0. We will call this

cut the emission-absorption cut as it separates the states where the eigencurrent F kij is not

absorbed from those where it is absorbed. It can be compared to the isocommittor cut [8]
corresponding to the committor value q = 0.5.

Now we will show that for every fixed time t, the eigencurrent over the emission-
absorption cut is maximal among all possible cuts of the network, and it is equal to the
total eigencurrent emitted by the states Sk+ per unit time at time t, i.e.,

max
S′,S′′: S=S′∪̇S′′

∑
i∈S′,j∈S′′

F kij

=
∑

i∈Sk
+,j∈Sk

−

F kij = e−λktλk
∑
i∈Sk

+

πφki(69)

(The symbol ∪̇ denotes the disjoint union.) Since Eq. (66) implies that F kij = −F kji, for

any subset S′ ⊂ S we have ∑
i∈S′,j∈S′

F kij = 0.

Therefore, the eigencurrent over the cut (S′, S′′) is∑
i∈S′, j∈S′′

F kij =
∑

i∈S′, j∈S
F kij −

∑
i∈S′, j∈S′

F kij

=e−λktλk
∑
i∈S′

πiφ
k
i ,

i.e., it is the total eigencurrent emitted in S′ per unit time. The maximum of the last sum
is achieved if S′ = Sk+, i.e., if S′ consists of all non-absorbing states.
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The cut-set of the emission-absorption cut is the true transition state of the relaxation
process from the perturbed distribution π + α[Pφk]>.

8. The spectral analysis versus TPT

In this Section, we will summarize the similarities and differences between the spectral
analysis and TPT (Transition Path Theory).

The basic steps of the analysis of a transition process taking place in the stochastic
network G(S,E,L) by means of TPT are the following. We assume detailed balance for
simplicity.

(1) Pick two disjoint subsets of states: a source set A ⊂ S and a sink set B ⊂ S.
(2) Solve the committor equation

(70)
∑
j∈S

Lijqj = 0, i ∈ S\(A ∪B), q(A) = 0, q(B) = 1.

For each state i the value of the committor qi is the probability that the random
walk starting at i will reach first B rather than A.

(3) Calculate the reactive current

FRij := πiLij(qj − qi)
and analyze it. For example, one can consider its distribution in the isocommittor
cuts and visualize the reactive tube with their aid. (For a given q ∈ [0, 1) the
isocommittor cut [8] C(q) is the collection of edges (i, j) such that qi ≤ q and
qj > q.)

(4) Calculate the transition rate νR, i.e., the average number of transitions from A to
B per unit time, e.g. by

νR =
∑

(i,j)∈C(q)

FRij ,

where C(q) is an arbitrary isocommittor cut. Also calculate the rates kA,B and
kB,A which are the inverse average times of going back to B after hitting A and
going back to A after hitting B respectively. They are given by

kA,B =
νR∑

i∈S πi(1− qi)
, kA,B =

νR∑
i∈S πiqi

.

In TPT, the probability distribution in the network is assumed to be equilibrium, i.e., π.
The transition process from A to B is stationary. The committor, the reactive current, and
the transition rates are time-independent. Contrary to this, the eigenpair (λk, φ

k) describes
the time-dependent relaxation process starting from the non-equilibrium distribution π +
α[Pφk]>, where the perturbation α[Pφk]> decays uniformly throughout the network with
the rate λk.

Nevertheless, it is instructive to compare the right eigenvector φk to the committor, the
eigencurrent

F kij = πiLij(φ
k
j − φki )e−λkt
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to the reactive current FRij , and the transition rate kA,B to λk. We will do it on the example
of the LJ38 network.

The committor and the right eigenvector play similar roles in the definitions of the cor-
responding currents. The net average numbers of transitions per unit time along the edge
(i, j) done by reactive trajectories and during the relaxation process are proportional to
πiLij(qj − qi) and πiLij(φ

k
j − φki ) respectively. However, there are important differences

between the right eigenvector and the committor. While the committor indicates the prob-
ability to reach first B rather than A starting from the given state, the right eigenvector
indicates how the given state is over- or underpopulated relative to the equilibrium dis-
tribution. The committor takes values in the interval [0, 1], while the range of values of

the components of the right eigenvector φ(ICO), normalized as described in Section 7.1, is
temperature dependent. Some components acquire values much larger than 1 or much less
than -1.

Both the reactive current FRij and the eigencurrent F kij describe the net probability
flow for the corresponding processes. The reactive current is time-independent, while the
eigencurrent uniformly decays with time at the rate λk. The reactive current is emitted
by the source states A, absorbed by the sink states B and conserved at all other states.
There is no reactive current between any two source states, and there is no reactive current
between any two sink states. Contrary to this, the eigencurrent is emitted at all states
where φk > 0, absorbed at all states where φk < 0, and there is a nonzero eigencurrent
along any edge (i, j) as long as φki 6= φkj . The total flux of the reactive current is the
same through any cut of the network separating the sets A and B. The total flux of the
eigencurrent is maximal through the emission-absorption cut, which is the cut separating
the states with φkj ≥ 0 and φkj < 0. Note if φkj = 0 at some state j, then the emission-

absorption cut is not the only cut separating the states with φk > 0 and φk < 0. In this
case, the flux of the eigencurrent is maximal through any cut separating the states with
φk > 0 and φk < 0.
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Example:  the 7-well potential
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�1 ⇣ exp(�(V12 � V2)/T ), �1 = [0, 1, 1, 1, 1, 1, 1]T ,

�2 ⇣ exp(�(V37 � V7)/T ), �2 = [0, 0, 0, 0, 0, 0, 1]T ,

�3 ⇣ exp(�(V45 � V5)/T ), �3 = [0, 0, 0, 0, 1, 1, 0]T ,

�4 ⇣ exp(�(V56 � V6)/T ), �4 = [0, 0, 0, 0, 0, 1, 0]T ,

�5 ⇣ exp(�(V23 � V3)/T ), �5 = [0, 0, 1, 1, 0, 0, 0]T ,

�6 ⇣ exp(�(V34 � V4)/T ), �6 = [0, 0, 0, 1, 0, 0, 0]T .
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⇤
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⇤
5) = (2, 3), S5 = {3, 4}, C5 = {3},
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⇤
6) = (3, 4), S6 = C6 = {4}.

Figure 10. An example of 7-well potential.
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