NOTES ON BURGERS’S EQUATION

MARIA CAMERON

Contents

1. Solution of the Burgers equation with nonzero viscosity 1
2. Shock speed 3
3. Characteristics of the Burgers equation 5
4. Weak solutions 6
5. Riemann problem 6
 6.1. Conservative methods for nonlinear problems 10
 6.2. Discrete conservation 11
 6.3. Consistency 12
 6.4. Generalization of methods developed for the advection equation 12
 6.5. Convergence 13
 6.6. Godunov’s method 15
 6.7. Glimm’s method 16
References 17

Burgers’s equation

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}
\]

is a successful, though rather simplified, mathematical model of the motion of a viscous compressible gas, where

- \(u \) = the speed of the gas,
- \(\nu \) = the kinematic viscosity,
- \(x \) = the spatial coordinate,
- \(t \) = the time.

1. Solution of the Burgers equation with nonzero viscosity

Let us look for a solution of Eq. (1) of the form of traveling wave [1], i.e.,

\[
u(x, t) = w(x - st) \equiv w(y).
\]
Then \(u_t = -sw', u_x = w', \) and \(u_{xx} = w'' \). Plugging this into Eq. (1) we obtain
\[
-sw' + ww' = \nu w''
\]
\[
-sw' + \left(\frac{w^2}{2} \right)' = \nu w''
\]
\[
-sw + \frac{w^2}{2} = \nu w' + C.
\]
We also impose conditions at the \(\pm \infty \): \(w(-\infty) = u_L, w(\infty) = u_R \), where \(u_L > u_R \), and \(w'(\pm \infty) = 0 \). Then we have
\[
-su_L + \frac{u_L^2}{2} = C = -su_R + \frac{u_R^2}{2}.
\]
Therefore, \(s \) must be \((u_L + u_R)/2\). Thus, the shock speed is the same as in the case of zero viscosity. Hence \(C = -u_L u_R/2 \). Then we continue.
\[
\nu w' = \frac{w^2}{2} - \frac{u_L + u_R}{2} w + \frac{u_L u_R}{2}
\]
\[
dy = \frac{dw}{w^2 - (u_L + u_R)w + u_L u_R}
\]
\[
dy = \frac{dw}{2}\nu \left(w^2 - (u_L + u_R)w + \frac{(u_L + u_R)^2}{4} - \frac{(u_L - u_R)^2}{4} \right)
\]
\[
dy = \frac{dw}{2}\nu \left(w - \frac{u_L + u_R}{2} \right)^2 - \frac{(u_L - u_R)^2}{4}
\]
Integrating both parts using
\[
\int \frac{dw}{(w-a)^2 - b^2} = \frac{1}{2b} \log \left| \frac{w-a-b}{w-a+b} \right|
\]
we obtain
\[
y \frac{w}{2\nu} + C = \frac{1}{u_L - u_R} \log \left| \frac{w - \frac{u_L + u_R}{2} - \frac{u_L - u_R}{2}}{w - \frac{u_L + u_R}{2} + \frac{u_L - u_R}{2}} \right| = \frac{1}{u_L - u_R} \log \left| \frac{w - u_L}{w - u_R} \right| = \frac{1}{u_L - u_R} \log \left| \frac{u_L - w}{w - u_R} \right|.
\]
In the last equality we used the fact that \(u_L > w > u_R \). Hence,
\[
u = \frac{u_L - w}{w - u_R} = e^{y(u_L - u_R)/(2\nu) + C}
\]
\[
u = u_L - w = w e^A - u_R e^A, \quad \text{where} \quad A = y(u_L - u_R)/(2\nu) + C
\]
\[
w(e^A + 1) = (u_L + u_R e^A)
\]
\[
w = \frac{u_L + u_R e^A}{e^A + 1} = u_R + \frac{u_L - u_R}{2} \frac{2}{e^A + 1}.
\]
Multiplying and dividing by \(\exp(-A/2) \) and using the identity
\[
\frac{2e^{-A/2}}{e^{A/2} + e^{-A/2}} = 1 - \frac{e^{A/2} - e^{-A/2}}{e^{A/2} + e^{-A/2}} = 1 - \tanh \frac{A}{2}
\]
we get
\[
w(y) = \frac{u_R + u_L}{2} - \frac{u_L - u_R}{2} \tanh \left(\frac{y(u_L - u_R)}{4\nu} + C \right).
\]
Hence,
\[
u(x, t) = \frac{u_R + u_L}{2} - \frac{u_L - u_R}{2} \tanh \left(\frac{(x - st)(u_L - u_R)}{4\nu} \right).
\]
The profiles \(w(y) \) for various values of \(\nu \) are shown in Fig. 1. As \(\nu \to 0 \), \(u(x, t) \) tends to a step function of the argument \(x - st \).

Figure 1. The profiles of the solution of the viscous Burgers equation for \(u_R = 0, \ u_L = 1 \), and \(\nu \) equal to 0.25, 0.1, and 0.02. Note that \(w(y) \) tends to a step function as \(\nu \to 0 \).

2. Shock speed

If the viscosity \(\nu = 0 \), or neglected, Eq. (1) can be rewritten as
\[
u_t + \left[\frac{1}{2} u^2 \right]_x = 0
\]
Eq. (3) is easier to study theoretically and numerically than Eq. (1). From now on, unless indicated otherwise, we will refer to Eq. (3) as the Burgers equation.

Equation (3) has a solution in the form of the traveling wave [2]
\[
u(x, t) = V(x - x_0 - st),
\]
where \(V(y) \) is a step function:
\[
V(y) = \begin{cases} u_L & y < 0 \\ u_R & y > 0 \end{cases}
\]
where $u_L > u_R$. This wave is called the *shock wave*. s is the speed of propagation of the shock wave. It can be obtained from the following reasoning. Let M be some large number. Consider the integral

$$\int_{-M}^{M} u(x, t)dx.$$

Then

$$\frac{d}{dt} \int_{-M}^{M} u(x, t)dx = \int_{-M}^{M} -uu_tdx = -\frac{u^2}{2} \bigg|_{-M}^{M} = \frac{u_L^2}{2} - \frac{u_R^2}{2}.$$

On the other hand,

$$\int_{-M}^{M} u(x, t)dx = (M + st)u_L + (M - st)u_R.$$

Therefore,

$$\frac{d}{dt} \int_{-M}^{M} u(x, t)dx = s(u_L - u_R).$$

Hence, the speed of propagation of the wave is

$$s = \left(\frac{u_L^2}{2} - \frac{u_R^2}{2} \right) / (u_L - u_R) = \frac{u_L + u_R}{2}.$$

Remark The argument above is valid for a more general equation of the form

$$u_t + [f(u)]_x = 0.$$
Such equations are called hyperbolic conservation laws. The shock speed is given by

$$s = \frac{f(u_L) - f(u_R)}{u_L - u_R} = \frac{\text{jump in } f(u)}{\text{jump in } u}.$$

This equation is called the Rankine-Hugoniot condition.

3. Characteristics of the Burgers equation

The characteristics of Eq. (3) are given by

$$\frac{dx}{dt} = u(x, t).$$

Let us show that u is constant along the characteristics. Let $(x(t), t)$ be a characteristic. Then

$$\frac{d}{dt} u(x(t), t) = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{dx}{dt} = u_t + uu_x = 0.$$

Therefore, the solution of Eq. (9) is given by

$$x(t) = u(x(0), 0)t + x(0) = u_0(x_0)t + x_0,$$

where $x_0 = x(0)$, $u_0(x) = u(x, 0)$.

Eq. (10) shows that

- the characteristics are straight lines,
- they may intersect,
- they do not necessarily cover the entire (x, t) space.

This is a new phenomenon in comparison with the linear first order equations $u_t + a(x, t)u_x = 0$. For a linear first order equation, there is a unique characteristic passing through every point of the (x, t) space. Thus, its characteristics never intersect and cover the entire space.

Moreover, even for a smooth initial speed distribution $u_0(x)$ the solution of the Burgers equation may become discontinuous in a finite time. This happens when $u_0(x)$ is negative somewhere. Then the characteristics intersect, i.e., the wave breaks. Let us find the break time. Consider two characteristics $x(t) = u_0(x_1)t + x_1$ and $x(t) = u_0(x_2)t + x_2$. Then we equate

$$x(t) = u_0(x_1)t + x_1 = u_0(x_2)t + x_2.$$

Then the time at which they intersect is

$$t = \frac{x_2 - x_1}{u_0(x_2) - u_0(x_1)}.$$

Therefore, the break time is

$$T_b = \min_{x_1, x_2 \in \mathbb{R}} \left(\frac{x_2 - x_1}{u_0(x_2) - u_0(x_1)} \right) = - \frac{1}{\min_{x_1, x_2 \in \mathbb{R}} \left(\frac{u_0(x_2) - u_0(x_1)}{x_2 - x_1} \right)} = - \frac{1}{\min_{x \in \mathbb{R}} u'_0(x)}.$$
An example is shown in Figure 3. The initial data $u_0(x) = \exp(-16x^2)$ and the corresponding characteristics of the Burgers equation are shown in Fig. 3 (a) and (b) respectively. The solution at times $t = 0.5$ and $t = 0.8$ obtained by the method of characteristics is shown in Fig. 3 (c) and (e) The numerical solution computed by Godunov’s method (see Section 6) is shown in Fig. 3 (d) and (f). The solution obtained by the method of characteristics is triple-valued at some values of x and non-physical in the sense that it is not the vanishing viscosity solution (see Section 1). The solution computed numerically tends to the vanishing viscosity solution as we refine the mesh.

4. Weak solutions

As we have derived in the previous section, a solution to the Burgers equation can become discontinuous even if the initial data are smooth. Then the discontinuity travels with a certain speed, the shock speed s, given by Eq. (6). In Section 2 we found s using the underlying integral conservation law. However, at this point, we can only call the step function given by Eqs (4), (5), and (6) a solution of the integral conservation law rather than the solution of Eq. (3). In order to validate discontinuous solutions for differential equations, the concept of the weak solutions was introduced (see e.g. [3]). This extension of the concept of the solution must satisfy the following requirements:

- a smooth function is a weak solution iff it is a regular solution,
- a discontinuous function can be a weak solution,
- only those discontinuous functions which satisfy the associated integral equation can be weak solutions.

Motivation. Let $\phi(x,t)$ be an infinitely smooth function with a compact support, i.e., it is different from zero only within some compact subset of the space $(x,t) = \mathbb{R} \times [0, +\infty)$. Let $u(x,t)$ be a smooth solution of a hyperbolic conservation law given by Eq. (7). Then

\[
0 = \int_0^\infty \int_{-\infty}^\infty (u_t + [f(u)]_x)\phi dxdt = \left(\int_{-\infty}^\infty \phi udx\right)|_0^\infty - \int_0^\infty \int_{-\infty}^\infty \phi_x f(u) dxdt.
\]

Therefore, here is the definition [3].

Definition 1. $u(x,t)$ is a weak solution of the conservation law $u_t + [f(u)]_x = 0$ if for any infinitely differentiable function $\phi(x,t)$ with a compact support

\[
\int_0^\infty \int_{-\infty}^\infty \phi_t u + \phi_x f(u) dxdt = \left(\int_{-\infty}^\infty \phi udx\right)|_0^\infty - \int_{-\infty}^\infty \phi(x,0)u(x,0)dx.
\]

Such a function $\phi(x,t)$ is called a test function.

5. Riemann problem

In this section, we consider the following initial value problem for the Burgers equation:

\[
u(x,0) = \begin{cases} u_L & x < 0 \\ u_R & x > 0 \end{cases}.
\]

This problem is called the Riemann problem. We will consider two cases.
Table of Contents

1. Introduction
2. Background
3. Methodology
4. Results
5. Conclusion
6. References

NOTES ON BURGERS’S EQUATION

Figure 3. (a) The initial data $u_0(x) = \exp(-16x^2)$. (b) The corresponding characteristics of the Burgers equation. (c-d) The solution at time $t = 0.5$ obtained by the method of characteristics (c) and computed numerically (by Godunov’s method) (d). (e-f) The solution at time $t = 0.8$ obtained by the method of characteristics (e) and computed numerically (by Godunov’s method) (f).
Case 1: $u_L > u_R$: In this case, the characteristics cover the entire (x,t) space but also cross. Hence the construction of the solution using characteristics only is ambiguous. Let us show that in this case there exists a unique weak solution given by

$$ u(x,t) = \begin{cases} u_L & x < st \\ u_R & x > st \end{cases}, \quad \text{where} \quad s = \frac{u_L + u_R}{2}. $$

The characteristics for this solution are shown in Fig. 4(a).

Proof. Let $\phi(x,t)$ be a test function. First suppose that support U lies entirely in one of the sets $\{x < st\}$ or $\{x > st\}$. Then since $u(x,t)$ is constant in each of these sets, it satisfies the Burgers equation on the support of ϕ. Then using Eq. (11) we conclude that Eq. (12) holds.

Now suppose that the support U of ϕ is divided by the line $x = st$ into two sets U_L and U_R (Fig. 4(b)). Then we have

$$ \int_0^\infty \int_{-\infty}^\infty \phi_t u + \phi_x f(u) dx dt = \int \int_{U_L} \phi_t u + \phi_x f(u) dx dt + \int \int_{U_R} \phi_t u + \phi_x f(u) dx dt $$

Applying the Green identity

$$ \int \int_D (P_x - Q_t) dx dt = \int_{\partial D} P dt + Q dx $$

Figure 4. (a) The characteristics for the shock wave. (b) Illustration for the proof that the shock wave is the unique weak solution.
and noting that \(u \) is constant within \(U_L \) and within \(U_R \), hence \((\phi u)_t = \phi_t u \) and
\[
(\phi f(u))_x = \phi_x f(u),
\]
we continue
\[
\int_{\partial U_L} \phi \left(\frac{u_L^2}{2} dt - u_L dx \right) + \int_{\partial U_R} \phi \left(\frac{u_R^2}{2} dt - u_R dx \right)
\]
\[
= \int_{x=st} \phi \left(\frac{u_L^2}{2s} - u_L \right) dx - \int_{x=st} \phi \left(\frac{u_R^2}{2s} - u_R \right) dx - \int_0^0 \phi u_L dx - \int_0^\infty \phi u_R dx
\]
\[
= \int_{x=st} \left(\frac{u_L^2 - u_R^2}{2s} - (u_L - u_R) \right) \phi dx - \int_0^\infty \phi(x,0)u(x,0) dx
\]
The first integral in the last equality is zero for any test function \(\phi \) iff \(s = (u_L + u_R)/2 \). Thus, the solution given by Eq. (13) is the unique weak solution for the Riemann problem in the case \(u_L > u_R \).

In the next section we will show that this solution is the vanishing viscosity solution, i.e. the limit of the solutions of Eq. (1) as \(\nu \to 0 \).

Case 2: \(u_L < u_R \): Then the characteristics do not cross but do not cover the entire space \((x,t) \). There are many weak solutions. Two of them are shown in Fig. 5. The one in Fig. 5(a) is called rarefaction fan or transonic rarefaction and given by
\[
(15) \quad u(x,t) = \begin{cases}
 u_L, & x < u_L t \\
 x/t, & u_L t \leq x \leq u_R t \\
 u_R, & x > u_R t
\end{cases}
\]
Another solution, shown in Fig. 5 (b) is called the rarefaction shock. Despite there are many weak solutions, only one of them is "physical", i.e., the vanishing viscosity solution. It is the rarefaction wave solution. One can reject all of the non-physical weak solutions by analyzing Eq. (1). However, the analysis of the equation with nonzero viscosity is harder than the analysis of the one with zero viscosity. Then additional simpler-to-verify conditions, so called entropy conditions were introduced to eliminate nonphysical weak solutions. There are several variations of the entropy condition. We will state only the simplest one.

Definition 2. A discontinuity propagating with speed \(s \) given by Eq. (6) satisfies entropy condition if \(f'(u_L) > s > f'(u_R) \).

For the Burgers equation this entropy condition reduces to the requirement that if a discontinuity is propagating with speed \(s \) then \(u_L > u_R \).

6. Numerical methods for hyperbolic conservation laws

Numerical solution of the Burgers equation was a challenging problem. Numerical schemes must satisfy certain non-obvious conditions in order to propagate the discontinuity with the right speed [2].
6.1. **Conservative methods for nonlinear problems.** A specific difficulty in computing discontinuous solutions of hyperbolic conservation laws can be illustrated on the following simple example.

Example 1 Consider Burgers’s equation written in the quasi-linear form

\[u_t + uu_x = 0. \]

Let

\[u(x, 0) = u_0(x) = \begin{cases} 1, & x < 0, \\ 0, & x \geq 0. \end{cases} \]

A generalization of the left upwind method for the case where the speed \(a = u \) gives

\[U_j^{n+1} = U_j^n - \frac{k}{h} U_j^n (U_j^n - U_{j-1}^n). \]

The initial condition gives \(U_j^0 = 1 \) for \(j < 0 \) and \(U_j^0 = 0 \) for \(j \geq 0 \). Then

\[U_j^1 = \begin{cases} 1 - \frac{k}{h} 1(1 - 1) = 1, & j < 0, \\ 0 - \frac{k}{h} 0(0 - U_{j-1}^0) = 0, & j \geq 0. \end{cases} \]

Hence, \(U_j^1 = U_j^0 \). Therefore, \(U_j^n = U_j^0 \) for all \(j \). This means that the method propagates the discontinuity with a wrong speed: zero speed.
In order to resolve this issue, let us recall what is a conservation law. A hyperbolic conservation law
\begin{equation}
 u_t + [f(u)]_x = 0
\end{equation}
means that the conserved quantity
\[\int_L^R u(x,t) \, dx \]
can only change due to the flux through the boundaries, i.e.
\[\int_L^R u(x,t+k) \, dx - \int_L^R u(x,t) \, dx = \int_0^k f(u(L,t+\tau)) \, d\tau - \int_0^k f(u(R,t+\tau)) \, d\tau. \]

Definition 3. A numerical method is in conservation form if it can be rewritten in the form
\begin{equation}
 U_{j}^{n+1} = U_{j}^{n} - \frac{k}{h} [F(U_{j-p}^{n},\ldots,U_{j+q}^{n}) - F(U_{j-p-1}^{n},\ldots,U_{j+q}^{n-1})],
\end{equation}
for some function \(F \) which is called the numerical flux. A method that can be written in a conservation form is called conservative.

6.2. **Discrete conservation.** The basic principle of a conservation law is that the conserved quantity in a given region can change only due to flux through the boundaries, i.e.
\[\int_L^R u(x,t_2) \, dx = \int_L^R u(x,t_1) \, dx - \left(\int_{t_1}^{t_2} f(u(R,t)) \, dt - \int_{t_1}^{t_2} f(u(L,t)) \, dt \right). \]
A similar identity holds for conservative methods due to telescoping the sums. If we sum a conservative method (17) from \(j = L \) to \(j = R \) we get
\[h \sum_{j=L}^{R} U_{j}^{n+1} = h \sum_{j=L}^{R} U_{j}^{n} - k \sum_{j=L}^{R} [F(U_{j}^{n};j) - F(U_{j}^{n};j-1)]. \]
Here, for brevity, we have used the notation \(F(U_{j}^{n};j) \equiv F(U_{j-p}^{n},\ldots,U_{j+q}^{n}) \). The sum telescopes, and only boundary fluxes remain as a result:
\[h \sum_{j=L}^{R} U_{j}^{n+1} = h \sum_{j=L}^{R} U_{j}^{n} - k [F(U_{R}^{n};j_{R}) - F(U_{L}^{n};j_{L-1})]. \]
Therefore, the numerical solution, like the exact solution, allows the conserved quantity \(h \sum_{j=L}^{R} U_{j}^{n} \) to change only due to the flux through the boundaries.
6.3. **Consistency.** A method (17) is consistent with the original conservation law (16) if the numerical flux function F reduces to the true flux f for the case of constant flow. I.e., if $u(x,t) \equiv \bar{u}$ then

$$F(\bar{u}, \ldots, \bar{u}) = f(\bar{u}).$$

Furthermore, if the arguments of F approach some constant value \bar{u}, F should approach $f(\bar{u})$ smoothly, i.e.

$$\lim_{v_1, \ldots, v_r \to \bar{u}} F(v_1, \ldots, v_r) = f(\bar{u}).$$

The Lipschitz continuity of F suffices to satisfy the smoothness condition. Recall that $F(v_1, \ldots, v_r)$ is Lipschitz continuous if

$$|F(v_1, \ldots, v_r) - F(w_1, \ldots, w_r)| \leq K \max \{|v_1 - w_1|, \ldots, |v_r - w_r|\},$$

where K is a constant depending on F but not on its arguments called the Lipschitz constant.

Therefore, sufficient consistency conditions are given by

$$F(\bar{u}, \ldots, \bar{u}) = f(\bar{u}),$$

$$|F(v_1, \ldots, v_r) - F(\bar{u}, \ldots, \bar{u})| \leq K \max \{|v_1 - \bar{u}|, \ldots, |v_r - \bar{u}|\}.$$

6.4. **Generalization of methods developed for the advection equation.** Now we generalize some methods developed for the advection equation $u_t + au_x = 0$ for hyperbolic conservation laws (16) making sure that these generalizations are conservative and consistent.

Lax-Friedrichs

The generalization of the Lax-Friedrichs method to Eq. (16) takes the form

$$U^n_{j+1} = \frac{1}{2} (U^n_{j-1} + U^n_{j+1}) - \frac{k}{2h} \left(f(U^n_{j+1}) - f(U^n_{j-1}) \right).$$

Observe that this method can be rewritten in the conservative form as

$$U^n_{j+1} = U^n_j - \frac{k}{h} \left[F(U^n_{j+1}, U^n_j) - F(U^n_j, U^n_{j-1}) \right],$$

where

$$F(U_{j+1}, U_j) = \frac{h}{2k} (U_j - U_{j+1}) + \frac{1}{2} \left(f(U_j) + f(U_{j+1}) \right).$$

Consistency check:

$$F(U, U) = \frac{h}{2k} (U - U) + \frac{1}{2} \left(f(U) + f(U) \right) = f(U),$$

$$|F(V, W) - F(U, U)| = \left| \frac{h}{2k} (V - U) - \frac{h}{2k} (W - U) + \frac{1}{2} \left(f(V) - f(U) \right) + \frac{1}{2} \left(f(W) - f(U) \right) \right|$$

$$\leq \left(\frac{h}{k} + K_f \right) \max \{|V - U|, |W - U|\},$$

where K_f is the Lipschitz constant for the true flux f (we have assumed that f is Lipschitz-continuous).
Lax-Wendroff
Recall that the Lax-Wendroff method for the advection equation \(u_t + au_x = 0 \) is given by

\[
U^{n+1}_j = U^n_j - \frac{ak}{2h} (U^n_{j+1} - U^n_{j-1}) + \frac{a^2k^2}{2h^2} (U^n_{j+1} - 2U^n_j + U^n_{j-1}).
\]

The most straightforward generalization requires the evaluation of the Jacobian \(f'(u) \) (in the multidimensional case this is especially unpleasant). Two alternative extensions were developed by Richtmyer and MacCormac. Both of them are two-step procedures.

Richtmyer:

\[
U^{n+1/2}_{j+1/2} = \frac{1}{2} (U^n_j + U^n_{j+1}) - \frac{k}{h} [f(U^n_{j+1}) - f(U^n_j)],
\]

\[
U^{n+1}_j = U^n_j - \frac{k}{h} [f(U^{n+1/2}_{j+1/2}) - f(U^{n+1/2}_{j-1/2})],
\]

MacCormack:

\[
U^*_j = U^n_j - \frac{k}{h} [f(U^n_{j+1}) - f(U^n_j)],
\]

\[
U^{n+1}_j = \frac{1}{2} (U^n_j + U^*_j) - \frac{k}{2h} [f(U^*_j) - f(U^*_j-1)].
\]

Exercise Show that the methods (23) and (24) reduce to the Lax-Wendroff method for \(f(u) \equiv au \). Show that methods (23) and (24) are second-order accurate on smooth solutions. Determine numerical flux functions for the methods (23) and (24) and show that they are conservative.

6.5. Convergence. Lax and Wendroff have proven that a consistent and conservative method converges to a weak solution of the conservation law almost everywhere as \(k, h \to 0 \) and \(k/h \) satisfies stability conditions.

However, as we know from Section 5, a weak solution might be non-unique in the case where \(u_L < u_R \) at the discontinuity. The entropy condition 2 allows us to reject all physically irrelevant weak solutions and select the physically correct one, which is consistent with the limit of the solutions of the viscous equation \(u_t + [f(u)]_x = \epsilon u_{xx} \) as \(\epsilon \to 0 \). There is a danger that the numerical solution of \(u_t + [f(u)]_x = 0 \) by a conservative method converges to a weak but physically irrelevant solution. The following example demonstrates that a seemingly reasonable method can fall into this trap.

Example 2 Consider the Burgers equation \(u_t + [u^2/2]_x = 0 \) with the initial data

\[
u_0(x) = \begin{cases}
-1, & x < 0, \\
1, & x > 0.
\end{cases}
\]
The physically relevant solution to this problem (the vanishing viscosity solution) is a transonic rarefaction given by

\[
u(x, t) = \begin{cases}
-1, & x < -t, \\
x/t, & -t \leq x \leq t, \\
1, & x > t.
\end{cases}
\]

The stationary discontinuity \(u(x, t) = u_0(x)\) is another weak solution (note, the shock speed is zero: \(s = (u_L + u_R)/2 = (1 + (-1))/2 = 0\)).

Let us set the numerical initial velocity to

\[
U_0^j = \begin{cases}
-1, & j \leq 0, \\
1, & j > 0
\end{cases}
\]

and consider a conservative method obtained by a generalization of the upwind scheme:

\[
U_{j+1}^n = U_j^n - k h \left[F(U_{j+1}^n, U_j^n) - F(U_j^n, U_{j-1}^n) \right],
\]

where

\[
F(v, w) = \begin{cases}
f(v), & \frac{(f(v) - f(w))}{v - w} \geq 0, \\
f(w), & \frac{(f(v) - f(w))}{v - w} < 0.
\end{cases}
\]

For the problem above, we have \(f(v) = v^2/2\) and

\[
F(1, 1) = f(1) = 1/2, \quad F(-1, -1) = f(-1) = 1/2, \quad F(1, -1) = f(1) = 1/2.
\]

Therefore,

\[
U_1^j = U_0^j - k h [1/2 - 1/2] = U_0^j.
\]

Hence \(U_n^j = U_0^j\) for all \(n\) and \(j\). Thus, the numerical solution will converge to the physically irrelevant “stationary discontinuity” weak solution. On the other hand, if we set

\[
U_0^j = \begin{cases}
-1, & j < 0, \\
0, & j = 0, \\
1, & j > 0
\end{cases}
\]

Then the numerical solution by the same method will be the transonic rarefaction. Check this.

In order to outlaw conservative methods that might produce discrete approximations to physically irrelevant weak solutions, we need a discrete analog of the entropy condition. Unfortunately, the simple version of the entropy condition given in Definition 2 is not extended to the discrete case. Another, more involved version, requiring an introduction of an entropy function, has a discrete analog. I will not discuss this topic here. Instead, I refer curious students to Ref. [2], Sections 3.8.1, 12.5, and 13.4.
In the next section, we will discuss different type of methods for conservation laws for which the version of the entropy condition involving an entropy function can be readily verified (we will not verify it, if you wish, see Section 13.4 in [2]).

6.6. Godunov’s method. The idea of Godunov’s method (1959) is the following. Let U^n_j be a numerical solution on the n-th layer. Then we define a function $\tilde{u}^n(x, t)$ for $t_n \leq t \leq t_{n+1}$ as follows. At $t = t_n$,

$$\tilde{u}^n(x, t_n) = U^n_j, \quad x_j - h/2 < x < x_j + h/2, \quad j = 2, \ldots, n - 1.$$

Then $\tilde{u}(x, t)$ is the solution of the collection of the Riemann problems on the interval $[t_n, t_{n+1}]$. If the time step k is small enough so that the characteristics starting at the points $x_j + h/2$ do not intersect within this interval (i.e., the CFL condition is satisfied), then $\tilde{u}(x, t_{n+1})$ is determined unambiguously. Then the numerical solution on the next layer, U^{n+1}_j is defined by averaging $\tilde{u}(x, t_{n+1})$ over the intervals $x_j - h/2 < x < x_j + h/2$:

$$U^{n+1}_j = \frac{1}{h} \int_{x_j-h/2}^{x_j+h/2} \tilde{u}(t_{n+1})dx.$$

This idea is illustrated in Fig. 6.

In practice, the cell averages (25) can be easily calculated using the integral form of conservation law:

$$\frac{1}{h} \int_{x_j-h/2}^{x_j+h/2} \tilde{u}(x, t_{n+1})dx = \frac{1}{h} \int_{x_j-h/2}^{x_j+h/2} \tilde{u}(x, t_n)dx - \frac{1}{h} \left[\int_{t_n}^{t_{n+1}} f(\tilde{u}(x_j + h/2, t)) dt - \int_{t_n}^{t_{n+1}} f(\tilde{u}(x_j - h/2, t)) dt \right].$$

Observing that $\tilde{u}(x_j + h/2, t)$ and $\tilde{u}(x_j - h/2, t)$ are constant over the time interval $[t_n, t_{n+1}]$ we obtain

$$U^{n+1}_j = U^n_j - \frac{k}{h} \left[F(U^n_j, U^n_{j+1}) - F(U^n_{j-1}, U^n_j) \right],$$

where

$$F(u^*, u) = f(u^*(u_L, u_R)).$$

Therefore, Godunov’s method is conservative. The value $u^*(u_L, u_R)$ in the numerical flux function $F(u_L, u_R) = f(u^*(u_L, u_R))$ is defined so that the entropy condition is satisfied and hence the weak solution, to which the numerical solution converges, is the vanishing viscosity solution.

If $u_L \geq u_R$:

$$u^* = \begin{cases}
 u_L, & f(u_R) - f(u_L) > 0 \\
 U_R, & f(u_R) - f(u_L) < 0
\end{cases}.$$

If $u_L < u_R$:

$$u^* = \begin{cases}
 u_L, & U_L > 0 \\
 u_R, & U_R < 0 \\
 u_s, & U_L \leq 0 \leq U_R
\end{cases}.$$
Figure 6. Top: The function \(\tilde{u}(t_n) \) obtained by setting its value in the intervals \(x_j - h/2 < x < x_j + h/2 \) to \(U^n_j \). Middle: The diagram on the \((x,t)\)-plane showing lines of discontinuity and the critical characteristics. It allows us to obtain \(\tilde{u}(t_{n+1}) \). Bottom: \(\tilde{u}(t_{n+1}) \) obtained using the diagram on the \((x,t)\)-plane.

The value \(u_s \) is such that \(f'(u_s) = 0 \). It is called the sonic point. For the Burgers equation \(u_t + [u^2/2]_x = 0 \), \(u_s = 0 \).

If you perform some numerical experiments computing discontinuous solutions using Godunov’s method, you observe that Godunov’s method adds some artificial smearing to the solution. Glimm’s method, considered in the next Section, is designed to preserve sharp discontinuities.

6.7. Glimm’s method. Like Godunov’s method, Glimm’s method is also based on solving a collection of Riemann problems on the interval \([t_n, t_{n+1}]\). But instead of averaging procedure for getting the numerical solution on the next layer a random choice procedure is used. Glimm’s time step proceeds in two stages

\[
U^{n+1/2}_{j+1/2} = \xi(U^n_j, U^n_{j+1}), \\
U^{n+1}_{j} = \xi(U^{n+1/2}_{j-1/2}, U^{n+1/2}_{j+1/2}),
\]
where \(\xi(u_L, u_R) \) is a random variable taking values either \(u_L \) or \(u_R \) with probabilities proportional to lengths of the corresponding intervals (Fig. 7):

\[
\xi(u_L, u_R) = \begin{cases}
 u_L, & p = \frac{h/2 + sk/2}{h} \\
 u_R, & p = \frac{h/2 - sk/2}{h}
\end{cases}
\]

where \(s = \frac{f(u_R) - f(u_L)}{u_R - u_L} \) is the shock speed. We can rewrite the definition of \(\xi \) as follows.

\[
\xi(u_L, u_R) = \begin{cases}
 u_L, & p = \frac{1}{2} (1 + s\lambda) \\
 u_R, & p = \frac{1}{2} (1 - s\lambda)
\end{cases}
\]

where \(\lambda = k/h \).

Figure 7. An illustration for Glimm’s method.

References

