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Abstract

We consider barotropic compressible Navier-Stokes equations with
density dependent viscosity coefficients that vanish on vacuum. We
prove the stability of weak solutions in periodic domain Ω = TN and
in the whole space Ω = RN , when N = 2 and N = 3. The pressure is
given by p(ρ) = ργ and our result holds for any γ > 1. Note that our
notion of weak solutions is not the usual one. In particular we require
some regularity on the initial density (which may still vanish). On the
other hand, the initial velocity must satisfy only minimal assumptions
(a little more than finite energy). Existence results for such solutions
can be obtained from this stability analysis.

1 Introduction

This paper is devoted to the Cauchy problem for compressible Navier-Stokes
equations with viscosity coefficients vanishing on vacuum. Let ρ(t, x) and
u(t, x) denote the density and the velocity of a barotropic compressible vis-
cous fluid (as usual, ρ is a non-negative function and u is a vector valued
function, both defined on a subset Ω of RN ). Then, the Navier-Stokes equa-
tions for barotropic compressible viscous fluids (often refered to as isentropic
compressible Navier-Stokes equations) read (see [LL59]):

∂tρ+ div (ρu) = 0
∂t(ρu) + div (ρu⊗ u) +∇xp− div (2hD(u))−∇(g divu) = 0

(1)
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where p(ρ) = ργ , γ > 1, denotes the pressure, D(u) = 1
2 [∇u + t∇u] is the

strain tensor and h and g are the two Lamé viscosity coefficients (depending
on the density ρ) satisfying

h > 0 2h+Ng ≥ 0 (2)

(h is sometime called the shear viscosity of the fluid, while g is usually re-
ferred to as the second viscosity coefficient). One of the major difficulty
of compressible fluid mechanics is to deal with vacuum. For that reason,
the first results were obtained with initial data bounded away from zero.
The existence of solutions defined globally in time for Navier-Stokes equa-
tions was first addressed in dimension one for smooth data by Kazhikov
and Shelukhin [KS77] and for discontinuous data by Serre [Ser86] and Hoff
[Hof87] (still with densities bounded away from zero). Those results have
been generalized to higher dimensions by Matsumura and Nishida [MN79]
for smooth data close to equilibrium and by Hoff [Hof95b], [Hof95a] in the
case of discontinuous data.

Concerning large initial data that may vanish, Lions showed in [Lio98]
the existence of weak solutions defined globally in time for γ ≥ 3/2 when
N = 2 and γ ≥ 9/5 when N = 3. This result has been extended later
by Feireisl, Novotny, and Petzeltova to the range γ > 3/2 in [FNP01], and
recently by Feireisl for variational solutions of the full system of the Navier-
Stokes equations with viscosity coefficients depending on the temperature
[Fei04]. Other results provide the full range γ > 1 under symmetry assump-
tions on the initial datum (see for instance Jiang and Zhang [JZ03]), or,
as in Vaigant and Kazhikhov [VK95] under the assumption that the second
viscosity coefficient (g here) grows at least like ρβ with β > 3 for large ρ.
All those results do not require to be far from the vacuum. However they
rely strongly on the assumption that the first viscosity coefficient is bounded
from below by a positive constant. This assumption allows to get some es-
timates on the gradient of the velocity field but is not always physically
realistic.

The main difficulty when dealing with vanishing viscosity coefficients on
vacuum is that the velocity cannot even be defined when the density van-
ishes. The first result handling this difficulty is due to Bresch, Desjardins
and Lin [BDL03]. They showed the stability of weak solutions for the fol-
lowing Korteweg’s system of equations:

∂tρ+ div (ρu) = 0
∂t(ρu) + div (ρu⊗ u) +∇xp− νdiv (ρD(u)) = κρ∇∆ρ.

(3)
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The result was later improved by Bresch and Desjardins in [BD03] to include
the case of vanishing capillarity (κ = 0), but with an additional quadratic
friction term rρ|u|u (see also [BD02]). The key point in those papers is to
show that the structure of the diffusion term provides some regularity for the
density thanks to a new mathematical entropy inequality. However, those
estimates are not enough to treat the case without capillarity and friction
effects κ = 0 and r = 0 (which corresponds to equation (1) with h(ρ) = ρ
and g(ρ) = 0).

The main difficulty, to prove the stability of the solutions of (1), is to
pass to the limit in the term ρu⊗ u (which requires the strong convergence
of
√
ρu). Note that this is easy when the viscosity coefficients are bounded

below by a positive constant. On the other hand, the new bounds on the
gradient of the density make the control of the pressure term far simpler
than in the case of constant viscosity coefficients.

Our result is in the same spirit as the one of Bresch, Desjardins and
Lin and makes use of the same mathematical entropy, first discovered by
Bresch and Desjardins in [BD02] for the particular case where h(ρ) = ρ and
g(ρ) = 0, and later generalized by Bresch and Desjardins [BD04] to include
the case of any viscosity coefficients h(ρ), g(ρ) satisfying the relation:

g(ρ) = 2ρh′(ρ)− 2h(ρ). (4)

The precise formulation of the inequality that we use can be found in a
recent paper by Bresch and Desjardins [BD05] where the full system of
Navier-Stokes equations for heat conducting fluid is being investigated. We
recall the proof in appendix for the confort of the reader.

Our main contribution is to show the stability of some weak solutions
of (1) under some conditions on the viscosity coefficients (including (4))
but without any additional regularizing terms. The interest of our result
lie primarily in the fact that our conditions allow for viscosity coefficients
that vanish on the vacuum set. It includes the case h(ρ) = ρ, g(ρ) = 0
(when N = 2 and γ = 2, we recover the Saint Venant model for Shallow
water), but our conditions on h and g will exclude the case of constant
viscosity h(ρ) = µ, g(ρ) = ξ. Indeed, it is readily seen that (4) implies that
g(ρ) = ξ = −2µ, and thus 2µ+ ξ = 0. In this border line case we thus lose
all informations on the derivatives of u. It is worth pointing out that while
we can gain regularity on the density with this new estimate, we have to
lose regularity on the velocity (on the vacuum set).

Note that the main difficulty will be to establish the compactness of√
ρu in L2 strong, and the key ingredient to achieve this is an additional
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estimate which bounds ρu2 in a space better than L∞(0, T ;L1(Ω)) (namely
L∞(0, T ;L logL(Ω))).

For the sake of simplicity we will consider the case Ω = RN and the case
of bounded domain with periodic boundary conditions, namely Ω = TN . For
the same reason we consider only power pressure laws although the result
could be extend to non monotonic pressure law of the form of [Fei02]. Note
that the result holds for any power γ > 1 under appropriate assumptions on
h and g.

Naturally the main motivation to the study of the stability of weak
solutions is to obtain existence results. Classically this can be done by
constructing a sequence of solutions of approximated systems of equations
satisfying the appropriate a priori estimates. In our framework, this can be
achieved by proceeding as in [BDL03].

In the next section, we state the assumptions on the viscosity coefficients,
we define precisely the notion of “weak solutions” and we state our main
results. In Section 3, we recall the well known physical energy inequality
and state the key estimates. The proof of Theorem 2.1 is detailed in Section
4. For the sake of completeness, we recall in Appendix A the proof of the
mathematical entropy inequality of Bresch and Desjardins.

2 Notations and main result

We assume that Ω is either the whole space RN or a bounded domain with
periodic boundary conditions (Ω = TN ), and we consider the following
system of equations:

∂tρ+ div (ρu) = 0 (5)
∂t(ρu) + div (ρu⊗ u) +∇xρ

γ − div (2h(ρ)D(u))−∇(g(ρ)divu) = 0,(6)

with initial conditions

ρ|t=0 = ρ0 ≥ 0 , ρu|t=0 = m0. (7)

We now detail our assumptions on the viscosity coefficients h and g.

Conditions on h(ρ) and g(ρ):
First we assume that h(ρ) and g(ρ) are two C2(0,∞) functions satisfying:

g(ρ) = 2ρh′(ρ)− 2h(ρ). (8)
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As stated in the introduction, this relation is fundamental to get more reg-
ularity on the density. Moreover, we assume that there exists a positive
constant ν ∈ (0, 1) such that

h′(ρ) ≥ ν , h(0) ≥ 0 (9)

|g′(ρ)| ≤ 1
ν
h′(ρ) (10)

νh(ρ) ≤ 2h(ρ) +Ng(ρ) ≤ 1
ν
h(ρ) . (11)

When γ ≥ 3 and N = 3, we also require that

lim inf
ρ→∞

h(ρ)
ργ/3+ε

> 0, (12)

for some small ε > 0.

Remark 2.1 The functions

h(ρ) = ρ, g(ρ) = 0

satisfy (8-11). For example in dimension 3, any linear combination of the
form

∑
αkρ

nk with αk > 0, nk > 2/3 for all k (nk > 1/2 in dimension 2)
and supnk ≥ 1 is an admissible function for h(ρ).

Remark 2.2 The lower estimate in (11) is trivial when g ≥ 0, while the
upper estimate is trivial when g ≤ 0. Together they yield:

|g(ρ)| ≤ Cνh(ρ) ∀ρ > 0.

This inequality and (10) will be necessary to pass to the limit in the term
∇(g(ρn)divun).

Remark 2.3 Condition (9) makes the proof simpler, but is not optimal.
However, condition (11) is necessary to control the viscosity term and to-
gether with (8), it yields

N − 1 + ν

Nρ
≤ h′(ρ)
h(ρ)

≤ N − 1 + 1/ν
Nρ

, for all ρ > 0,

and so {
Cρ(N−1)/N+ν/N ≤ h(ρ) ≤ Cρ(N−1)/N+1/(Nν), ρ ≥ 1
Cρ(N−1)/N+1/(Nν) ≤ h(ρ) ≤ Cρ(N−1)/N+ν/N , ρ ≤ 1

(13)
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In particular, we must have h(0) = 0. Moreover, this shows that if we do not
assume (9), the “best” h(ρ) we can take is h(ρ) = ρ(N−1)/N+ν/N . This is
actually enough to prove the stability of weak solutions for all γ when N = 2
and for γ < 3/2 when N = 3. However, if we assume h(ρ) ∼ Cρ2/3+ν for
small ρ and h(ρ) ∼ Cρ for large ρ, then we can consider any γ ∈ (1, 3) when
N = 3.

Weak solutions
We say that (ρ, u) is a weak solution of (5-6) on Ω × [0, T ], with initial

conditions (7) if

ρ ∈ L∞(0, T, L1(Ω) ∩ Lγ(Ω)),
√
ρ ∈ L∞(0, T ;H1(Ω)),

√
ρ u ∈ L∞(0, T ; (L2(Ω))N ),

h(ρ)D(u) ∈ L2(0, T ; (W−1,1
loc (Ω))N×N ), g(ρ)divu ∈ L2(0, T ;W−1,1

loc (Ω)),

with ρ ≥ 0 and (ρ,
√
ρu) satisfying{
∂tρ+ div (

√
ρ
√
ρu) = 0

ρ(0, x) = ρ0(x)
in D′,

and if the following equality holds for all ϕ(t, x) smooth test function with
compact support such that ϕ(T, ·) = 0:∫

Ω
m0 · ϕ(0, ·) dx+

∫ T

0

∫
Ω

√
ρ(
√
ρu)∂tϕ+

√
ρu⊗√ρu : ∇ϕdx

+
∫ T

0

∫
Ω
ργdivϕdx−

〈
2h(ρ)D(u) , ∇ϕ

〉
−
〈
g(ρ)(divu) , (divϕ)

〉
= 0,(14)

where the diffusion terms make sense when written as〈
2h(ρ)D(u) , ∇ϕ

〉
=

= −
∫
h(ρ)
√
ρ

(
√
ρuj)∂iiϕj dx dt−

∫
(
√
ρuj)2h′(ρ)∂i

√
ρ ∂iϕj dx dt

−
∫
h(ρ)
√
ρ

(
√
ρui)∂jiϕj dx dt−

∫
(
√
ρui)2h′(ρ)∂j

√
ρ ∂iϕj dx dt,
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and 〈
g(ρ)(divu) , (divϕ)

〉
=

= −
∫
g(ρ)
√
ρ

(
√
ρui)∂ijϕj dx dt−

∫
(
√
ρui)2g′(ρ)∂i

√
ρ∂jϕj dx dt.

In particular, the fact that the diffusion term 2h(ρ)D(u) (and g(ρ)divu) lies
in L2(0, T ; (W−1,1

loc (Ω))n×n) will follow from the fact that

h′(ρ)∇√ρ ∈ L∞(0, T ;L2
loc(Ω)) , and h(ρ)/

√
ρ ∈ L∞(0, T ;L2

loc(Ω)),

and similar conditions on g(ρ). This will be provided by assumptions (10),
(9) and (13).

Main result:
The main result of this paper is the following:

Theorem 2.1 Assume that γ > 1 and that h(ρ) and g(ρ) are two C2(0,∞)
functions of ρ satisfying conditions (8)-(11) (together with (12) if γ ≥ 3 and
N = 3). Let (ρn, un)n∈N be a sequence of weak solutions of (5-6) satisfying
entropy inequalities (18), (21) and (26), with initial data

ρn|t=0 = ρn
0 (x) and ρnun|t=0 = mn

0 (x) = ρn
0 (x)un

0 (x),

where ρn
0 and un

0 are such that

ρn
0 ≥ 0, ρn

0 → ρ0 in L1(Ω), ρn
0u

n
0 → ρ0u0 in L1(Ω), (15)

and satisfy the following bounds (with C constant independent on n):∫
Ω
ρn
0

|un
0 |2

2
+

1
γ − 1

ρn
0

γ dx < C,

∫
Ω

1
ρn
0

|∇h(ρn
0 )|2 dx < C, (16)

and ∫
Ω
ρn
0

1 + |un
0 |2

2
ln(1 + |un

0 |2) dx < C, (17)

Then, up to a subsequence, (ρn,
√
ρnun) converges strongly to a weak so-

lution of (5)-(6) satisfying entropy inequalities (18), (21) and (26) (the den-
sity ρn converges strongly in C0((0, T );L3/2

loc (Ω)),
√
ρnun converges strongly

in L2(0, T ;L2
loc(Ω)) and the momentum mn = ρnun converges strongly in

L1(0, T ;L1
loc(Ω)), for any T > 0).
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3 Entropy inequalities and a priori estimates

In this section, we recall the well-known energy inequality and state the
main inequalities that we will use throughout the proof of Theorem 2.1.

The usual energy inequality associated with the system of equations (5-6)
can be written as:

d

dt

∫ [
ρ
u2

2
+

1
γ − 1

ργ

]
dx+

∫
2h(ρ)|D(u)|2dx+

∫
g(ρ)(divu)2dx ≤ 0. (18)

This inequality can be established for smooth solutions of (5-6) by multi-
plying the momentum equation by u.

When h and g satisfies 2h(ρ) +Ng(ρ) ≥ 0 and if we have

E0 =
∫

Ω
ρ0
u2

0

2
+

1
γ − 1

ργ
0 dx < +∞,

then (18) yields:
||√ρ u||L∞(0,T ;L2(Ω)) ≤ C,

||ρ||L∞(0,T ;Lγ(Ω)) ≤ C.
(19)

Furthermore, Hypothesis (11) gives:

||
√
h(ρ)D(u)||L2(0,T ;L2(Ω)) ≤ C. (20)

Finally, integrating (5) with respect to x yields the natural L1 estimate:

||ρ||L∞(0,T ;L1(Ω)) ≤ C.

Unfortunately, it is a well-known fact that those natural estimates are
not enough to prove the stability of the solutions of (5-6). In particular,
the fact that ργ is bounded in L∞(0, T ;L1(Ω)) does not implies that ργ

n

converges to ργ .

However, further estimates can be obtained by mean of the following
lemma:

Lemma 3.1 Assume that h(ρ) and g(ρ) are two C2(0,∞) functions satis-
fying (8). Then, the following equality holds for smooth solutions of (5-6):

d

dt

∫ [
1
2
ρ|u+∇ϕ(ρ)|2 +

1
γ − 1

ργ

]
dx

+
∫
∇ϕ(ρ) · ∇ργ dx+

1
2

∫
h(ρ)

∣∣∇u− t∇u
∣∣2 dx = 0, (21)
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with ϕ such that

ϕ′ = 2
h′

ρ
. (22)

This lemma was first proved by Bresch and Desjardin in [BD04]. We recall
the proof in Appendix A.

Since the viscosity coefficient h(ρ) is an increasing function of ρ, we
immediately see that when the initial data has finite energy and satisfies∫

Ω
ρ0|∇ϕ(ρ0)|2 dx < +∞,

the equality (21) yields:

1
2
||√ρ∇ϕ(ρ)||L∞(0,T ;L2(Ω)) = 2||h′(ρ)∇√ρ||L∞(0,T ;L2(Ω)) ≤ C, (23)

and
||
√
h′(ρ)ργ−2∇ρ||L2(0,T ;L2(Ω)) ≤ C. (24)

Under assumption (9) on h, those estimates give additional control on the
density ρ and on the pressure ργ , which will be enough to prove the stability
of weak solution.

Furthermore, (21) gives some control on the antisymmetric part of ∇u.
Together with (20), it implies

||
√
h(ρ)∇u||L2(0,T ;L2(Ω)) ≤ C. (25)

Finally, one of the key tool of the proof will be the following result:

Lemma 3.2 Assume

2h(ρ) +Ng(ρ) ≥ νh(ρ)

for some ν ∈ (0, 1) (which is a part of (11)). Then smooth solutions of
(5)-(6) satisfy the following inequality:

d

dt

∫
Ω
ρ
1 + |u|2

2
ln(1 + |u|2) dx+

ν

2

∫
Ω
h(ρ)[1 + ln(1 + |u|2)]|D(u)|2 dx

≤ C

∫
Ω

(
ρ2γ−δ/2

h(ρ)

)2/(2−δ)

dx

(2−δ)/2(∫
Ω
ρ[2 + ln(1 + |u|2)]2/δ dx

)δ/2

+C
∫

Ω
h(ρ)|∇u|2 dx (26)
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for any δ ∈ (0, 2), and with |∇u|2 =
∑

i

∑
j |∂iuj |2.

This inequality is quite simple to establish and will be essential in the proof
of Theorem 2.1 to prove that

√
ρnun converges strongly in L∞(0, T ;L2(Ω))

(see Lemma 4.3). Note, however, that to derive further estimates from this
inequality, we need to control the right hand side of (26). The last term
is bounded thanks to (25) and usual a priori estimates provide a bound on∫
ρ|u|2 dx and

∫
ρ dx and thus on

∫
ρ[1+ ln(1+ |u|2)]2/δ dx. So the difficulty

is to control enough power of ρ to get a bound on
∫ (ρ2γ−δ/2

h(ρ)

)2/(2−δ)
dx.

This will be achieved using (24). Of course, we also need to assume that the
initial condition satisfies∫

Ω
ρ0

1 + |u0|2

2
ln(1 + |u2

0|) dx < C.

Proof of Lemma 3.2. Multiplying (6) by (1 + ln(1 + |u|2))u, we get:∫
ρ∂t

[
1 + |u|2

2
ln(1 + |u|2)

]
dx+

∫
ρu · ∇

[
1 + |u|2

2
ln(1 + |u|2)

]
dx

+
∫

2h(ρ)[1 + ln(1 + |u|2)]|D(u)|2dx+
∫

2h(ρ)
2uiuk

1 + |u|2
∂jukDij(u)dx

+
∫
g(ρ)[1 + ln(1 + |u|2)](divu)2 dx+

∫
g(ρ)

2uiuk

1 + |u|2
∂iukdivu dx

+
∫

[1 + ln(1 + |u|2)]u · ∇ργ dx = 0.

Since

(divu)2 =
∑

i

∑
j

∂iui∂juj ≤
∑

i

∑
j

1
2
(∂iu

2
i + ∂ju

2
j ) ≤ N |D(u)|2,

condition (11) and Remark 2.2 yields:∫
ρ∂t

[
1 + |u|2

2
ln(1 + |u|2)

]
dx+

∫
ρu · ∇

[
1 + |u|2

2
ln(1 + |u|2)

]
dx

+ν
∫
h(ρ)[1 + ln(1 + |u|2)]|D(u)|2 dx

≤ −
∫

[1 + ln(1 + |u|2)]u · ∇ργ dx+ C

∫
h(ρ)|∇u|2 dx.

Moreover, multiplying (5) by 1+|u|2
2 ln(1+ |u|2) and integrating by parts,

we have∫
1 + |u|2

2
ln(1 + |u|2)∂tρ dx−

∫
ρu · ∇

[
1 + |u|2

2
ln(1 + |u|2)

]
dx = 0.
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We deduce:

d

dt

∫
ρ
1 + |u|2

2
ln(1 + |u|2) dx+

ν

2

∫
h(ρ)[1 + ln(1 + |u|2)]|D(u)|2 dx

≤ −
∫

[1 + ln(1 + |u|2)]u · ∇ργ dx+ C

∫
h(ρ)|∇u|2 dx.

It remains to bound the right hand side:∣∣∣∣∫ [1 + ln(1 + |u|2)]u · ∇ργ dx

∣∣∣∣
≤
∣∣∣∣∫ 2uiuk

1 + |u|2
∂iuk ρ

γ dx

∣∣∣∣+ ∣∣∣∣∫ [1 + ln(1 + |u|2)](divu) ργ dx

∣∣∣∣
≤ 2

(∫
h(ρ)|∇u|2 dx

)1/2(∫ ρ2γ

h(ρ)
dx

)1/2

+
∣∣∣∣∫ [1 + ln(1 + |u|2)](divu) ργ dx

∣∣∣∣
where ∣∣∣∣∫ [1 + ln(1 + |u|2)](divu) ργ dx

∣∣∣∣
≤
(∫

[1 + ln(1 + |u|2)]h(ρ)(divu)2 dx
)1/2

×
(∫

[1 + ln(1 + |u|2)] ρ
2γ

h(ρ)
dx

)1/2

≤ ν

2

∫
[1 + ln(1 + |u|2)]h(ρ)|D(u)|2 dx

+Cν

∫
[1 + ln(1 + |u|2)] ρ

2γ

h(ρ)
dx.

It follows that∣∣∣∣∫ [1 + ln(1 + |u|2)]u · ∇ργ dx

∣∣∣∣
≤
∫
h(ρ)|∇u|2 dx+

ν

2

∫
[1 + ln(1 + |u|2)]h(ρ)|D(u)|2 dx

+Cν

∫
[2 + ln(1 + |u|2)] ρ

2γ

h(ρ)
dx.
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Finally, we notice that the last term satisfies (for any δ ∈ (0, 2)):

∫
[2 + ln(1 + |u|2)] ρ

2γ

h(ρ)
dx ≤

∫ (ρ2γ−δ/2

h(ρ)

)2/(2−δ)

dx

(2−δ)/2

×
(∫

ρ[2 + ln(1 + |u|2)]2/δ dx

)δ/2

,

which gives the lemma.

Remark 3.1 A similar estimate can be obtained when considering a viscos-
ity term of the form div (2h(ρ)∇u). Actually, in that case, it is possible to
derive an estimate on

∫
ρ|u|2+δ dx for small δ (by multiplying (6) by u|u|δ).

We now have all the necessary tools to prove Theorem 2.1.

4 Proof of Theorem 2.1

We recall that the initial data must satisfy (16), and (17) to make use of all
the inequalities presented in the previous section. More precisely, we have

ρn
0 is bounded in L1 ∩ Lγ(Ω), ρn

0 ≥ 0 a.e. in Ω

ρn
0 |un

0 |2 = |mn
0 |2/ρn

0 is bounded in L1(Ω)√
ρn
0∇ϕ(ρn

0 ) = 2∇h(ρn
0 )/
√
ρn
0 is bounded in L2(Ω),∫

ρn
0

|un
0 |2

2
ln(1 + |un

0 |2) dx < C.

(27)

Using inequalities (18) and (21) (and (25)), we deduce the following esti-
mates, which we shall use throughout the proof of Theorem 2.1:

||√ρnun||L∞(0,T );L2(Ω)) ≤ C

||ρn||L∞(0,T ;L1∩Lγ(Ω)) ≤ C

||
√
h(ρn)∇un||L2(0,T ;L2(Ω)) ≤ C

(28)

and
||h′(ρn)∇√ρn||L∞(0,T ;L2(Ω)) ≤ C

||
√
h′(ρn)ργ−2

n ∇ρn||L2(0,T ;L2(Ω)) ≤ C
(29)

12



In view of our hypothesis on the viscosity coefficient (9), the bounds (28)
and (29) yields:

||√ρn∇un||L2(0,T ;L2(Ω)) ≤ C

||∇√ρn||L∞(0,T ;L2(Ω)) ≤ C

||∇ργ/2
n ||L2(0,T ;L2(Ω)) ≤ C

(30)

The proof of Theorem 2.1 will be divided in 6 steps. In the first two
steps, we show the convergence of the density and the pressure (note that
the convergence of the pressure is straighforward here). The key argument
of the proof is presented in the third step: We prove that ρnu

2
n is bounded

in a space better than L∞(0, T ;L1(Ω)). We then show the convergence
of the momentum (step 4) and finally the strong convergence of

√
ρnun in

L2
loc((0, T ) × Ω) (step 5). The last step adresses the convergence of the

diffusion terms; It is mainly technical and of minor interest.

Step 1: Convergence of
√
ρn.

Lemma 4.1 If h satisfies (9), then
√
ρn is bounded in L∞(0, T ;H1(Ω))

∂t
√
ρn is bounded in L2(0, T ;H−1(Ω)).

As a consequence, up to a subsequence,
√
ρn converges almost everywhere

and strongly in L2(0, T ;L2
loc(Ω)). We write

√
ρn −→

√
ρ a.e and L2

loc((0, T )× Ω) strong.

Moreover, ρn converges to ρ in C0(0, T ;L3/2
loc (Ω)).

Proof. The second estimate in (30), together with the conservation of mass
||ρn(t)||L1(Ω) = ||ρn,o||L1(Ω) gives the L∞(0, T ;H1(Ω)) bound. Next, we
notice that

∂t
√
ρn = −1

2
√
ρndivun − un · ∇

√
ρn

=
1
2
√
ρndivun − div (un

√
ρn)

which yields the second estimate and, thanks to Aubin’s Lemma, gives the
strong convergence in L2

loc((0, T )× Ω).
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Sobolev imbedding implies that
√
ρn is bounded in L∞(0, T ;Lq(Ω)) for

q ∈ [2,+∞[ if N = 2 and q ∈ [2, 6] if N = 3. In either cases we deduce that
ρn is bounded in L∞(0, T ;L3(Ω)), and therefore

ρnun =
√
ρn
√
ρnun is bounded in L∞(0, T ;L3/2(Ω)).

The continuity equation thus yields ∂tρn bounded in L∞(0, T,W−1,3/2(Ω)).
Moreover, since ∇ρn = 2

√
ρn∇

√
ρn, we also have that ∇ρn is bounded in

L∞(0, T ;L3/2(Ω)), hence the compactness of ρn in C([0, T ];L3/2
loc (Ω)).

Step 2: Convergence of the pressure

Lemma 4.2 The pressure ργ
n is bounded in L5/3((0, T ) × Ω) when N = 3

and Lr((0, T )×Ω) for all r ∈ [1, 2[ when N = 2. In particular, ργ
n converges

to ργ strongly in L1
loc((0, T )× Ω).

Proof. Inequalities (30) and (28) yield ργ/2
n ∈ L2(0, T ;H1(Ω)).

When N = 2, we deduce ργ/2
n ∈ L2(0, T ;Lq(Ω)) for all q ∈ [2,∞[. So ργ

n

is bounded in L1(0, T ;Lp(Ω)) ∩ L∞(0, T ;L1(Ω)) for all p ∈ [1,∞[, hence ργ
n

is bounded in Lr((0, T )× Ω) for all r ∈ [1, 2[.
When N = 3, we only get ργ/2

n ∈ L2(0, T ;L6(Ω)), or

ργ
n ∈ L1(0, T ;L3(Ω)).

Since ργ
n is bounded in L∞(0, T ;L1(Ω)), Hölder inequality gives

||ργ
n||L5/3((0,T )×Ω) ≤ ||ργ

n||
2/5
L∞(0,T ;L1(Ω))

||ργ
n||

3/5
L1(0,T ;L3(Ω))

≤ C.

hence ργ
n is bounded in L5/3((0, T )× Ω).

Since we already know that ργ
n converges almost everywhere to ργ , those

bounds yield the strong convergence of ργ
n in L1

loc((0, T )× Ω).

Step 3: Bounds for
√
ρnun

Lemma 4.3 If γ < 3, or if N = 3, γ ≥ 3 and (12) holds, then

ρn|un|2 ln(1 + |un|2) is bounded in L∞(0, T ;L1(Ω)).
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This Lemma is really the corner stone of the stability result. As a matter
of fact, at this point, the main difficulty is to prove the strong convergence
of
√
ρnun in L1(0, T ;L2

loc(Ω)). Thanks to Lemma 4.3, it will be enough
to prove the convergence almost everywhere. Moreover, since we are only
able to prove the convergence of the momentum ρnun (see Step 4), we need
to control

√
ρnun on the vacuum set {ρ(t, x) = 0} (and prove that it con-

verges to zero almost everywhere on the vacuum). This fact will also be a
consequence of Lemma 4.3 (see Step 5).

Proof. The proof of Lemma 4.3 relies on Lemma 3.2: for any δ ∈ (0, 2),
we have:

d

dt

∫
ρn

1 + |un|2

2
ln(1 + |un|2) dx+

ν

2

∫
h(ρn)[1 + ln(1 + |un|2)]|D(un)|2dx

≤ C

∫ (ρ2γ−δ/2
n

h(ρn)

)2/(2−δ)

dx

(2−δ)/2(∫
ρn[2 + ln(1 + |un|2)]2/δ dx

)δ/2

+C
∫
h(ρn)|∇un|2 dx

Using (28) and the natural bounds on
∫
ρn dx and

∫
ρnu

2
n dx, we deduce:

d

dt

∫
ρn

1 + |un|2

2
ln(1 + |un|2) dx ≤ C

∫ (ρ2γ−δ/2
n

h(ρn)

)2/(2−δ)

dx

(2−δ)/2

+ C.

(31)
Moreover, condition (9) yields h(ρ) ≥ νρ and so

d

dt

∫
ρn

1 + |un|2

2
ln(1+|un|2) dx ≤ C

(∫ (
ρ2γ−1−δ/2

n

)2/(2−δ)
dx

)(2−δ)/2

+C.

Finally, using Lemma 4.2, we check that the right hand side is bounded L1

in time (for small δ), without any condition when N = 2, and when N = 3
under the condition that

2γ − 1 <
5
3
γ,

which gives rise to the restriction γ < 3. In either cases, we deduce

d

dt

∫
ρn

1 + |un|2

2
ln(1 + |un|2) dx ≤ C.
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and (17) gives the lemma. When N = 3 and γ ≥ 3 we need the extra
hypothesis (12) to show that the right hand side of (31) is bounded and to
achieve the same result.

Step 4: Convergence of the momentum

Lemma 4.4 Up to a subsequence, the momentum mn = ρnun converges
strongly in L2(0, T ;Lp

loc(Ω)) to some m(x, t) for all p ∈ [1, 3/2). In particular

ρnun −→ m almost everywhere (x, t) ∈ Ω× (0, T ).

Note that we can already define u(x, t) = m(x, t)/ρ(x, t) outside the vacuum
set {ρ(x, t) = 0}, but we do not know yet whether m(x, t) is zero on the
vacuum set.
Proof. We have

ρnun =
√
ρn
√
ρnun,

where
√
ρn is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2,+∞[ if N = 2 and

q ∈ [2, 6] if N = 3; Since
√
ρnun is bounded in L∞(0, T ;L2(Ω)), we deduce

that
ρnun is bounded in L∞(0, T, Lq(Ω)) for all q ∈ [1, 3/2].

Next, we have

∂i(ρnunj) = ρn∂iunj + unj∂iρn

=
√
ρn
√
ρn∂iunj + 2

√
ρnunj∂i

√
ρn.

Using Lemma 4.3 and (30), it is readily seen that the second term is bounded
in L∞(0, T ;L1(Ω)), while the first term is bounded in L2(0, T, Lq(Ω)) for all
q ∈ [1, 3/2]. Hence

∇(ρnun) is bounded in L2(0, T ;L1(Ω)).

In particular, we have

ρnun bounded in L2(0, T ;W 1,1(Ω)).

It remains to show that for every compact set K ⊂ Ω, we have

∂t(ρnun) is bounded in L2(0, T ;W−2,4/3(K)). (32)
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Indeed, (32) together with Aubin’s Lemma (see Lions [Lio69] or Dubinskii
[Dub65]), yields the compactness of ρnun in L2(0, T ;Lp(K)) for all p ∈
[1, 3/2).

To prove (32), we use the momentum equation (6), first noticing from
Lemma 4.2 and Lemma 4.3 that

div (
√
ρnun ⊗

√
ρnun) ∈ L∞(0, T ;W−1,1(K))
∇ργ

n ∈ L∞(0, T ;W−1,1(K)),

So we only have to check that the terms ∇(h(ρn)∇un), ∇(h(ρn)t∇un)
and ∇(g(ρn)divun) are bounded in L∞(0, T ;W−2,4/3(K)). To that purpose,
we write

h(ρn)∇un = ∇(h(ρn)un)− un∇h(ρn), (33)

(and we proceed similarly with the other two terms). The second term in
(33) reads

un∇h(ρn) =
√
ρnun

∇h(ρn)
√
ρn

= 2
√
ρnunh

′(ρn)∇√ρn

which is bounded in L∞(0, T ;L1(Ω)) thanks to (29) and Lemma 4.3. The
first term in (33) can be rewritten

∇[h(ρn)un] = ∇
[
h(ρn)
√
ρn

√
ρnun

]
,

which is bounded in L∞(0, T ;W−1,3/2(Ω)) thanks to the following lemma:

Lemma 4.5 For all compact set K, h(ρn)/
√
ρn and g(ρn)/

√
ρn are bounded

in L∞(0, T ;L6(K)).

The proof of this Lemma is a bit technical in full generality and will be
postponed to Appendix B. However, note that, in the particular case h(ρ) =
νρ, we have h(ρn)/

√
ρn =

√
ρ

n
and Lemma 4.5 follows straightforwardly

from Lemma 4.1.

We deduce that h(ρn)D(un) and g(ρn)divun are bounded in

L∞(0, T ;W−1,3/2(K) + L1(K)),

and since L1(K) ⊂W−1,4/3(K) and W−1,3/2(K) ⊂W−1,4/3(K) we conclude
that h(ρn)D(un) and g(ρn)divun are bounded in L∞(0, T ;W−1,4/3(K)),
which conclude the proof of Lemma 4.4.
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Step 5: Convergence of
√
ρnun

Lemma 4.6 The quantity
√
ρnun converges strongly in L2

loc((0, T )× Ω) to
m/

√
ρ (defined to be zero when m = 0).

In particular, we have m(x, t) = 0 a.e. on {ρ(x, t) = 0} and there exists
a function u(x, t) such that m(x, t) = ρ(x, t)u(x, t) and

ρn un −→ ρ u strongly in L2(0, T ;Lp
loc(Ω)) , p ∈ [1, 3/2)

√
ρn un −→

√
ρ u strongly in L2

loc((0, T )× Ω)

(note that u is not uniquely defined on the vacuum set {ρ(x, t) = 0}).

Proof. First of all, since mn/
√
ρn is bounded in L∞(0, T ;L2(Ω)), Fatou’s

lemma yields ∫
lim inf

m2
n

ρn
dx <∞.

In particular, we have m(x, t) = 0 a.e. in {ρ(x, t) = 0}. So if we define the
limit velocity u(x, t) by setting u(x, t) = m(x, t)/ρ(x, t) when ρ(x, t) 6= 0
and u(x, t) = 0 when ρ(x, t) = 0, we have

m(x, t) = ρ(x, t)u(x, t)

and ∫
m2

ρ
dx =

∫
ρ|u|2 dx <∞.

Moreover, Fatou’s lemma yields∫
ρ|u|2 ln(1 + |u|2) dx ≤

∫
lim inf ρn|un|2 ln(1 + |un|2) dx

≤ lim inf
∫
ρn|un|2 ln(1 + |un|2) dx

and so ρ|u2| ln(1 + |u|2) is in L∞(0, T ;L1(Ω)).

Next, since mn and ρn converge almost everywhere, it is readily seen
that in {ρ(x, t) 6= 0}, √ρnun = mn/

√
ρn converges almost everywhere to√

ρu = m/
√
ρ. Moreover, we have:

√
ρnun1|un|≤M −→ √

ρu1u≤M almost everywhere. (34)

As a matter of fact, the convergence holds almost everywhere in {ρ(x, t) 6=
0}, and in {ρ(x, t) = 0}, we have

√
ρnun1|un|≤M ≤M

√
ρn −→ 0.
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We are now in position to complete the proof of Lemma 4.6: For M > 0,
we cut the L2 norm as follows:∫

|√ρnun −
√
ρu|2 dx dt ≤

∫
|√ρnun1|un|≤M −√ρu1|u|≤M |2 dx dt

+2
∫
|√ρnun1|un|≥M |2 dx dt

+2
∫
|√ρu1|u|≥M |2 dx dt

It is obvious that
√
ρnun1|un|≤M is bounded uniformly in L∞(0, T ;L3(Ω)),

so (34) gives the convergence of the first integral:∫
|√ρnun1|un|≤M −√ρu1|u|≤M |2 dx dt −→ 0. (35)

Finally, we write∫
|√ρnun1|un|≥M |2 dx dt ≤

1
ln(1 +M2)

∫
ρnu

2
n ln(1 + |un|2) dx dt (36)

and ∫
|√ρu1|u|≥M |2 dx dt ≤

1
ln(1 +M2)

∫
ρu2 ln(1 + |u|2) dx dt. (37)

Putting together (35), (36) and (37), we deduce

lim sup
n→∞

∫
|√ρnun −

√
ρu|2 dx dt ≤ C

ln(1 +M2)

for all M > 0, and the lemma follows by taking M →∞.

Step 6: Convergence of the diffusion terms

Lemma 4.7 We have

h(ρn)∇un −→ h(ρ)∇u in D′

h(ρn)t∇un −→ h(ρ)t∇u in D′

and
g(ρn)divun −→ g(ρ)divu in D′
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Proof. Let φ be a test function, then∫
h(ρn)∇unφdx dt = −

∫
h(ρn)un∇φdx dt+

∫
un∇h(ρn)φdx dt

= −
∫
h(ρn)
√
ρ

n

√
ρnun∇φdx dt+

∫
√
ρnun

h′(ρn)
√
ρn

∇ρnφdx dt

Thanks to Lemma 4.5, we know that h(ρn)√
ρ

n
is bounded in L∞(0, T ;L6

loc(Ω)).
Moreover, since h(ρn)/

√
ρ

n
≤ ν

√
ρn, this term converges almost everywhere

to h(ρ)/
√
ρ (defined to be zero on the vacuum set). Therefore, it converges

strongly in L2
loc((0, T )×Ω); This is enough to prove the convergence of the

first term.
Next, we note that

h′(ρn)
√
ρn

∇ρn = ∇ψ(ρn)

with ψ′(ρ) = h′(ρ)/
√
ρ =

√
ρϕ′(ρ). Since∫

|∇ψ(ρ)|2 dx =
∫
ρ|∇ϕ(ρ)|2 dx,

we have that ∇ψ(ρn) is bounded in L∞(0, T, L2(Ω)). Moreover, (13) yields

h′(ρ) ≤ Cρ−1/2+ν/3 when ρ ≤ 1

and so
ψ(ρ) ≤ Cρν/3 when ρ ≤ 1.

Therefore, an argument similar to the proof of Lemma 4.5 shows that ψ(ρn)
is bounded in L∞(0, T ;L6

loc(Ω)). Since it converges almost everywhere (ψ is
a continuous function), it converges strongly in L2

loc((0, T ) × Ω). It follows
that

∇ψ(ρn) ⇀ ∇ψ(ρ) L2
loc((0, T )× Ω)-weak .

A similar argument holds for h(ρn)t∇un and g(ρn)divun using the fact that
|g(ρ)| ≤ Ch(ρ) and |g′(ρ)| ≤ Ch′(ρ).

A Proof of Lemma 3.1

In this appendix, we briefly recall the proof of the mathematical entropy of
Bresch and Desjardins (21). To that purpose, we have to evaluate

d

dt

∫ [
1
2
ρ|u|2 + ρu · ∇ϕ(ρ) +

1
2
ρ|∇ϕ(ρ)|2

]
dx+

d

dt

∫
1

γ − 1
ργ dx.
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Step 1: First of all, we recall the usual entropy equality:

d

dt

∫ [
1
2
ρ|u|2 +

1
γ − 1

ργ

]
dx = −

∫
2h(ρ)|D(u)|2 dx−

∫
g(ρ)|divu|2 dx

(38)

Step 2: Next, (5) gives∫
ρ∂t

|∇ϕ(ρ)|2

2
dx−

∫
|∇ϕ(ρ)|2

2
div ρu dx

= −
∫
ρ∇u : ∇ϕ(ρ)⊗∇ϕ(ρ) dx+

∫
ρ2ϕ′(ρ)∆ϕ(ρ)divu dx

+
∫
ρ[∇ϕ(ρ)]2divu dx

and so

d

dt

∫
ρ
|∇ϕ(ρ)|2

2
dx = −

∫
ρ∇u : ∇ϕ(ρ)⊗∇ϕ(ρ) dx

+
∫
ρ2ϕ′(ρ)∆ϕ(ρ)divu dx

+
∫
ρ[∇ϕ(ρ)]2divu dx (39)

Step 3: It remains to evaluate the derivative of the cross-product:

d

dt

∫
ρu · ∇ϕ(ρ) dx =

∫
∇ϕ(ρ) · ∂t(ρu) dx+

∫
ρu · ∂t∇ϕ(ρ) dx

=
∫
∇ϕ(ρ) · ∂t(ρu) dx−

∫
div (ρu)ϕ′(ρ)∂tρ dx

=
∫
∇ϕ(ρ) · ∂t(ρu) dx+

∫
(div (ρu))2ϕ′(ρ) dx.(40)

Multiplying (6) by ∇ϕ(ρ), we get:∫
∇ϕ(ρ) · ∂t(ρu) dx

= −
∫

(2h(ρ) + g(ρ))∆ϕ(ρ)divu dx+ 2
∫
∇u : ∇ϕ(ρ)⊗∇h(ρ) dx

−2
∫
∇ϕ(ρ) · ∇h(ρ)divu dx−

∫
∇ϕ(ρ) · ∇ργ dx

−
∫
∇ϕ(ρ)div (ρu⊗ u) dx,
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where we used the fact that∫
∇(g(ρ)divu) · ∇ϕ(ρ) dx = −

∫
g(ρ)∆ϕ(ρ)divu dx

and ∫
div (2h(ρ)D(u)) · ∇ϕ(ρ) dx

=
∫
∂j(h(ρ)∂jui)∂iϕ(ρ) dx+

∫
∂j(h(ρ)∂iuj)∂iϕ(ρ) dx

=
∫
∂i(h(ρ)∂jui)∂jϕ(ρ) dx+

∫
∂j(h(ρ)∂iuj)∂iϕ(ρ) dx

=
∫
∂ih(ρ)∂jui∂jϕ(ρ) dx−

∫
∂iui∂jh(ρ)∂jϕ(ρ) dx

−
∫
∂iuih(ρ)∂jjϕ(ρ) dx

+
∫
∂jh(ρ)∂iuj∂iϕ(ρ) dx−

∫
∂juj∂ih(ρ)∂iϕ(ρ) dx

−
∫
∂jujh(ρ)∂iiϕ(ρ) dx

= 2
∫
∇u : ∇h(ρ)⊗∇ϕ(ρ) dx− 2

∫
∇h(ρ) · ∇ϕ(ρ)divu dx

−2
∫
h(ρ)∆ϕ(ρ)divu dx

Step 4: When ϕ, h and g satisfies (8) and (22), then (39) and (40)
yields

d

dt

{∫
ρu · ∇ϕ(ρ) + ρ

|∇ϕ(ρ)|2

2
dx

}
+
∫
∇ϕ(ρ) · ∇p dx

= −
∫
∇ϕ(ρ)div (ρu⊗ u) dx+

∫
ϕ′(ρ)(div (ρu))2 dx.

Finally, we have

−
∫
∇ϕ(ρ)div (ρu⊗ u) dx+

∫
ϕ′(ρ)(div (ρu))2 dx

=
∫
−ϕ′(ρ)u · ∇ρdiv (ρu)− ϕ′(ρ)∇ρ(ρu · ∇u) + ϕ′(ρ)(div ρu)2 dx

=
∫
ρϕ′(ρ) divu div (ρu)− ρϕ′(ρ)∇ρ(u · ∇u) dx

=
∫
ρ2ϕ′(ρ)(divu)2 + ρϕ′(ρ)u · ∇ρdivu− ρϕ′(ρ)∇ρ(u · ∇u) dx
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so using (22) and (8), we get

−
∫
∇ϕ(ρ) div (ρu⊗ u) dx+

∫
ϕ′(ρ)(div (ρu))2 dx

= 2
∫
ρh′(ρ)(divu)2 +∇(h(ρ)) · u divu−∇(h(ρ))(u · ∇u) dx

= 2
∫
ρh′(ρ)(divu)2 − h(ρ)(divu)2 − h(ρ)u · ∇divu dx

+2
∫
h(ρ)∂iuj∂jui + h(ρ)u · ∇divu dx

=
∫

(2ρh′ − 2h)(divu)2 + 2h(ρ)∂iuj∂jui dx

=
∫
g(ρ) (divu)2 dx+

∫
2h(ρ)∂jui∂iuj dx

which yields

d

dt

{∫
ρu · ∇ϕ(ρ) + ρ

|∇ϕ(ρ)|2

2
dx

}
+
∫
∇ϕ(ρ) · ∇ργ dx

=
∫
g(ρ)(divu)2 dx+

∫
2h(ρ)∂jui∂iuj dx.

Adding this equality and (38), and using the fact that∫
2h(ρ)|D(u)|2 dx−

∫
2h(ρ)∂jui∂iuj dx =

∫
2h(ρ)

(
∂iuj − ∂jui

2

)2

we easily get (21).

B Proof of Lemma 4.5

We shall only prove the result for h(ρn)/
√
ρn. Using the fact that

|g(ρ)| ≤ Ch(ρ), and |g′(ρ)| ≤ Ch′(ρ) for all ρ,

a similar proof follows for g(ρn)/
√
ρn

Note that In view of (13), we have

h(ρ)
√
ρ
≤ Cρν if ρ ≤ 1,

23



so we only need to control h(ρn)√
ρn

for large ρn. This will be achieved differently
depending on the dimension.

When N = 2, the fact that
√
ρn is bounded in L∞(0, T ;H1(Ω)) and

Sobolev’s inequalities implies that ρn is bounded in L∞(0, T ;Lp(Ω)) for all
p ∈ [1,∞[. Moreover, in view of (13), we have

h(ρ)
√
ρ
≤
{
Cρ1/ν if ρ ≥ 1
Cρν if ρ ≤ 1

.

So there exists q0 > 1 such that h(ρn)/
√
ρn is bounded in L∞(0, T ;Lq(Ω))

for all q > q0. In particular, h(ρn)/
√
ρn is bounded in L∞(0, T ;Lp(K)) for

all p ∈ [1,∞[ for any compact set K.

When N = 3, we note that

∇
(
h(ρ)
√
ρ

)
= 2h′(ρ)∇√ρ− h(ρ)

2ρ3/2
∇ρ,

and since conditions (8) and (11) yields

h′(ρ)ρ = g(ρ) + h(ρ) ≥ 3g(ρ) + h(ρ)
3

≥ ν

3
h(ρ),

we have

|∇
(
h(ρ)
√
ρ

)
| ≤ C|h′(ρ)∇√ρ|.

So inequality (23) yields

||∇
(
h(ρn)
√
ρn

)
||L∞(0,T ;L2(Ω)) ≤ C (41)

When Ω = R3, Sobolev’s inequalities implies that h(ρn)/
√
ρn is bounded in

L∞(0, T ;L6(Ω)). When Ω is a subset of R3, we note that (13) gives

h(ρ)
√
ρ
≤
{
Cρ1/6+3/ν if ρ ≥ 1
Cρ1/6+ν/3 if ρ ≤ 1

.

So there exists a constant s ≤ 1 such that((
h(ρn)
√
ρn

)s

− 1
)

+

∈ L∞(0, T ;L2(Ω))
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Moreover∣∣∣∣∇(h(ρn)
√
ρn

)s

1h(ρn)/
√

ρn≥1

∣∣∣∣ =

∣∣∣∣∣
(
h(ρn)
√
ρn

)s−1

∇
(
h(ρn)
√
ρn

)
1h(ρn)/

√
ρn≥1

∣∣∣∣∣
≤

∣∣∣∣∇(h(ρn)
√
ρn

)∣∣∣∣ ∈ L∞(0, T ;L2(Ω)),

using the fact that s− 1 ≤ 0. It follows that (h(ρn)/
√
ρn)s1ρn≥1 is bounded

in L∞(0, T ;H1(Ω)) which in turn gives(
h(ρn)
√
ρn

)s1

1ρn≥1 ∈ L∞(0, T ;L2(Ω)),

for all s1 ∈ (s, 3s). As long as 3s ≤ 1, we can repeat this argument with 3s
instead of s. Eventually, this will lead to(

h(ρn)
√
ρn

)
1ρn≥1 ∈ L∞(0, T ;L2(Ω)),

which, together with (41) implies that (h(ρn)/
√
ρn)1ρn≥1 is bounded in

L∞(0, T ;L6(Ω)).
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