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1. Introduction

Monte-Carlo methods are those where one evaluates something nonrandom using pseu-
dorandom numbers. More precisely, one evaluates a nonrandom quantity as the expected
value of a random variable. On the contrary, simulations produce random variables with
a certain distribution with the purpose of just looking at them. Typically, the error in
Monte-Carlo methods decays as n−1/2 where n is the number of samples which is worse
that the error decay rate in most of deterministic methods (it is usually at least as good
as n−1). So, why bother? The reason is that in some important situations deterministic
methods simply cannot be used due to such things as the “curse of dimensionality” or
largeness of the problem. In some of these cases, Monte-Carlo methods can be efficient.
For example, to find the mean magnetization in a 3D Ising model with n sites, one need
to average the value of the magnetization over 2n different spin configurations. If we are
considering a 3D 10× 10× 10 grid, then n = 1000, and 21000 ∼ 10301, a huge number, that
makes the deterministic calculation infeasible. On the contrary, a Monte-Carlo calculation
gives an accurate enough estimate in a reasonable time.
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2. Pseudorandom numbers

Pseudorandom numbers are generated by pseudorandom number generators. A pseu-
dorandom number generator produces a deterministic sequence of numbers starting from
a seed state that can be specified by the user. Good pseudorandom number generators
produce sequences that cannot be distinguished from random numbers by simple tests.
In C, the operators rand() and random() produce a uniformly distributed pseudorandom
number in the interval [0 . . . RAND_MAX], where RAND_MAX is a constant defined in the library
stdlib.h. It is platform-dependent. In most modern computers,

RAND_MAX = 231 − 1 = 2147483647,

the maximal int in C. (The range of int in C is from−231 to 231−1.) However, the function
rand() produces a periodic sequence with period RAND_MAX while the sequence produced by
random() is indistinguishable from the sequence of random numbers uniformly distributed
between 0 and RAND_MAX for all practical purposes to the best of my knowledge. Below is a
C program generating pseudorandom numbers using random() and rand() and its output.
Note that the sequence generated by rand() is periodic with period RAND_MAX while the
sequence generated by random() is not. Therefore, you can use rand() only if you need the
number of samples significantly less that RAND_MAX. If RAND_MAX] = 2147483647 ∼ 2 · 109

as above, do not use rand() if you you need more that 107 samples.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main(void);

int main() {

int r;

int i;

printf("RAND_MAX = %i\n",RAND_MAX); // 2^31 - 1

printf("Using random():\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = random(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

printf("\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = random(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

/* ... */

printf("\nUsing rand()\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = rand(); /* Generate a random integer */
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if( i < 10 ) printf("%i\n", r);

}

printf("\n");

for(i = 0; i < RAND_MAX-1; i++) {

r = rand(); /* Generate a random integer */

if( i < 10 ) printf("%i\n", r);

}

return 1;

}

Marias-iMac:Desktop mariacameron$ gcc RandomNumbers.c -lm -O3

Marias-iMac:Desktop mariacameron$ ./a.out

RAND_MAX = 2147483647

Using random():

1804289383

846930886

1681692777

1714636915

1957747793

424238335

719885386

1649760492

596516649

1189641421

377605215

52479496

850182889

2103788022

905904603

1692932299

1981079694

174340263

1245720282

1365390958

Using rand()

16807

282475249

1622650073

984943658

1144108930

470211272
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101027544

1457850878

1458777923

2007237709

16807

282475249

1622650073

984943658

1144108930

470211272

101027544

1457850878

1458777923

2007237709

Marias-iMac:Desktop mariacameron$

In order to generate a uniformly distributed random variable on (0, 1), i.e., η ∼ U(0, 1),
we code:

eta = (double)random()/RAND_MAX;

MATLAB is excellent for programming prototypes of algorithms. It has a number of
tools to generate pseudorandom numbers:

• Function rand generates a random variable uniformly distributed in (0,1).
• Function randi generates random integer uniformly distributed in the provided

interval.
• Function randn generates standard normal random variables, i.e., Gaussian random

variables with mean 0 and variance 1.
• Function randperm generates a random permutation of numbers from 1 to n where
n is user-supplied.

For more details, read
https://www.mathworks.com/help/matlab/random-number-generation.html.

3. Sampling random variables with given distribution

The goal of sampling is typically to evaluate an expected value of a random variable
(RV) η with a given pdf fη(x), i.e., the integral of the form

E[η] =

∫
xfη(x)dx.

If η is a vector random variable belonging to Rd with d > 3, the direct integration using
quadrature rules can be hard and Monte-Carlo methods come in handy. If we are able to
generate N independent samples of η, and η has a finite variance σ2, we can estimate E[η]

https://www.mathworks.com/help/matlab/random-number-generation.html
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as follows:

E[η] =

∫
xfη(x)dx ≈ 1

N

N∑
i=1

ηi.

Recall that by the Central Limit Theorem,

1

N

N∑
i=1

ηi ∼ N
(
E[η],

σ2

N

)
.

Most programming languages have tools for generating a uniformly distributed random
variable ξ on the interval [0, 1]. Below we will discuss three approaches for sampling other
kinds of RVs.

3.1. Inversion. Suppose we need to sample a random variable with a pdf f(x). Assume
that we can integrate f(x) analytically, i.e., have an analytic expression for the probability
distribution function F (x) (a.k.a. the cumulative distfipution function or CDF). Assume
that f(x) ≡ 0 for x, 0. We observe that∫ η

0
f(x)dx = F (η) = ξ. Hence η = F−1(ξ),

where F−1(ξ) is the inverse function of F . It exists if F (x) is strictly increasing. If
ξ ∼ U(0, 1) is uniformly distributed on [0, 1], i.e., its probability distribution function is

Fξ(x) = P (ξ ≤ x) =


1, x ≥ 1,

x, 0 ≤ x < 1,

0, x < 0,

then the probability distribution of η is F (x). Indeed,

P (η ≤ x) = P (F−1(ξ) ≤ x) = P (ξ ≤ F (x)) = F (x).

Example 1 Suppose we need to generate an exponentially distributed
random variable η with pdf

(1) f(x) =

{
ae−ax, x ≥ 0

0, x < 0,
where a > 0 is a constant.

The probability distribution of ξ is given by

Fη(x) = P (η ≤ x) =

∫ x

0
ae−aydy = 1− e−ax.

Let ξ ∼ U(0, 1). Then η can be generated from ξ by

η = F−1
η (ξ) = − 1

a log(1− ξ).
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Observing that 1 − ξ is also a random variable uniformly distributed on
[0, 1], we can choose to generate η by

η = F−1
η (ξ) = − 1

a log(ξ).

The limitation of the inversion method is due to the fact that not all pdf’s are analytically
integrable to CDF’s.

3.2. The change of variables. The Box-Muller algorithm. The Box-Muller algo-
rithm for generating Gaussian Random variables exemplifies the change of variables ap-
proach.

Suppose we need to generate a Gaussian random variable (RV) η with mean 0 and
variance σ2 (i.e., η ∼ N (0, σ2)) while we have a built-in function for generating a random
variable ξ uniformly distributed on [0, 1]. Unfortunately, the pdf of η

(2) f(x) =
1√

2πσ2
e−

x2

2σ2

is not analytically integrable. Therefore, we cannot use the inversion method directly.
However, we can generate pairs of independent jointly Gaussian RVs (η1, η2) given a pair
of independent RVs (ξ1, ξ2) uniformly distributed on [0, 1].

Let us elaborate this point. The joint pdf of two i.i.d. Gaussian RVs η1, η2 ∼ N (0, σ2)
is

(3) fη1,η2(x, y) = fη1(x)fη2(y) =
1

2πσ2
e−

x2+y2

2σ2 .

Now let us to switch to the polar coordinates

r =
√
x2 + y2 and θ =

{
arctan y

x , x ≥ 0,

π + arctan y
x , x < 0.

.

Respectively, x = r cos θ, y = r sin θ.
Let us recall the general formula for the variable change in a joint pdf. Suppose we

have RVs (X1, . . . Xn) ∈ ΩX with the joint pdf fX1,...,Xn(x1, . . . , xn). The desired RVs
(Y1, . . . , Yn) ∈ ΩY are functions of X1, ..., Xn: Yi = gi(X1, . . . , Xn), i = 1, . . . , n. To be
able to compute the joint pdf for the RVs Y1, ..., Yn, we make the following assumptions.

• The system of equations yi = gi(x1, . . . , xn), i = 1, . . . , n is uniquely solved for
x1, ..., xn for any given (y1, . . . , yn) ∈ ΩY , and the solution is given by xi =
hi(y1, . . . , yn), i = 1, . . . , n.
• The Jacobian

J(x1, . . . , x1) = det

[(
∂gi(x1, . . . , xn)

∂xj

)n
i,j=1

]
6= 0 for all (x1, . . . , xn) ∈ ΩX .

Then the joint pdf for the RVs Y1, ..., Yn is given by

(4) fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn)|J(x1, . . . , xn)|−1,

where xi = hi(y1, . . . , yn), i = 1, . . . , n.
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Using formula (4), we obtain the joint pdf for the random variables R and Θ, the polar
radius and polar angle:

(5) fR,Θ(r, θ) =
1

2πσ2
e−

r2

2σ2 r,

where the factor r come from the calculation

|J(x, y)|−1 =

∣∣∣∣ ∂(r, θ)

∂(x, y)

∣∣∣∣−1

=

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣ = r.

We observe that the pdf fR,Θ(r, θ) is independent of θ, hence the marginal pdf of θ is
uniform on [0, 2π]. Therefore, if ξ2 ∼ U(0, 1) then Θ can be set to 2πξ2. The marginal pdf
for R is found by integrating out Θ:

fR(r) =

∫ 2π

0
fR,Θ(r, θ)dθ =

1

σ2
e−

r2

2σ2 r.

We observe that the pdf fR(r) is analytically integrable:

FR(a) = P (r ≤ a) =
1

σ2

∫
√
r2≤a

e−
r2

2σ2 rdr =
1

σ2
σ2

∫ a2/(2σ2)

0
e−tdt = 1− e−a2/(2σ2).

Then we set:

FR(a) = 1− e−a2/(2σ2) = 1− ξ1,

where ξ1 ∼ U(0, 1), and use the fact that if ξ1 is uniformly distributed on [0, 1], then so is
1− ξ1. Inverting FR, we find:

(6) a =
√
−2σ2 log ξ1.

In summary, to obtain η1, η2 ∼ N (0, σ2), i.i.d., we generate ξ1, ξ2 ∼ U(0, 1), i.i.d. and
set

(7)

{
η1 = a cos θ =

√
−2σ2 log ξ1 cos(2πξ2)

η2 = a sin θ =
√
−2σ2 log ξ1 sin(2πξ2)

Equation (7) is the Box-Muller formula for generating pairs of independent jointly Gaussian
random variables with mean 0 and variance σ2.

The method of variable change can be used in some other situations provided that we
are able to find a variable change such that the new variables have analytically integrable
marginal pdf’s and hence can be obtained e.g. using the inversion method. This method is
not universal since there is no general recipe for finding such a variable change. However,
it does work beautifully for generating i.i.d. Gaussian RVs.

3.3. Acceptance-rejection method. Read a very nice note on it by Prof. K. Sigman
(Columbia university):
http://www.columbia.edu/ ks20/4703-Sigman/4703-07-Notes-ARM.pdf.
I will only add a few remarks.

http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf
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• Contrary to the inversion method and the method of variable change, the acceptance-
rejection method is universal method in the sense that, as soon as we can find a
RV with pdf g(x) which we can sample and

sup
x∈R

f(x)

g(x)
is bounded,

which is typically not hard, it will work. However, if this bound is much larger that
1, the method will be wasteful.
• The following fact was used in the note. If we need to find the probability of the

event that one RV η with pdf fη(x) is less or equal to another RV ξ with pdf fξ(x),
i.e., P (η ≤ ξ), we can do it using conditioning. If ξ takes a discrete set of values ξi,
i ∈ I, where I some not more than countable index set, then we have

(8) P (η ≤ ξ) =
∑
i∈I

P (η ≤ ξ|ξ = ξi)P (ξ = ξi).

The analogous formula for continuous RVs is

(9) P (η ≤ ξ) =

∫ ∞
−∞

P (η ≤ ξ|ξ = x)fξ(x)dx.

Below is a vectorized MATLAB code implementing the algorithm for sampling N (0, 1)
using exponential RV with pdf f(x) = e−x, x ≥ 0, and f(x) = 0 otherwise from Sigman’s
note. Figure 1 ins generated by the code.

function AcceptRejectMethod()

%% Generate eta ~ N(0,1) using exp(-xi)

N = 1e8; % the number of samples

xi = rand(N,2);

y1 = -log(xi(:,1));

y2 = -log(xi(:,2));

% generate signs for eta

u = rand(N,1);

ind = find(u > 0.5);

s = ones(N,1);

s(ind) = -1;

%

f = 0.5*(y1 - 1).^2;

ind = find(y2 >= f);

Na = length(ind); % the number of accepted RVs

eta = y1(ind).*s(ind);

fprintf(’N/Na = %d, C = sqrt(2*e/pi) = %d\n’,N/Na,sqrt(2*exp(1)/pi));

%

%% plot a histogram to test the distribution

nbins = 500; % the number of bins

etamax = max(eta);
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etamin = min(eta);

nb1 = nbins + 1;

x = linspace(etamin,etamax,nb1);

h = x(2) - x(1); % bin width

% xc = centers of bins

xc = linspace(etamin + 0.5*h,etamax - 0.5*h,nbins);

hh = zeros(nbins,1); % heights of the bins

for i = 1 : nbins

ind = find(eta >= x(i) & eta < x(i + 1));

hh(i) = length(ind);

end

hh = hh/(Na*h); % scale the histogram

f = exp(-0.5*x.^2)/sqrt(2*pi);

figure;

plot(x,f,’r’,’Linewidth’,2);

hold on;

plot(xc,hh,’b’,’Linewidth’,2);

grid;

set(gca,’Fontsize’,20);

xlabel(’x’,’Fontsize’,20);

ylabel(’f(x)’,’Fontsize’,20);

legend(’True N(0,1)’,’Generated N(0,1)’);

end

-6 -4 -2 0 2 4 6
x

0

0.1

0.2

0.3

0.4

f(
x)

True N(0,1)
Generated N(0,1)

Figure 1. Figure generated by the code in Section 3.3.

4. Monte-Carlo integration

Monte-Carlo integration means the use of sampling for evaluating integrals. It can be
used beyond the context of finding expected values of random variables.
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Suppose we need to calculate an integral of the form

I =

∫ b

a
g(x)f(x)dx, where

f(x) ≥ 0, x ∈ [a, b], and

∫ b

a
f(x)dx = 1.

Such integral can be interpreted as the expected value of the function g of the RV η with
the pdf f(x), i.e.,

I =

∫ b

a
g(x)f(x)dx =

∫ b

a
g(x)f(x)dx = E[g(η)].

Suppose we are able to sample i.i.d. RVs ηi each of which has the pdf f(x) and a finite
variance. According to the strong law of large numbers,

lim
n→∞

1

n

n∑
i=1

g(ηi) = E[g(η)] a.s.

The integral I is called the estimand, the random variable g(η) is called the estimator, and
the quantity

(10)
1

n

n∑
i=1

g(ηi)

is the estimate. This method of evaluating integrals is called the Monte-Carlo integration.
According to the central limit theorem,

1

n

n∑
i=1

g(ηi) −→ N

(
E[g(η)],

Var(g(η))

n

)
in distribution.

Therefore, the error of the estimate (10) is of the order of

(11) err ∼
√

Var(g(η))√
n

.

Eq. (11) suggests two ways to reduce the error of the Monte-Carlo integration: (i) to
increase the number of samples n, and (ii) to reduce the variance of g(η). Note that
increasing the number of samples is not very efficient approach, as the error decays as
n−1/2. A better idea is to try to reduce the variance of g(η). One approach to the variance
reduction is called the importance sampling.

4.1. Importance sampling. Suppose we need to calculate the integral

I =

∫ b

a
g(x)f(x)dx, where

f(x) ≥ 0, x ∈ [a, b], and

∫ b

a
f(x)dx = 1.

In order to reduce Var(g(η)) we can try to find a function h(x) with the following properties:
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(1) The integral

I1 =

∫ b

a
f(x)h(x)dx

is easy to evaluate;
(2) h(x) ≥ 0;
(3) We can sample a random variable with the pdf

f(x)h(x)

I1
easily;

(4) g(x)/h(x) varies little.

Then we have

I =

∫ b

a
g(x)f(x)dx =

∫ b

a

g(x)

h(x)
f(x)h(x)dx = I1

∫ b

a

g(x)

h(x)

f(x)h(x)

I1
dx

= I1E
[g
h

(η)
]
∼ I1

n

n∑
i=1

g(ηi)

h(ηi)
,

where η has the pdf f(x)h(x)/I1. See the example with

I =

∫ 1

0
cos(x/5)e−5xdx

in [2].

4.2. Finding normalization constants. This section is based on notes by Prof. J.
Weare (NYU) [4]. It is often the case in statistical mechanics and chemical physics that
the invariant pdf π(x) is known only up to the normalization constant, i.e.

(12) π(x) =
p(x)

Zp
, where p(x) is known and Zp =

∫
Rd
p(x)dx is not.

In 1D, one can find Z by numerical integration, e.g., using the composite trapezoidal rule.
As the dimension grows, numerical quadrature becomes less and less feasible.

Alternatively, independent of the dimensionality of the system, one can find an estimate
for Z using some other pdf γ(x) = Z−1

g g(x) where both g(x) and Zg are known and that
one are able to sample from. We observe that∫

Rd

p(x)

g(x)
γ(x)dx =

∫
Rd

p(x)

g(x)

g(x)

Zg
dx =

1

Zg

∫
Rd
p(x)dx =

Zp
Zg
.

On the other hand, this integral can be evaluated by sampling from the pdf γ(x) = Z−1
g g(x).

Hence

Zp = Zg

∫
Rd

p(x)

g(x)
γ(x)dx ≈ Zg

N

N∑
i=1

p(ξi)

g(ξi)
.

Note that in the case where Zg is also unknown, but one still is able to sample from the
pdf γ(x) = Z−1

g g(x), one can evaluate the ratio of normalization constants. In applications

https://en.wikipedia.org/wiki/Trapezoidal_rule
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coming from chemical physics, finding ratio of normalization constants is the basis for find-
ing so-called free energy differences where free energy is defined by F = − logZ. Suppose
we are considering a family of pdf’s depending on a parameter θ (e.g. temperature). Then
F (θ) = − logZp(θ) and

F (θ2)− F (θ1) = − logZp(θ2) + logZp(θ1) = log
Zp(θ1)

Zp(θ2)
.

4.3. Monte Carlo integration in higher dimensions. Suppose we would like to eval-
uate the integral

(13) I =

∫
Ω
g(x)dx

where Ω ⊂ Rn. We proceed as we did in 1D. Let us generate a random variable η whose
pdf fη(x) is nonzero in Ω and zero elsewhere and rewrite Eq. (13) as

(14) I =

∫
Ω

g(x)

fη(x)
fη(x)dx

By the strong law of large numbers,

(15) I =

∫
Ω

g(x)

fη(x)
fη(x)dx = E

[
g(x)

fη(x)

]
≈ 1

N

N∑
i=1

g(ηi)

fη(ηi)
,

where ηi, 1 ≤ i ≤ N , are samples of the random variable η with pdf fη(x).
Suppose η is uniformly distributed in Ω. Then its pdf is given by

(16) fη(x) =

{
1
|Ω| , x ∈ Ω

0, x /∈ Ω,

where |Ω| is the volume of Ω. In this case, Eq. (17) becomes:

(17) I =

∫
Ω

g(x)

fη(x)
fη(x)dx ≈ |Ω|

N

N∑
i=1

g(ηi).

Similarly we proceed when we need to calculate an integral over a k-dimensional hyper-
surface S embedded into Rn:

(18) I =

∫
S
g(x)dσ,

where dσ is a surface element. Let η be a random variable whose pdf is supported at the
hypersurface S, i.e. fη(x) > 0 if and only if x ∈ S. Then the integral is approximated by

(19) I =

∫
S
g(x)dσ ≈ 1

N

N∑
i=1

g(xi)

fη(xi)
,
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where xi, 1 ≤ i ≤ N are samples of the random variable η. If η is uniformly distributed on
the hypersurface S, then

(20) I =

∫
S
g(x)dσ ≈ |S|

N

N∑
i=1

g(xi),

where |S| is the measure (k-dimensional area) of S:

(21) |S| =
∫
S
dσ.

Example 17 Consider the integral

(22) I =

∫
Sn−1

g(x)dσ,

where Sn−1 is the unit n− 1-dimensional sphere (n-sphere) embedded into Rn:

Sn−1 = {x = (x1, . . . , xn) ∈ Rn | x2
1 + . . .+ x2

n = 1}.
Let us generate N samples of random variable η uniformly distributed on Sn. This can
be done as follows. First we generate an array N × n of independent Gaussian random
variables with mean 0 and variance 1. It is well-known that n independent Gaussian
random variables with mean zero and variance 1 have the joint pdf

(23) fη1,...,ηn(x1, . . . , xn) =
1

(2π)n/2
e−

x21+...+x
2
n

2 ≡ 1

(2π)n/2
e−

r2

2 ,

where r :=
√
x2

1 + . . .+ x2
n. Let us treat each row of our array as a sample of a vector

random variable ξ with pdf given by Eq. (23). The distribution of ξ is spherically sym-
metric. Hence, we can obtain the desired random variable η uniformly distributed on the
unit sphere by normalizing the radius of ξ:

(24) η =
ξ√

ξ2
1 + . . .+ ξ2

n

.

In matlab, N samples of a random variable η uniformly distributed on the unit n-sphere
can be generated by the following set of commands:

xi = randn(N, n);

aux = sqrt(sum(xi.^2, 2))*ones(1, n);

eta = xi./aux;

The surface area of the unit sphere Sn−1 is given by

(25) |Sn−1| =
2πn/2

Γ(n2 )
,

where

Γ(x) :=

∫ ∞
0

tx−1e−tdt

is the Gamma-function. Thus, the integral (22) can be estimated as

https://en.wikipedia.org/wiki/N-sphere
https://en.wikipedia.org/wiki/Gamma_function
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S = 2*pi^(n/2)/gamma(n/2);

I = sum(g(eta))*S/N;

where n, N , and the function y = g(x) must be provided. A table of exact integrals of
some functions over unit hypersphere are found here.

• For n = 4 and g(x) = x2
1x

2
2, the exact integral (22) is

I =

∫
S3

x2
1x

2
2dσ =

π2

12
= 0.8224670 . . . ,

while its estimate using 106 samples is 0.8227420, and its error estimate is 10−3.
• For n = 10 and g(x) = x2

1, the exact integral (22) is

I =

∫
S9

x2
1dσ =

π5

120
= 2.550164 . . . ,

while its estimate using 106 samples is 2.548990, and its error estimate is 3 · 10−3.

5. Estimators, estimates and sampling distributions

Statistics is concerned with finding the distribution given a set of samples. Here we
will go over basic concepts of statistics that we need obtaining integrals by Monte Carlo
methods.

• Consider a fixed but unknown parameter q ∈ Rd. A vector in Rd that represents q is
called the point estimate. An interval estimate provides an interval that quantifies
the plausible location of components of q.
• An estimator g(η1, . . . , ηn) is a rule or procedure that specifies how to construct

estimates for q based on random samples of random variable η. Hence the estimator
is a random variable with an associated distribution which quantifies attributes of
estimation process. An estimate is a realization of the estimator. Therefore, it is a
function of realized values x1, ..., xn, i.e., a sample.

Often we need to estimate the expected value of a random variable. The standard
estimator for the mean is the running average

(26) η̄(η1, . . . , ηn) =
1

n

n∑
i=1

ηi.

http://www.ebyte.it/library/docs/math05a/nDimSphereSurfaces05.html
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Often we also need to estimate the variance to assess the error. Below are three estima-
tors each of which is optimal in some sense:

S2
1(η1, . . . , ηn) =

1

n− 1

n∑
i=1

(
ηi −

1

i

i∑
k=1

ηk

)2

,(27)

S2
2(η1, . . . , ηn) =

1

n

n∑
i=1

(
ηi −

1

n

n∑
k=1

ηk

)2

,(28)

S2
3(η1, . . . , ηn) =

1

n− 1

n∑
i=1

(
ηi −

1

n

n∑
k=1

ηk

)2

.(29)

The estimator S2
1 is called the running variance. It has the advantage that it is not necessary

to store samples in memory in order to calculate it. This is not so for S2
2 and S2

3 . The
estimator S2

2 has the maximal likelihood (see below). The estimator S2
3 is unbiased (see

below).

5.1. Unbiased estimators. An estimator for q is said to be unbiased if

E[g(η1, . . . , ηn)] = q.

Example 2 Suppose E[η] = m. Show that the estimator (26) for the
mean is unbiased:

E[η̄] =
1

n

n∑
i=1

E[ηi] =
1

n

n∑
i=1

m = m.

Example 3 Suppose Var(η) = σ2. Consider the running variance as an
estimator for the variance

S2
1 =

1

n− 1

n∑
i=1

(
ηi −

1

i

i∑
k=1

ηk

)2

.
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This is a biased estimator as

E[S2
1 ] =

1

n− 1

n∑
k=1

E

(ηk − 1

k

k∑
i=1

ηi

)2


=
1

n− 1

n∑
k=1

E

(ηk −m+m− 1

k

k∑
i=1

ηi

)2


=
1

n− 1

n∑
k=1

E[(ηk −m)2]− 2E

[
(ηk −m)

1

k

k∑
i=1

(ηi −m)

]
+ E

(1

k

k∑
i=1

(ηi −m)

)2


=
1

n− 1

n∑
k=1

(
σ2 − 2

k
σ2 +

1

k
σ2

)
=

1

n− 1

n∑
k=1

σ2

(
1− 1

k

)
= σ2 1

n− 1

n∑
k=1

(
1− 1

k

)

=σ2

(
1 +

1

n− 1
− 1

n− 1

n∑
k=1

1

k

)
6= σ2.

Note that

lim
n→∞

σ2

(
1 +

1

n− 1
− 1

n− 1

n∑
k=1

1

k

)
= lim

n→∞
σ2

(
1 +

1− log n

n− 1

)
= σ2.

Exercise Show that

S2
3(η1, . . . , ηn) =

1

n− 1

n∑
i=1

(
ηi −

1

n

n∑
k=1

ηk

)2

is an unbiased estimator of the variance.

Definition 1. A statistic is a measurable function of one or more random variables that
does not depend on unknown parameters.

For example, the estimators for the mean and variance that we have mentioned are
statistics.

5.2. Maximum likelihood estimator.

Definition 2. Let fη(x; q) be a parameter-dependent joint pdf associated with the random
vector η = [η1, . . . , ηn] where q ∈ Q is the unknown parameter vector, and x = [x1, . . . , xn]
be a realization of η. The likelihood function L : Q→ [0,∞) is defined as

Lx(q) = fη(x; q),

where the observed sample x = [x1, . . . , xn] is fixed and q varies over all admissible param-
eter values.
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The likelihood function is proportional to the probability to observe the given sample if
the parameter vector is equal to q. Therefore, to find the maximal likelihood estimate we
need to maximize the likelihood function.

For n i.i.d. random variables, the likelihood function becomes

Lx(q) =
n∏
i=1

fη(xi; q).

Often it is computationally advantageous to deal with logLx(q) rather than with Lx(q),
because products are replaced with sums, and powers are replaced with multiplications.
The log-likelihood function is denoted by lx(q) and defined by

lx(q) = logLx(q).

Note that for n i.i.d. random variables

lx(q) =
n∑
i=1

log fη(xi; q).

Due to monotonicity of the logarithm, maximizing the likelihood function is equivalent to
maximizing the log-likelihood function.

Example 4 Suppose we believe that η is a Gaussian random variable, and
we wish to estimate its mean and variance using a sample of n independent
trials x = [x1, . . . , xn]. Then the parameter vector is q = [m,σ2]. The
likelihood function is given by

Lx(m,σ2) =
n∏
i=1

1√
2πσ2

e−
(xi−m)2

2σ2 ,

while the log-likelihood function is

lx(m,σ2) =

n∑
i=1

[
−1

2
log(2π)− 1

2
log σ2 − (xi −m)2

2σ2

]

=− n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑
i=1

(xi −m)2.

To find the maximum likelihood estimate for m we compute ∂lx(m,σ2)
∂m and

set it to zero:

∂lx(m,σ2)

∂m
= − 1

σ2

n∑
i=1

(m− xi) = − 1

σ2

(
nm−

n∑
i=1

xi

)
= 0.

Hence, the maximal likelihood estimate for the mean is

x̄ =
1

n

n∑
i=1

xi.
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To find the maximum likelihood estimate for σ2 we compute ∂lx(m,σ2)
∂σ2 and

set it to zero:

∂lx(m,σ2)

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(xi −m)2 =
1

2σ4

(
nσ2 −

n∑
i=1

(xi −m)2

)
= 0.

Hence, the maximal likelihood estimate for the variance is

1

n

n∑
i=1

(xi −m)2.

Note that the maximal likelihood estimate for the variance is biased.
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