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1. Introduction and Main Results

1.1. Introduction

The goal of this paper is to study the asymptotic behavior of the solution of the

following equation as ε tends to zero:{
εα−1∂tfε + v · ∇xfε +

1

ε2−α
E · ∇vfε =

1

ε
Q(fε) in (0,∞)× Rd × Rd,

fε(·, ·, 0) = f in in Rd × Rd,
(1.1)

where E ∈
[
W 1,∞(Rd × [0,∞))

]d
is a given acceleration field and Q is the linear

Boltzmann operator defined as

Q(f) :=

∫
σ(v, v′)M(v)f(v′)− σ(v′, v)M(v′)f(v) dv′. (1.2)

1
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Typically, fε(x, v, t) denotes the distribution function of some particles in a di-

lute gas, subject to an external acceleration field E(x, t). The small parameter ε

can be interpreted as the Knudsen number, which measures the relative importance

of the scattering phenomenon (described here by the collision operator Q) com-

pared to the transport of particles. It is often introduced in the literature as the

ratio of the mean free path of the particles over some typical macroscopic length,

such as the length of the device being studied. The coefficient α determines the

relative order of the various terms in (1.1) and it will be fixed by the properties of

the thermodynamical equilibrium M(v) appearing in the operator Q. One possible

definition for α is

α = sup

{
β ≤ 2 ;

∫
Rd
|v|βM(v) dv <∞

}
. (1.3)

However, we will make stronger assumptions on the behavior of M for large |v|
which will make the definition of α simpler. Concerning the particular choice of

scaling in (1.1), we note that the εα−1 in front of the time derivative corresponds to

a particular choice of a time scale at which we know that diffusion will be observed,
21,20 while the 1

ε2−α in front of the force term correspond to a strong field assumption

(we will always have α < 2 and so 1
ε2−α � 1). Obviously other choices of scaling for

this force term are possible (see Remark 1.1), but this particular scaling is exactly

the one for which the diffusion process (due to the scattering phenomenon of Q)

and the advection process (due to the acceleration term E) are of the same order

in the limit (see equations (1.15) and (1.19)).

When M(v) is a Maxwellian distribution function, or more generally when M(v)

satisfies ∫
Rd
|v|2M(v) dv <∞,

then (1.3) gives α = 2 and, we recognize in (1.1) the classical drift-diffusion scaling.

If we assume further that E = 0, then such limits were first investigated in the

pioneering works Refs. 16, 5, 34, and 19. In all these papers, it is assumed that

M is a Maxwellian distribution function; In Ref. 12, the authors extended these

results to a more general distribution M , but always under the assumption of finite

second moment. The case E 6= 0 is addressed for example in Ref. 25 when M is a

Maxwellian. It is shown in particular that the addition of the force field E leads to

a drift term in the limiting equation for the density of particles.

The object of this paper is to investigate what happens when M(v) is a so-called

heavy tail distribution function with α < 2. To be more precise, we will assume that

M(v) ∼ γ

|v|d+α
as |v| → ∞

for some α < 2. The α describing the large velocity behavior of M(v) is then the

same as the α appearing in (1.1) (this is consistent with (1.3)).
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Such heavy-tailed distribution functions arise in several contexts. For instance,

most astrophysical plasmas are observed to have velocity distribution functions ex-

hibiting power law tails rather than exponential decay (see Refs. 31 or 22). Also,

dissipative collision mechanisms in granular gases can produce power law tails (see

Ref. 15 for the so-called “inelastic Maxwell model” introduced in Ref. 7, and the

review paper Ref. 33). In Ref. 6, it has been shown that even elastic collision mech-

anisms can produce power law tail behaviors in the case of mixture of gases with

Maxwellian collision kernel. Finally, power law tails are common in economy where

they are referred to as Pareto distributions (see Refs. 23, 14 and 35).

When E = 0, the diffusive limit for (1.1) when M is a heavy tail distribution

function has been the object of several recent works (see for example Refs. 21, 20,

and 4), and it has been shown that the limiting behavior of fε is described by a

fractional diffusion equation.

The main contribution of the paper is thus to consider the case E 6= 0. In view

of the scaling in equation (1.1), we immediately note that the cases α ∈ (1, 2),

α = 1 and α ∈ (0, 1) are radically different. Indeed, when α ∈ (1, 2), all the terms

in the left hand side of (1.1) are smaller than ε−1 when ε � 1. So, assuming that

fε converges to f (for instance in D′), we immediately get Q(f) = 0, that is

lim
ε→0

fε(x, v, t) = ρ(x, t)M(v).

By contrast, when α = 1, the force term is of the same order as the collision term,

and we will get instead

lim
ε→0

fε(x, v, t) = ρ(x, t)F (x, v, t)

where F is the unique solution of

Q(F )− E · ∇vF = 0,

∫
Rd
F dv = 1, (1.4)

(see Proposition 2.2 below for the existence of F ). Equation (1.4) classically appears

in the high field asymptotic limit which has been studied for various operators Q,
2,26,3 (see also Remark 1.1 below). Finally, when α ∈ (0, 1), the force term in the left

hand side of (1.1) is more singular than the collision term, and the limit f(x, v, t)

of fε(x, v, t) satisfies

E · ∇vf = 0.

It is not clear to us what one could expect to prove in this last case. In fact, we will

see that we are not able to obtain a priori estimates on fε to successfully investigate

such a limit (note however that fε is always bounded in L∞(0,∞;L1(Rd × Rd)),
so some limit always exists). In this paper, we thus focus our attention on the two

cases α ∈ (1, 2) and α = 1. One of the key observations that allowed us to obtain

the hydrodynamic limit in a rigorous manner is to note that not only the operator

Q defined by (1.2) is coercive but also the operator
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T (f) := −Q(f) + E · ∇vf

is coercive in a suitable space (see Proposition 2.4). Our proof is based on analytic

methods.

We will show that the limit f of fε is of the form ρ(x, t)M(v) (or ρ(x, t)F (x, v, t)

when α = 1) where ρ solves a fractional diffusion equation of order α with a drift

term. In that spirit, the first derivation of a fractional diffusion equation with an

advection term starting from a kinetic model was obtained in Ref. 1 by considering

an equation featuring a collision operator with a biased velocity. Note that evo-

lution equations involving a fractional-diffusion term appear in many equations of

mathematical physics (consult Refs. 32 and 27, and the references therein), for in-

stance in fluid dynamics with the so-called quasi-geostrophic flow model, 9 (in that

case the equation is non linear since the drift depends on the solution). The study

of fractional-diffusion advection equations has been a very active field of research

recently, and questions such as the regularity of the solutions have been addressed,

see for instance Refs. 28 and 29. It is a classical fact that the case of the half Lapla-

cian (α = 1 with our notations) plays a critical role in that case since the diffusion

operator has the same order as the advection term. In that sense, it is not surprising

that the case α = 1 plays a critical role in our study as well.

1.2. Assumptions

We now list our main assumptions. As noted above, the acceleration field E(x, t) is

assumed to be given (as opposed to, say, solution of Poisson equation), and satisfies

E ∈
[
W 1,∞ (Rd × (0,∞)

)]d
. (1.5)

Next, we assume that M satisfies:

M > 0, M(v) = M(−v) for all v ∈ Rd,
∫
Rd
M(v) dv = 1, (1.6)

|v|d+αM(v) −→ γ > 0 , as |v| → ∞, where 1 ≤ α < 2, (1.7)

as well as the following regularity assumptions:

|DvM(v)| ≤ C M(v)

1 + |v|
, |D2

vM(v)| ≤ CM(v). (1.8)

We note that these assumptions are compatible with the asymptotic behavior of M

given by (1.7). They are in particular satisfied by the function

M(v) =

(
1

1 + |v|2

) d+α
2

and by the probability density function of the so-called α-stable stochastic

processes.8
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The cross section σ(v, v′) appearing in the operator Q will be assumed to satisfy

σ(v, v′) = σ(v′, v), ν1 ≤ σ(v, v′) ≤ ν2, for all v, v′ ∈ Rd (1.9)

|∇vσ(v′, v)| ≤ C

1 + |v|
, (1.10)

where C, ν1 and ν2 are positive constants. Let us note that the symmetry condition

(1.9) on σ guarantees that Q(M) = 0. If we define the collision frequency ν(v) by

ν(v) =

∫
σ(v′, v)M(v′) dv′

then conditions (1.9) and (1.10) imply

ν1 ≤ ν(v) ≤ ν2, |∇vν(v)| ≤ C

1 + |v|
for all v ∈ Rd. (1.11)

In addition, we assume that the collision frequency ν is even, namely,

ν(v) = ν(−v) for all v ∈ Rd. (1.12)

Finally, we need σ and ν to have a nice behavior as v →∞. More precisely, we

assume:

|σ(v, v′)− ν0| ≤
C

1 + |v|
for all v, v′ ∈ R2d , (1.13)

for some ν0, which implies in particular

ν(v)→ ν0, as |v| → ∞. (1.14)

1.3. Main results

Under assumptions (1.5) and (1.9), the existence and uniqueness of a solution fε ∈
C0([0,∞);L1(Rd × Rd)) to (1.1) can be proved via a semigroup argument. We do

not discuss this issue here and refer instead the interested reader to Refs. 25 or

11 for the existence of a mild solution and to the Appendix of Ref. 13 where the

equivalence between the mild solution and a solution in the sense of distributions

is shown.

In this paper we investigate the asymptotic behavior of fε as ε → 0. Our first

result concerns the case α ∈ (1, 2):

Theorem 1.1. Assume α ∈ (1, 2) and let fε(x, v, t) be the solution of (1.1) with

initial condition f in ≥ 0 satisfying

f in ∈ L2
M−1(Rd × Rd) ∩ L1(Rd × Rd).
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Under Assumptions (1.5)-(1.13) listed above, the function fε(x, v, t) converges

weakly in ?-L∞(0, T ;L2
M−1(Rd × Rd)) to the function ρ(x, t)M(v) where ρ solves{

∂tρ+ κ(−∆)α/2ρ+∇x · (DEρ) = 0 in (0,∞)× Rd,
ρ(·, 0) = ρin in Rd, (1.15)

with ρin(x) =
∫
f in(x, v) dv and with the coefficient κ and matrix D defined by

κ =
γν20
cd,α

∫ ∞
0

zα e−ν0z dz, (1.16)

and

D =

∫
λ(v)⊗ v dv, Q(λ) = ∇vM(v). (1.17)

Note that the constant cd,α appearing in (1.16) is defined in (1.24) and that

the existence of the function λ(v) appearing in (1.17) will be proved in Lemma 2.5.

When σ(v, v′) = 1, we can take λ(v) = −∇vM(v), and we can check that D is the

identity matrix.

Next, we consider the critical case α = 1. In that case, Equation (1.1) reads{
∂tfε + v · ∇xfε + 1

εE · ∇vfε = 1
εQ(fε) in (0,∞)× Rd × Rd,

fε(·, ·, 0) = f in in Rd × Rd,

and we recognize the so-called high field asymptotic for the Boltzmann equation.

Such asymptotics were first studied in Refs. 2 and 26 for the linear Boltzmann

operator with Maxwellian equilibrium (see also Ref. 3 for a non-linear collision

operator). The main difference in this case is that the weak limit of fε will be the

solution F of (1.4) (which depends on E) rather than M(v). The existence and

properties of F will be the object of Theorem 2.1 below. In particular, we will prove

that there exists a function F (v,E) defined for (v,E) ∈ Rd × Rd such that for all

E ∈ Rd, v 7→ F (v,E) solves

Q(F )− E · ∇vF = 0,

∫
Rd
F (v,E) dv = 1. (1.18)

We then have:

Theorem 1.2. Assume α = 1 and let fε(x, v, t) be the solution of (1.1) with initial

condition f in ≥ 0 satisfying

f in ∈ L2
M−1(Rd × Rd) ∩ L1(Rd × Rd).

Under Assumptions (1.5)-(1.13) listed above, the solution fε(x, v, t) of (1.1) con-

verges weakly in ?-L∞(0, T ;L2
M−1(Rd × Rd)) to the function ρ(x, t)F (v,E(x, t))

where ρ(x, t) solves{
∂tρ+ κ(−∆)1/2ρ+ divx(µ(E)ρ) = 0 in (0,∞)× Rd × Rd,

ρ(·, 0) = ρin in Rd, (1.19)
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where ρin(x) =
∫
f in(x, v) dv,

µ(E) :=

∫
v (F (v,E)−M(v)) dv, (1.20)

and

κ =
γν20
cd,1

∫ ∞
0

z e−ν0z dz.

This result should be compared to the classical high-field limit, 2,26 which leads

to a transport equation. Here the (fractional) diffusion takes place at the same time

scale as the transport and thus appears in the limiting equation.

Note that the fact that µ(E) is well defined by formula (1.20) is not completely

obvious since vM(v) is not integrable when α = 1. However, we will see in Lemma

5.1 that F (v,E)−M(v) decays faster than M and that µ(E) is indeed well defined.

When σ is constant, we can get explicit formulas for F (v,E) and E. Indeed, if

σ = 1 then the operator Q reads

Q(f)(v) =

∫
Rd
f(v′) dv′M(v)− f(v)

and equation (1.4) can be recast as

F + E · ∇vF = M

which can be explicitly integrated along the characteristics yielding the following

formula:

F (v,E) =

∫ ∞
0

e−zM(v − Ez) dz. (1.21)

We can also use the equation above to compute

µ(E) = −
∫
vE · ∇vF dv = E for all E ∈ Rd

(using an integration by part and the fact that
∫
F (v) dv = 1).

Remark 1.1. When M satisfies (1.7) with α ∈ (1, 2), we can also consider the high

field asymptotic regime as in Refs. 2 and 26. It corresponds to the following scaling

of the equation:{
∂tfε + v · ∇xfε + 1

εE · ∇vfε = 1
εQ(fε) in (0,∞)× Rd × Rd,

fε(·, ·, 0) = f in in Rd × Rd,

In that case, it is relatively easy to show that fε converges to ρ(x, t)F (v,E(x, t))

where F is given by (1.18) and ρ solves the transport equation

∂tρ+ divx(ρE) = 0.

Remark 1.2. The case α = 2 is also interesting. In this case the scaling in equation

(1.1) becomes the usual diffusion scaling, however, the second moment
∫
|v|2M(v) dv
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(and thus the diffusion coefficient) is infinite. This critical case was studied in Ref.

21, and it was shown that the time scale must be modified by a logarithmic factor,

leading to the following equation:

ε ln(ε−1)∂tfε + v · ∇xfε + ln(ε−1)E · ∇vfε =
1

ε
Q(fε).

The limiting equation, on the other hand, will now involve the regular Laplace

operator.

1.4. Notations and organization of the paper

We recall that the fractional Laplacian appearing in (1.15) and (1.19) can be defined

via the Fourier transform as

F
(
(−∆)α/2f

)
(k) := |k|αF(f)(k), (1.22)

where F(f) denotes the Fourier transform of f and is defined as

F(f) :=

∫
e−ik·xf(x) dx, (1.23)

or as a singular integral as

(−∆)α/2f(x) = cd,α P.V.

∫
Rd

f(x)− f(y)

|x− y|d+α
dy, (1.24)

where P.V. denotes the Cauchy principal value and

cd,α =
α2α−1Γ (α+N2 )

πN/2Γ ( 2−α
2 )

,

where Γ (x) is the Gamma function. When α > 1, the principal value can be avoided

by using the following formula:

(−∆)α/2f(x) = cd,α

∫
Rd

f(x)− f(y)−∇xf(x)(x− y)

|x− y|d+α
dy .

For a detailed discussion on the properties of the fractional Laplacian consult Refs.

18, 30, or 24.

We denote by dx, dv and dv′ the Lebesgue measure on Rd and by dt the

Lebesgue measure on [0,∞), where Rd and [0,∞) will be the integration domains,

respectively, unless stated otherwise. We will denote by L2
M−1(Rd) (respectively

L2
F−1
ε

(Rd)) the space of square integrable function with weight M−1 (respectively

F−1ε ) equipped with the norm

‖f‖L2
M−1 (Rd) =

(∫
Rd
|f(v)|2 dv

M(v)

)1/2

.
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Finally, given a function f ∈ L1
(
Rd
)

we define the mass density ρf of f as

ρf :=

∫
f dv. (1.25)

The rest of the paper is organized as follows: In the next section, we prove the

existence of F , solution of (1.18), and we investigate its properties. In Section 3, we

will derive the a priori estimates on fε solution of (1.1) which will be necessary for

the proofs of our main results. Finally, Theorem 1.1 is proved in Section 4, while

Theorem 1.2 is proved in Section 5.

2. The Modified Equilibrium Function F

Classically, a priori estimates for the solutions of (1.1) are obtained as consequence

of the following coercivity property of the Boltzmann collision operator:

Lemma 2.1. Under assumption (1.9), the operator Q is a bounded operator in

L2
M−1(Rd) which satisfies the following coercivity estimate:

−
∫
Rd
Q(f)f

dv

M(v)
≥ ν1

∫
Rd
|f − ρfM |2

dv

M(v)
,

for all f ∈ L2
M−1(Rd) and with ρf given by (1.25).

When E = 0, this very classical lemma immediately implies that the solution of

(1.1) satisfies

fε(x, v, t) = ρε(x, t)M(v) + εα/2rε(x, v, t)

where the remainder term rε is bounded in some appropriate functional space (such

a bound is obtained by multiplying (1.1) by fε/M and integrating). Such estimates

can be generalized to include the case E 6= 0 and α = 2. Unfortunately, these

computations do not seem to be useful in the case α < 2 which we are considering

here.

In the next section, we will see that we can instead obtain the following expansion

for fε:

fε(x, v, t) = ρε(x, t)Fε(x, v, t) + εα/2rε(x, v, t)

where Fε is the normalized equilibrium function solution of

εα−1E · ∇vFε −Q(Fε) = 0 ,

∫
Fε dv = 1. (2.1)

Our goal in this section is to prove the existence and uniqueness of Fε and study

its properties.

But first we note that we can write

Fε(x, v, t) = F (v, εα−1E(x, t))
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where the function v 7→ F (v,E) solves (for all E ∈ Rd):

E · ∇vF −Q(F ) = 0,

∫
Rd
F (v,E) dv = 1. (2.2)

This equation plays a central role in the study of the high field asymptotics for

Boltzmann type equations, and has been studied for various operators Q. However,

it does not seem that it has been studied under our assumptions on the function

M(v) (property (2.3) below, in particular, is very specific to our framework). We

will thus study (2.2) in detail in this section. More precisely, gathering all the key

results that we will prove in this section, we have the following:

Theorem 2.1.

(i) For all E ∈ Rd, the exists a unique function v 7→ F (v,E) solution of (2.2).

(ii) There exist two positive constants C(R) and c(R) such that if |E| ≤ R then

c(R)M(v) ≤ F (v,E) ≤ C(R)M(v) for all v ∈ Rd.

(iii) The function E 7→ F (v,E) is C1 and for all R > 0 there exists C(R) such that

|∂EF (v,E)| ≤ C(R)
F (v,E)

1 + |v|
for all v ∈ Rd and |E| ≤ R. (2.3)

Since we are assuming α ≥ 1, assumption (1.5) implies that |εα−1E(x, t)| is

bounded uniformly in ε, x and t, and so the results of this theorem will apply to

the function Fε(x, v, t) = F (v, εα−1E(x, t)) (see Propositions 3.1 and 3.2). When

α > 1, the behavior of F (v,E) for |E| � 1 will play an important role. We will

thus prove the following result:

Proposition 2.1. The following expansion holds:

F (v,E) = M(v) + E · λ(v) +G(v,E) (2.4)

where λ(v) is such that

Q(λ)(v) = ∇vM(v),

∫
Rd
λ(v) dv = 0,

and G satisfies:

‖G(·, E)‖L2
M−1 (Rd) ≤ C|E|

2 for all |E| ≤ 1 (2.5)

and

|G(·, E)| ≤ C|E|2M(v) for all v ∈ Rd, |E| ≤ 1. (2.6)
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2.1. Existence of F (v, E)

In this Section, we prove the existence of a solution to (2.2) (Theorem 2.1 (i)).

The proof follows closely the arguments of Ref. 26. We recall it here for the sake of

completeness. Throughout this section, we fix E ∈ Rd and we define the operator

T (f) := −Q(f) + E · ∇vf. (2.7)

We also define the operators A and K by

A(f) := E · ∇vf + νf, K(f) :=

∫
σ(v, v′)f(v′) dv′M(v)

so that T = A − K. We note that K is a positive compact operator in L2
M−1

(
Rd
)

(it is a Hilbert-Schmidt operator), while A is an unbounded operator with domain

D(A) :=
{
f ∈ L2

M−1

(
Rd
)
|E · ∇vf ∈ L2

M−1

(
Rd
)}
. (2.8)

Furthermore, we can define the inverse operator A−1 as follows:

A−1(h) :=

∫ ∞
0

e−
∫ s
0
ν(v−Eτ) dτh(v − Es) ds. (2.9)

Indeed, we have:

Lemma 2.2. The operator A−1 defined by (2.9) is a bounded operator in L2
M−1

(with a norm depending on |E|) which satisfies

(A ◦ A−1)(f) = f for all f ∈ L2
M−1

(
Rd
)
,

and

(A−1 ◦ A)(f) = f for all f ∈ D(A).

Postponing the proof of this Lemma to the end of this section, we first show

that it implies the main result of this section:

Proposition 2.2. For all E ∈ Rd, there exists a positive solution v 7→ F (v,E) of

(2.2) in L2
M−1(Rd).

Proof. We can rewrite (2.2) as

AF = K(F ),

∫
F dv = 1. (2.10)

Formula (2.9) shows that A−1 is a nonnegative operator (if h ≥ 0 then A−1(h) ≥ 0).

It follows that the operator K◦A−1 is a positive compact operator in L2
M−1(Rd) and

so we can apply the weak Krein-Rutman Theorem, 17,10 which gives the existence

of an eigenvalue λ > 0 with associated non-negative eigenfunction W satisfying(
K ◦ A−1

)
W = λW

(the positivity of the operator K implies that W is in fact positive). We now define

F := A−1W and note that thanks to Lemma 2.2 it satisfies
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K(F ) = λAF.

Integrating this relation with respect to v and using the definition of ν, we find∫
ν(v)F (v) dv = λ

∫
ν(v)F (v) dv,

from which it follows that λ = 1. After normalizing F the proposition follows.

Note that, because the cone of positive functions is empty in L2, we cannot use

the standard Krein-Rutman’s Theorem. We use instead the weak Krein-Rutman

theorem (see p. 191 of Ref. 10) which does not provide the uniqueness of the eigen-

function W . Everything we will say in the rest of this section thus apply to any

positive solution of (2.2). The coercivity of the operator T (see Proposition 2.4)

will give the uniqueness of F .

We complete this section with a proof of Lemma 2.2:

Proof. (Proof of Lemma 2.2) The fact that (A◦A−1)(f) = f for all f ∈ L2
M−1

(
Rd
)
,

and (A−1 ◦ A)(f) = f for all f ∈ D(A) can be proved as the Proposition 1 in Ref.

26.

To show that A−1 is a bounded operator, we first note (using (1.11)) that

|A−1(h)| ≤
∫ ∞
0

e−ν1sh(v − Es) ds.

We thus have∫
Rd
|A−1(h)|2 dv

M(v)
≤ 1

ν1

∫
Rd

∫ ∞
0

e−ν1s
|h(v − Es)|2

M(v)
ds dv

≤ 1

ν1

∫
Rd

∫ ∞
0

e−ν1s
|h(v)|2

M(v + Es)
ds dv

≤ 1

ν1

∫
Rd

(∫ ∞
0

e−ν1s
M(v)

M(v + Es)
ds

)
|h(v)|2

M(v)
dv,

and we conclude thanks to the following claim: There exists a C > 0 such that(∫ ∞
0

e−ν1s
M(v)

M(v + Es)
ds

)
≤ C(1 + |E|d+α)) for all v ∈ Rd.

This last bound is proved by first noticing that (1.7) implies, in particular, the

existence of µ1, µ2 > 0 such that

µ1

1 + |v|d+α
≤M(v) ≤ µ2

1 + |v|d+α
for all v ∈ Rd. (2.11)
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Therefore, using the elementary inequality |a+ b|p ≤ C (|a|p + |b|p), valid for p ≥ 1,

we obtain the following estimate:∫ ∞
0

e−ν1s
M(v)

M(v + Es)
ds ≤ µ2

µ1

∫ ∞
0

e−ν1s
1 + |v + Es|d+α

1 + |v|d+α
ds

≤ Cµ2

µ1

∫ ∞
0

e−ν1s(1 + |Es|d+α) ds

≤ C(1 + |E|d+α).

2.2. Properties of F (v, E): Theorem 2.1 (ii)

As noted in the Introduction, in the simpler case where the cross section satisfies

σ(v, v′) = 1 for all v, v′ ∈ Rd,

the equation for F reduces to

F + E · ∇vF = M(v),

and we get the following explicit formula for F :

F (v,E) = A−1M(v) =

∫ ∞
0

e−zM(v − Ez) dz. (2.12)

In the general case, it does not seem possible to get such an explicit formula.

However, Assumption (1.9) and the normalization of F imply

ν1M(v) ≤ K(F ) ≤ ν2M(v).

In particular, F satisfies

ν1M(v) ≤ νF + E · ∇vF ≤ ν2M(v). (2.13)

As a consequence, we can prove the following proposition (see Theorem 2.1 (ii)):

Proposition 2.3. There exist constants C(R) and c(R) such that if |E| ≤ R then

c(R)M(v) ≤ F (v,E) ≤ C(R)M(v) for all v ∈ Rd. (2.14)

This proposition follows immediately from (2.13) and the following lemma

(which will be used several times in this paper):

Lemma 2.3. There exist two constants C(R) > 0 and c(R) > 0 such that if |E| ≤ R
then the following holds:

(i) If f satisfies

νf + E · ∇vf ≤ βM (2.15)

for some β > 0, then

f ≤ CβM.



February 13, 2017 9:50 WSPC/INSTRUCTION FILE AcevesMellet˙final

14 P. Aceves-Sanchez and A. Mellet

(ii) If f satisfies

νf + E · ∇vf ≥ βM (2.16)

for some β > 0, then

f ≥ cβM.

Remark 2.1. A similar result holds if we replace M by M(v)/(1 + |v|) in both

inequalities.

Proof. Integrating (2.15) (see the definition of A−1 given by (2.9)), we obtain

f(v) ≤ β
∫ ∞
0

e−
∫ z
0
ν(v−Eτ) dτM(v − Ez) dz

≤ β
∫ ∞
0

e−ν1zM(v − Ez) dz,

and the first part of the lemma follows from the following claim: There exists C(R) >

0 such that∫ ∞
0

e−ν1zM(v − Ez) dz ≤ C(R)M(v) for all v ∈ Rd, and all |E| ≤ R. (2.17)

In order to prove (2.17), we first write∫ ∞
0

e−ν1z
M(v − Ez)
M(v)

dz =

∫ η

0

e−ν1z
M(v − Ez)
M(v)

dz +

∫ ∞
η

e−ν1z
M(v − Ez)
M(v)

dz

= I1 + I2,

where η = |v|/(2|E|). The triangle inequality gives ||v| − |E|z| ≤ |v − Ez|, which

implies ∣∣∣∣v2
∣∣∣∣d+α ≤ ∣∣∣|v| − |E|z∣∣∣d+α ≤ |v − Ez|d+α , for 0 ≤ z ≤ η.

Hence, using (2.11) yields

M(v − Ez)
M(v)

≤ µ2

µ1

1 + |v|d+α

1 + |v − Ez|d+α
≤ µ2

µ1

1 + |v|d+α

1 + |v/2|d+α
for 0 ≤ z ≤ η.

Therefore we deduce

I1 =

∫ η

0

e−ν1z
M(v − Ez)
M(v)

dz ≤ µ2

µ1

∫ η

0

e−ν1z
1 + |v|d+α

1 + |v/2|d+α
dz

≤ µ2

µ1ν1

1 + |v|d+α

1 + |v/2|d+α

≤ C1,
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where C1 > 0 does not depend on v. Next, using (2.11) again, we get

I2 =

∫ ∞
η

e−ν1z
M(v − Ez)
M(v)

dz ≤ µ2

µ1ν1
(1 + |v|d+α) e−ν1|v|/(2|E|)

≤ µ2

µ1ν1
(1 + |v|d+α) e−ν1|v|/(2R)

≤ C2,

where C2 > 0 does not depend on v (but depends on R). We thus obtain∫ ∞
0

e−ν1z
M(v − Ez)
M(v)

dz ≤ C1 + C2

which gives (2.17) and completes the proof of the first part of the lemma.

The second part of the lemma is somewhat easier to show. Indeed, proceeding

as above, we check that (2.16) implies

f(v) ≥ β
∫ ∞
0

e−
∫ s
0
ν(v−Eτ) dτM(v − Es) ds

≥ β
∫ 1

0

e−ν2sM(v − Es) ds.

Furthermore, it is readily seen that there is a constant c(R) such that

M(v − w) ≥ cM(v) for all v, w ∈ Rd, |w| ≤ R.

We deduce

f(v) ≥ cβ
∫ 1

0

e−ν2sM(v) ds

≥ cβM(v),

and the result follows.

2.3. Coercivity of the operator T

As a consequence of the results of the previous sections, we can now establish the

following coercivity property of T , which gives the uniqueness of F and will play a

crucial role in this paper:

Proposition 2.4. For all E ∈ Rd, let F (v,E) be a positive solution of (2.2) (for

instance provided by Proposition 2.2). Then the operator T defined by (2.7) satisfies∫
T (f)(v)

f(v)

F (v,E)
dv ≥ 0.

Furthermore, for all R > 0 there exists a constant ϑ(R) > 0 such that for all

|E| ≤ R, there holds∫
T (f)(v)

f(v)

F (v,E)
dv ≥ ϑ(R)‖f − ρfF‖2L2

F−1 (Rd)
, for all f ∈ L2

F−1(Rd) . (2.18)
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In particular, F (v,E), positive solution of (2.2), is unique.

Proof. Throughout this proof, we use the notation f for f(v) and f ′ for f(v′) (and

similar notations for F and M).

Let us start by noting the following∫
T (f)

f

F
dv =

∫
E · ∇vf

f

F
dv +

∫
ν
f2

F
dv −

∫ ∫
σ(v, v′)Mf ′

f

F
dv dv′

=

∫
1

2
E · ∇vf

2

F
dv +

∫
ν
f2

F
dv −

∫ ∫
σ(v, v′)MF ′

f ′

F ′
f

F
dv dv′ .

Integrating by parts and using the identity E · ∇vF = K(F )− νF we see that

1

2

∫
E · ∇vf

2

F
dv = −1

2

∫
f2E · ∇v

( 1

F

)
=

1

2

∫
f2

F 2
(K(F )− νF ) dv .

Using the fact that M and F are normalized functions and that σ is symmetric, we

deduce the following:∫
T (f)

f

F
dv =

1

2

∫
ν
f2

F
dv +

1

2

∫ ∫
σ(v, v′)MF ′

f2

F 2
dv dv′ (2.19)

−
∫ ∫

σ(v, v′)MF ′
f ′

F ′
f

F
dv dv′

=
1

2

∫ ∫
σ(v′, v)M ′F

f2

F 2
dv dv′ +

1

2

∫ ∫
σ(v, v′)MF ′

f2

F 2
dv dv′

(2.20)

−
∫ ∫

σ(v, v′)MF ′
f ′

F ′
f

F
dv dv′

=
1

2

∫ ∫
σ(v, v′)

(
MF ′

(
f ′

F ′

)2

+MF ′
f2

F 2
− 2MF ′

f ′

F ′
f

F

)
dv dv′

=
1

2

∫ ∫
σ(v, v′)MF ′

(
f

F
− f ′

F ′

)2

dv′ dv.

Since the right hand side is clearly non-negative, this gives the first inequality in

the proposition.

If we further assume that |E| ≤ R, then we can use (2.14) and together with

assumption (1.9) it yields:

∫
T (f)

f

F
dv ≥ ν1

2C(R)

∫ ∫
FF ′

(
f

F
− f ′

F ′

)2

dv′ dv.
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Finally, using the decomposition f = ρfF + g and the fact
∫
Rd g dv = 0 we obtain∫

T (f)
f

F
dv ≥ ν1

2C(R)

∫ ∫
FF ′

(
g

F
− g′

F ′

)2

dv′ dv

=
ν1

2C(R)

∫ ∫
F
g′2

F ′
− 2gg′ +

g2

F
F ′ dv dv′

=
ν1

C(R)

∫
g2

F
dv.

This completes the proof.

2.4. Properties of F (v, E): Theorem 2.1 (iii)

This Section is devoted to the proof of the estimate on the derivative of F with

respect to E (Theorem 2.1-(iii)).

First, we prove the following result.

Lemma 2.4. For all R > 0 there exists C(R) such that the function F (v,E) solu-

tion of (2.2) satisfies

|∇vF (v,E)| ≤ C(R)
M(v)

1 + |v|
, for all v ∈ Rd, |E| ≤ R. (2.21)

Proof. Differentiating (2.2), with respect to vi, we obtain:

E · ∇v (∂viF ) + ν (∂viF ) =

∫
σ(v, v′)F (v′) dv′ ∂viM(v)

+

∫
∂viσ(v, v′)F (v′) dv′M(v)− (∂viν)F. (2.22)

The first term in the right hand side of (2.22) can be bounded by CM(v)/(1 + |v|),
thanks to (1.9) and assumption (1.8). The second term in (2.22) can also be bounded

by CM(v)/(1 + |v|) thanks to the assumption (1.10) and the normalization of F .

Finally, using (1.10) and (2.14), the third term in the right hand side of (2.22) can

also be bounded by CM(v)/(1 + |v|). We thus have∣∣E · ∇v (∂viF ) + ν (∂viF )
∣∣ ≤ C M(v)

1 + |v|

and we conclude the proof using Lemma 2.3 and Remark 2.1.

We can now complete the proof of Theorem 2.1:

Proof. (Proof of Theorem 2.1-(iii)) We first prove that ∂EF is uniformly bounded

in L2
F−1 for |E| ≤ R: Differentiating (2.2) with respect to Ei yields:

T (∂EiF ) = −∂viF. (2.23)
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Thus multiplying by ∂EiF/F and using the coercivity inequality (2.18) (assuming

|E| ≤ R) we obtain

ϑ‖∂EiF‖2L2
F−1
≤ −

∫
∂viF

∂EiF

F
dv,

where we have used the fact that ∂Ei
∫
F dv = 0. The right hand side can be

estimated using (2.21) and (2.14):∣∣∣∣∫ ∂viF
∂EiF

F
dv

∣∣∣∣ ≤ C ∫ |∂EiF |dv ≤ C (∫ |∂EiF |2F
dv

)1/2

.

We deduce

ϑ‖∂EiF‖L2
F−1
≤ C

which implies in particular∫
|∂EiF |dv ≤

(∫
|∂EiF |2

F
dv

)1/2

≤ C. (2.24)

Finally, in order to obtain (2.3) we rewrite (2.23) as

E · ∇v∂EiF + ν∂EiF = K(∂EiF )− ∂viF
=: H(v,E)

and, using the fact that
∫
∂EiF dv = 0, we note that

H(v,E) =

∫
[σ(v, v′)− ν0]∂EiF (v′, E) dv′M(v)− ∂viF

So using (1.13), (2.21) and (2.24), we deduce

|H(v,E)| ≤
∫
|∂EiF (v′, E)|dv′ M(v)

1 + |v|
+ C

M(v)

1 + |v|

≤ C M(v)

1 + |v|
.

We can then conclude the proof using Lemma 2.3 (see Remark 2.1) and (2.14).

2.5. Properties of F (v, E): Proposition 2.1

When σ = 1, we see, using (2.12) that

F (v,E) ∼M(v)− E · ∇vM(v) as |E| → 0. (2.25)

In the general case, we do not have an explicit formula for F which would give us

such an expansion. Our goal in this section is thus to prove Proposition 2.1 which

gives the require asymptotic behavior of F as E goes to zero.

But first, we need to prove the existence of the auxiliary function λ(v) appearing

in (1.17) and (2.4):
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Lemma 2.5. Assume (1.6)-(1.10). Then there exists a unique function λ ∈
(L2

M−1(Rd))d satisfying

Q(λ)(v) = ∇vM(v),

∫
Rd
λ(v) dv = 0. (2.26)

Furthermore, it satisfies

|λ(v)| ≤ CM(v), |∂viλj(v)| ≤ CM(v) for all 1 ≤ i, j ≤ d. (2.27)

We will first prove Proposition 2.1 and then go back to Lemma 2.5.

Proof. (Proof of Proposition 2.1) We define

G(v,E) := F (v,E)−M(v)− E · λ(v).

It solves

T (G) = 0− T (M)− E · T (λ)

= −E · ∇vM − E · (−Q(λ) + E · ∇vλ)

= −E · (E · ∇vλ), (2.28)

and thus we obtain in particular

‖T (G)‖L2
F−1
≤ |E|2‖Dvλ‖L2

F−1
.

If |E| ≤ 1, then inequalities (2.14) and (2.27) give

‖Dvλ‖2L2
F−1
≤ C

∫
M(v)2

F (v,E)
dv ≤ C

c

∫
M(v) dv ≤ C

and so

‖T (G)‖L2
F−1
≤ C|E|2.

Using the coercivity inequality (2.18) (recall that |E| ≤ 1), and the fact that∫
Rd Gdv = 0, we deduce

‖G‖2L2
F−1

=

∫
|G|2

F
dv ≤ 1

ϑ

∫
T (G)

G

F
dv

≤ 1

ϑ
‖T (G)‖L2

F−1
‖G‖L2

F−1

and so

‖G‖L2
F−1
≤ 1

ϑ
‖T (G)‖L2

F−1
≤ C

ϑ
|E|2,

which gives (2.5).

Finally, using (2.28) and the definition of T , we write

νG+ E · ∇vG = K(G)− E · (E · ∇vλ).

Thanks to (2.5) we obtain

|K(G)| ≤ ‖G‖L2
F−1

M(v) ≤ C|E|2M(v),
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which implies, using (2.27), the following estimate:

|νG+ E · ∇vG| ≤ C|E|2M(v).

We conclude the proof by applying Lemma 2.3.

Finally, we end this section with a proof of Lemma 2.5 which states the existence

of the function λ(v):

Proof. (Proof of Lemma 2.5) The existence and uniqueness of λ follows from the

coercivity of the operator Q (see Lemma 2.1) and the fact that

∫
Rd
∇vM(v) dv = 0.

Using Lemma 2.1 together with (1.8) we obtain

‖λ‖L2
M−1

≤ 1

ν1
‖∇M‖L2

M−1
≤ C

ν1
. (2.29)

Next, we rewrite (2.26) as

λ(v) =
1

ν(v)
(K(λ)(v)−∇vM(v))

=
1

ν(v)

(∫
σ(v, v′)λ(v′) dv′M(v)−∇vM(v)

)
, (2.30)

and use (2.29) together with (1.8) to deduce the first inequality in (2.27).

Finally, differentiating (2.30) with respect to v and using (1.10) and (1.8), we

easily deduce the second inequality in (2.27).

3. A Priori Estimates

In this section we derive the a priori estimates on fε solution of (1.1) which will be

necessary for the proofs of Theorems 1.1 and 1.2.

First, we introduce the operator

Tε(f) := −Q(f) + εα−1E · ∇vf, (3.1)

and we recall that Fε(x, v, t) denotes the solution of

Tε(Fε) = 0

∫
Rd
Fε(x, v, t) dv = 1.

In view of Theorem 2.1 (i), such a function exists and can be written as

Fε(x, v, t) = F (v, εα−1E(x, t)).

When α ≥ 1 and E satisfies (1.5), Theorem 2.1 (ii) implies:
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Proposition 3.1. Assume that α ≥ 1. Then there exists two positive constants γ1
and γ2 such that for all 0 < ε ≤ 1, the following holds:

γ1M(v) ≤ Fε(x, v, t) ≤ γ2M(v).

Under the same conditions, Theorem 2.1 (iii) and the chain rule imply:

Proposition 3.2. Assume that α ≥ 1. Then for all ε ≤ 1, the function Fε satisfies:

(i)

∥∥∥∥∂tFεFε

∥∥∥∥
L∞(R2d×[0,∞))

≤ Cεα−1,

(ii)

∥∥∥∥v · ∇xFεFε

∥∥∥∥
L∞(R2d×[0,∞))

≤ Cεα−1,

where C is a positive constant depending on ‖E‖W 1,∞ but not on ε.

Proof. We only prove the second inequality (the first one is easier): We have

v · ∇xFε = ∂EF (v, εα−1E(x, t))εα−1v · ∇xE

and so (2.3) and the fact that α ≥ 1 implies

|v · ∇xFε| ≤ CFε
εα−1v · ∇xE

1 + |v|
≤ Cεα−1‖∇E‖L∞Fε,

which proves (ii).

Finally, Proposition 2.4 implies

Proposition 3.3. Assume that α ≥ 1. Then for all ε ≤ 1 there holds∫
Tε(f)(v)

f(v)

Fε
dv ≥ ϑ(R)‖f − ρfFε‖2L2

F
−1
ε

(Rd), for all f ∈ L2
F−1
ε

(Rd) . (3.2)

We can now prove the main result of this section:

Proposition 3.4. Assume that α ∈ [1, 2) and that (1.5)-(1.10) hold. Let fε be the

solution of (1.1) and let ρε(x, t) =
∫
Rd fε(x, v, t) dv. Then:

(i) The sequence (fε) is bounded uniformly with respect to ε

in L∞
(
(0,∞) ;L1

(
Rd × Rd

))
and (ρε) is bounded uniformly with respect to

ε in L∞
(
(0,∞) ;L1

(
Rd
))

.

(ii) For all T > 0, (fε) is bounded uniformly with respect to ε in

L∞
(
(0, T );L2

M−1

(
R2d

))
, and (ρε) is bounded uniformly with respect to ε in

L∞
(
(0, T );L2

(
Rd
))

.

(iii) The function fε can be decomposed as fε = ρεFε + gε where gε satisfies

‖gε‖L2((0,T ),L2
M−1 (R2d)) ≤ C(T )εα/2. (3.3)
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Proof. Integrating (1.1) with respect to x and v and thanks to the conservation

of mass property of the operator Q we obtain that (fε) is uniformly bounded in

L∞((0,∞) ;L1(R2d)). Next using (3.1), we recast (1.1) as

εα∂tfε + εv · ∇xfε + Tε(fε) = 0.

Multiplying this equation by fε/Fε and integrating with respect to x and v we get:

εα

2

d

dt
‖fε‖2L2

F
−1
ε

(R2d) = −ε
α

2

∫ ∫
∂tFε
Fε

f2ε
Fε

dv dx+
ε

2

∫ ∫
v · ∇xFε
Fε

f2ε
Fε

dv dx

+

∫ ∫
Tε(fε)

fε
Fε

dv dx.

Using (3.2) and Proposition 3.2, we deduce

εα

2

d

dt
‖fε‖2L2

F
−1
ε

(R2d)+ϑ‖fε − ρεFε‖
2
L2

F
−1
ε

(R2d)≤ ε
αC‖fε‖2L2

F
−1
ε

(R2d). (3.4)

In particular this yields

d

dt
‖fε‖2L2( dv dx/Fε)

≤ 2C‖fε‖2L2( dv dx/Fε)
,

and Gronwall’s Lemma implies that (fε) is uniformly bounded for any T > 0 in

L∞
(

(0, T );L2
F−1
ε

(R2d)
)

and thus in L∞
(
(0, T );L2

M−1(R2d)
)

thanks to Proposition

3.1. We also deduce that∫
ρ2ε dx =

∫ (∫
fε dv

)2

dx ≤
∫ ∫

f2ε
Fε

dv dx ≤ C.

Finally, integrating (3.4) with respect to t and using Proposition 3.1, we obtain

(3.3).

4. Proof of Theorem 1.1

The proof of our main result relies on the test function method first introduced

in Ref. 20. The starting point of the method is the introduction of the following

auxiliary test function: Given ϕ(x, t) ∈ D(RN × [0,∞)), we denote by χε(x, v, t) the

unique bounded solution of the auxiliary problem

ν(v)χε − εv · ∇xχε = ν(v)ϕ , (4.1)

which (integrating (4.1) along the characteristics) yields:

χε(x, v, t) =

∫ ∞
0

e−ν(v)zν(v)ϕ(x+ εvz, t) dz . (4.2)

We then have:
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Lemma 4.1. Let fε be a weak solution of (1.1) and let χε be given by (4.2). Then

the following weak formulation holds:∫ ∫ ∫
fε ∂tχε dv dx dt+

∫ ∫
f inχε|t=0 dv dx+ ε−α

∫ ∫ ∫
ρενFε(χε − ϕ) dv dx dt

= −ε−1
∫ ∫ ∫

gε(E · ∇vχε) dv dx dt− ε−α
∫ ∫ ∫

K(gε)(χε − ϕ) dv dx dt,

(4.3)

with

gε = fε − ρεFε, ρε =

∫
Rd
fε dv. (4.4)

Proof. Taking χε as a test function in (1.1) and using (4.1), we get

−
∫ ∫ ∫

fε ∂tχε dv dxdt−
∫ ∫

f inχε|t=0 dv dx

= ε−1
∫ ∫ ∫

fεE · ∇vχε dv dxdt+ ε−α
∫ ∫ ∫

K(fε)χε − νfεϕdv dxdt

= ε−1
∫ ∫ ∫

fεE · ∇vχε dv dxdt+ ε−α
∫ ∫ ∫

K(fε)(χε − ϕ) dv dx dt,

where we used the fact that
∫
K(f) dv =

∫
νf dv for all f . Using (4.4), we deduce:

−
∫ ∫ ∫

fε ∂tχε dv dxdt−
∫ ∫

f inχε|t=0 dv dx

= ε−1
∫ ∫ ∫

ρεFεE · ∇vχε dv dxdt+ ε−α
∫ ∫ ∫

ρεK(Fε)(χε − ϕ) dv dx dt

+ ε−1
∫ ∫ ∫

gεE · ∇vχε dv dx dt+ ε−α
∫ ∫ ∫

K(gε)(χε − ϕ) dv dxdt.

Finally, using the definition of Fε and the fact that
∫
K(F ) dv =

∫
νF dv, we find

ε−1
∫
FεE · ∇vχε dv + ε−α

∫
K(Fε)(χε − ϕ) dv

= −ε−1
∫

(E · ∇vFε)χε dv + ε−α
∫
K(Fε)(χε − ϕ) dv

= −ε−α
∫

(K(Fε)− νFε)χε dv + ε−α
∫
K(Fε)χε − νFεϕdv

= ε−α
∫
νFε(χε − ϕ) dv

which concludes the proof.

In order to prove Theorem 1.1 we need to show that the right hand side of (4.3)

goes to zero, and to identify the limit of the left hand side. The first point follows

from the following result.
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Proposition 4.1. For any test function ϕ ∈ D(RN × [0,∞)), let χε be defined by

(4.2). Then

lim
ε→0

ε−α
∫ ∫ ∫

K(gε)(χε − ϕ) dx dv dt = 0,

and

lim
ε→0

ε−1
∫ ∫ ∫

gεE · ∇vχε dv dx dt = 0.

We will give a proof of this proposition which holds for any α ∈ (0, 2) (and not

just α > 1), since we will use the result for α = 1 in the next section.

Proof. To prove the first convergence, we note that

|K(gε)(x, t)| =
∣∣∣∣∫ σ(v, v′)gε(x, v

′, t) dv′
∣∣∣∣M(v)

≤ ν2
(∫

gε(x, v
′, t)2

M(v′)
dv′
)1/2

M(v).

Therefore∣∣∣∣ε−α ∫ ∫ ∫ K(gε)(χε − ϕ) dx dv dt

∣∣∣∣
≤ ε−αν2

∫ ∫
‖gε(x, ·, t)‖L2

M−1

∫
Rd
M(v)|χε − ϕ| dv dx dt

≤ ε−αν2‖gε‖L2
M−1

(∫ ∫ (∫
Rd
M(v)|χε − ϕ| dv

)2

dx dt

)1/2

, (4.5)

and we conclude thanks to the following result:

Lemma 4.2. For all ϕ ∈ D(Rd) and all η < α, there exists a constant C depending

on η such that(∫ (∫
Rd
M(v)|χε − ϕ| dv

)2

dx

)1/2

≤ C‖ϕ(·, t)‖H1(Rd)ε
η.

Postponing the proof of this lemma to the end of this proof, we deduce (using

(3.3) and the fact that ϕ(x, t) = 0 is compactly supported in t):∣∣∣∣ε−α ∫ ∫ ∫ K(gε)(χε − ϕ) dx dv dt

∣∣∣∣ ≤ Cεη−α‖gε‖L2
M−1 (R2d×(0,T ))‖ϕ‖L2(0,∞;H1(Rd))

≤ C‖ϕ‖L2(0,∞;H1(Rd))ε
η−α/2,

and the result follows by choosing any η ∈ (α/2, α).

To prove the second limit, we first rewrite (4.2) as

χε(x, v, t) =

∫ ∞
0

e−sϕ

(
x+ ε

v

ν(v)
z, t

)
ds
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and observe that

1

ε
∂viχε =

∫ ∞
0

s e−s∂xjϕ

(
x+ ε

v

ν(v)
z, t

)
∂vi

(
vj
ν(v)

)
dz. (4.6)

Next let us note that thanks to (1.11) we obtain∣∣∣∣∂vi ( vj
ν(v)

)∣∣∣∣ ≤ 1

ν(v)
+
|v| |∇vν(v)|

ν(v)2
≤ C,

for all 1 ≤ i, j ≤ d. Using Jensen’s inequality, we deduce:∫ ∫ ∣∣∣∣1ε ∇vχε
∣∣∣∣2M(v) dv dx

≤ C
∫ ∫ ∫ ∞

0

s e−s
∣∣∣∣∇xϕ(x+ ε

v

ν(v)
z, t

)∣∣∣∣2 dzM(v) dv dx

≤ C‖∇xϕ(·, t)‖L2(Rd).

Therefore, by Cauchy-Schwarz∣∣∣∣ε−1 ∫ ∫ ∫ gε(E · ∇vχε) dv dxdt

∣∣∣∣ ≤ ‖gε‖L2
M−1
‖E‖L∞‖∇xϕ‖L2(Rd×(0,∞)),

which completes the proof thanks to (3.3).

Proof. (Proof of Lemma 4.2) For any δ > 0 we can write:(∫
Rd
M(v)|χε − ϕ| dv

)2

≤ C
(∫

Rd

1

(1 + |v|)d+α
|χε − ϕ| dv

)2

≤ C
(∫

Rd

1

(1 + |v|)d+δ
dv

)(∫
Rd

1

(1 + |v|)d+2α−δ |χε − ϕ|
2 dv

)
≤ Cδ

∫
Rd

1

(1 + |v|)d+2α−δ |χε − ϕ|
2 dv.

Furthermore, we have

|χε − ϕ| =
∣∣∣∣∫ ∞

0

e−ν(v)zν(v)[ϕ(x+ εvz)− ϕ(x)] dz

∣∣∣∣
≤
(∫ ∞

0

e−ν(v)zν(v)[ϕ(x+ εvz)− ϕ(x)]2 dz

)1/2

and so ∫
Rd
|χε − ϕ|2 dx ≤

∫ ∞
0

e−ν(v)zν(v)

∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dxdz.

Finally, using the inequalities∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx ≤ 2‖ϕ(·, t)‖2L2(Rd)
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and ∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx ≤ ‖∇xϕ(·, t)‖2L2(Rd)|εvz|
2

we note that for any η ∈ (0, 1) there exists a constant C such that∫
Rd

[ϕ(x+ εvz)− ϕ(x)]2 dx ≤ C‖ϕ(·, t)‖2H1(Rd)(ε|v|z)
2η.

We deduce∫ (∫
Rd
M(v)|χε − ϕ| dv

)2

dx

≤ Cε2η‖ϕ(·, t)‖2H1(Rd)

∫
Rd

∫ ∞
0

e−ν(v)zν(v)
(|v|z)2η

(1 + |v|)d+2α−δ dz dv

where the last integral is finite provided we choose η < α and then δ < 2(α− η).

Having proved that the two terms in the right hand side of (4.3) go to zero as

ε→ 0, we now prove the following result, which shows how the asymptotic equation

appears when passing to the limit in (4.3):

Proposition 4.2. Let Lε be the operator defined by

Lε(ϕ)(x, t) := ε−α
∫
νFε(χε − ϕ) dv

for all ϕ ∈ D(Rd × (0,∞)), where χε is defined by (4.2). Then

Lε(ϕ) −→ L(ϕ) := −κ(−∆)α/2(ϕ)− (DE) · ∇xϕ as ε→ 0

uniformly and in L2. The matrix D is defined by (1.17) and κ is given by (1.16).

The key to the proof of this proposition is the following immediate consequence

of Proposition 2.1:

Proposition 4.3. When α > 1, the function Fε satisfies

Fε(x, v, t) = M(v) + εα−1E(x, t) · λ(v) +Gε(x, v, t) (4.7)

where λ(v) is given by (2.26) and Gε satisfies:

|Gε(x, v, t)| ≤ Cε2(α−1)|E(x, t)|2M(v) for all (x, v, t). (4.8)

Proof. (Proof of Proposition 4.2) Using Proposition 4.3 above, we write

Lε(ϕ) = Lε1 + Lε2 + Lε3 (4.9)

where

Lε1 = ε−α
∫
νM(v)(χε − ϕ) dv

Lε2 = ε−1
∫
νE(x, t) · λ(v)(χε − ϕ) dv

Lε3 = ε−α
∫
νGε(χε − ϕ) dv.
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The first term converges to −κ(−∆)α/2(ϕ) uniformly and in L2, as was proved, for

instance in Ref. 20.

For the second term, we note that

Lε2 = E(x, t) ·
(
ε−1

∫
νλ(v)(χε − ϕ) dv

)
and we conclude thanks to the following lemma (which is proved below):

Lemma 4.3. For any test function ϕ, we have

lim
ε→0

ε−1
∫
Rd
νλ(v)(χε − ϕ) d v =

∫
Rd
λ(v)(v · ∇xϕ(x, t)) d v = DT∇xϕ

where the limit holds uniformly and in L2.

Finally, for the last term in (4.9), we write

χε − ϕ =

∫ ∞
0

e−ν(v)zν(v)[ϕ(x+ εvz, t)− ϕ(x, t)] dz

=

∫ ∞
0

e−ν(v)zν(v)

∫ z

0

εv · ∇xϕ(x+ εvs, t) dsdz, (4.10)

which gives:

Lε3 = ε−α
∫
Rd
νGε(χε − ϕ) dv

= ε1−α
∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2Gεv · ∇xϕ(x+ εvs, t) dsdz dv.

Using (4.8), we deduce

|Lε3| ≤ Cεα−1|E(x, t)|2
∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2M(v)v · ∇xϕ(x+ εvs, t) dsdz dv.

Next, thanks to the fact that
∫
Rd |v|M(v) dv is finite (since α > 1) we obtain

‖Lε3‖L∞(Rd×(0,∞)) ≤ Cεα−1|E(x, t)|2‖∇xϕ‖L∞ ,

and applying Jensen’s inequality we get

|Lε3|2

≤ C(εα−1|E(x, t)|2)2
∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2M(v)|v||∇xϕ(x+ εvs, t)|2 dsdz dv,

hence

‖Lε3‖L2(Rd×(0,T )) ≤ Cεα−1‖E(x, t)‖2L∞‖∇xϕ‖L2(Rd×(0,T )),

which completes the proof.

Proof. (Proof of Lemma 4.3) First, using (4.10) we obtain

ε−1
∫
Rd
νλi(v)(χε−ϕ) dv =

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λi(v)v·∇xϕ(x+εvs, t) dsdz dv.

(4.11)
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Next, we note that for any δ ∈ (0, 1), we have

|∇xϕ(x+ εvs, t)−∇xϕ(x, t)| ≤ C|εvs|δ,

and ∫ ∞
0

∫ z

0

e−ν(v)zν(v)2 dsdz = 1

where the first inequality follows from the two inequalities |∇xϕ(x+y)−∇xϕ(x)| ≤
C (for |y| ≥ 1) and |∇xϕ(x + y) −∇xϕ(x)| ≤ C|y| (for |y| ≤ 1). Hence, thanks to

(2.27) we deduce∣∣∣∣ε−1 ∫
Rd
νλi(v)(χε − ϕ) dv −

∫
Rd
λi(v)v dv · ∇xϕ(x, t)

∣∣∣∣
≤ C

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λ(v)|v||εvs|δ dsdz dv

≤ Cεδ
∫
Rd
M(v)|v|1+δ dv.

The uniform convergence follows by choosing δ such that 0 < δ < α− 1.

Finally, going back to (4.11), we also deduce∫ ∞
0

∫
Rd

∣∣∣∣ε−1 ∫
Rd
νλ(v)(χε − ϕ) dv

∣∣∣∣ dx dt
≤
∫ ∞
0

∫
Rd

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λ(v)|v||∇xϕ(x+ εvs, t)|dsdz dv dx dt

≤ ‖∇xϕ‖L1(Rd×(0,T ))

∫
Rd

∫ ∞
0

∫ z

0

e−ν(v)zν(v)2λ(v)|v|dsdz dv

≤ C‖∇xϕ‖L1(Rd×(0,T )).

So by a simple interpolation, we see that since the quantity under consideration is

bounded in L1 and converges uniformly, it also converges in L2.

Gathering the results above, we can now complete the proof of Theorem 1.1:

Proof. (Proof of Theorem 1.1) In view of Proposition 3.4 and using a diagonal

extraction argument, we can assume (up to a subsequence) that there exist two

functions f(x, v, t) and ρ(x, t) such that

fε ⇀ f in L∞((0, T );L2
M−1(R2d))-weak ?

and

ρε ⇀ ρ in L∞((0, T );L2(Rd))-weak ?

for all T > 0. Furthermore, Proposition 3.4 (iii), together with Proposition 4.3

implies

‖fε − ρεM‖L2(0,T ;L2
M−1 (R2d)) ≤ C(T )εα−1
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and so

f(x, v, t) = ρ(x, t)M(v).

Next, we recall that Lemma 4.2 gives:∫
M [χε − ϕ] dv −→ 0 in L2(Rd × (0,∞)),

and we can prove similarly that∫
M [∂tχε − ∂tϕ] dv −→ 0 in L2(Rd × (0,∞)).

Using these facts, it is easy to show that

lim
ε→0

(∫ ∞
0

∫ ∫
fε ∂tχε dv dxdt+

∫ ∫
f inχε|t=0 dv dx

)
=

∫ ∞
0

∫
ρ ∂tϕdx dt+

∫ ∫
ρinϕ|t=0 dx.

Finally combining this limit with Propositions 4.1 and 4.2, we can now pass to

the limit in (4.3) to deduce:∫ ∞
0

∫
ρ ∂tϕdxdt+

∫
ρinϕ|t=0 dx

+

∫ ∞
0

∫
ρ
[
−κ(−∆)α/2(ϕ)− (DE) · ∇xϕ

]
dxdt = 0

which is the weak formulation of (1.15).

5. Proof of Theorem 1.2

Before proving Theorem 1.2, we need to show that µ(E) defined by (1.20) is well

defined:

Lemma 5.1. The function R(v,E) = F (v,E)−M(v) satisfies

|R(v,E)| ≤ C|E| M(v)

1 + |v|
,

For some constant C > 0. In particular, the quantity µ(E) defined by (1.20) is well

defined for all E ∈ Rd and satisfies |µ(E)| ≤ C|E|.

Postponing the proof of this lemma to the end of this section, we turn to the

proof of Theorem 1.2:

Proof. (Proof of Theorem 1.2) When α = 1, Fε(x, v, t) = F (v,E(x, t) is indepen-

dent of ε (we thus drop the ε subscript below) and the weak formulation (4.3) takes
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the form∫ ∫ ∫
fε ∂tχε dv dx dt+

∫ ∫
f inχε|t=0 dv dx+

1

ε

∫ ∫ ∫
ρενF (χε − ϕ) dv dxdt

= −1

ε

∫ ∫ ∫
gε(E · ∇vχε) dv dxdt− 1

ε

∫ ∫ ∫
K(gε)(χε − ϕ) dv dxdt.

(5.1)

Proceeding as in the proof of Theorem 1.1, we have (see Proposition 3.4):

fε ⇀ f in L∞((0, T );L2
M−1(R2d))-weak ?

and

ρε ⇀ ρ in L∞((0, T );L2(Rd))-weak ?

for all T > 0 and we can write

fε = ρεF + gε

where gε satisfies

‖gε‖L2((0,T ),L2
M−1 (R2d)) ≤ C(T )ε1/2. (5.2)

This implies in particular that

f(x, v, t) = ρ(x, t)F (x, v, t).

In order to complete the proof of Theorem 1.2, we need to pass to the limit in

the weak formulation (4.3). First, we note that thanks to Proposition 4.1 (which we

proved without restriction on α), the right hand side in (5.1) vanishes in the limit.

Now let us define the operator Lε(ϕ) as

Lε(ϕ) =
1

ε

∫
Rd
ν(v)F (v,E)(χε − ϕ) dv

=
1

ε

∫
Rd
ν(v)F (v, 0)(χε − ϕ) dv

+
1

ε

∫
Rd
ν(v)

(
F (v,E)− F (v, 0)

)
(χε − ϕ) dv

= Lε1(ϕ) + Lε2(ϕ), (5.3)

where F (v, 0) = M(v) thanks to the definition of F given in (2.2).

Proposition 4.4 in Ref. 20 gives

Lε1(ϕ)→ κ(−∆)1/2ϕ in L2-strong.
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Furthermore, using formula (4.2) for χε, we can recast Lε2(ϕ) as follows:

Lε2(ϕ) (5.4)

=
1

ε

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
(
F (v,E)−M

)
(ϕ(x+ εvz)− ϕ(x)) dz dv (5.5)

=

(∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
(
F (v,E)−M

)
vz dz dv

)
· ∇xϕ(x, t)

+
1

ε

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
(
F (v,E)−M

)
(ϕ(x+ εvz)− ϕ(x)− εvz · ∇ϕ(x)) dz dv,

= µ(E) · ∇xϕ(x, t) +Rε
and we can now show that Rε → 0 uniformly in x and t: Indeed, Lemma 5.1 implies

|Rε| ≤ C
1

ε

∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
M(v)

1 + |v|
(ϕ(x+ εvz)− ϕ(x)− εvz · ∇ϕ(x)) dz dv

and for any η ∈ [1, 2], we have

|ϕ(x+ εvz)− ϕ(x)− εvz · ∇ϕ(x)| ≤ Cη(ε|v|z)η.

We deduce

|Rε| ≤ Cηεη−1
∫
Rd

∫ ∞
0

e−ν(v)zν2(v)
M(v)

1 + |v|
(|v|z)η dz dv

The integral in the right hand side is finite as long as η < 2 so we can take η = 3/2

and deduce

‖Rε‖L∞ → 0 as ε→ 0.

We have thus shown that

Lε2(ϕ)→ µ(E) · ∇xϕ(x, t)

uniformly in x and t as ε→ 0, which implies that Lε(ϕ) converges uniformly to

−κ(−∆)1/2(ϕ)(x, t) + µ(E) · ∇xϕ(x, t).

Passing to the limit in (5.1) (the first two terms are handled exactly as in the proof

of Theorem 1.1), we deduce∫ ∞
0

∫
ρ ∂tϕdxdt+

∫
ρinϕ|t=0 dx

+

∫ ∞
0

∫
ρ
[
−κ(−∆)α/2(ϕ)− µ(E) · ∇xϕ

]
dxdt = 0

which is the weak formulation of (1.19).

Proof. (Proof of Lemma 5.1) First, we note that for any E ∈ Rd, the function

v 7→ R(v,E) solves

T (R) = −E · ∇vM.
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Using the coercivity property of T (2.18) and the fact that
∫
Rd R(v,E) dv = 0, we

deduce (∫
R2

F
dv

)1/2

≤ C|E|
(∫

|∇M |2

F
dv

)1/2

≤ C|E|.

Next, we rewrite the equation for R as

νR− E · ∇vR = K(R)− E · ∇vM. (5.6)

Using the fact that
∫
Rd R(v,E) dv = 0, we can write

K(R)(v) =

∫
Rd

(σ(v, v′)− ν0)R(v′) dv′,

and so using (1.13), we obtain

|K(R)| ≤
∫
|σ − ν0||R(v′, E)|dv′M(v)

≤ CM(v)

1 + |v|

∫
|R(v′, E)|dv′

≤ CM(v)

1 + |v|

(∫
|R(v′, E)|2 dv′

F (v′, E)

)1/2

≤ C|E| M(v)

1 + |v|
. (5.7)

Finally, assumptions (1.8) yields

|E · ∇vM(v)| ≤ C|E| M(v)

1 + |v|
.

We thus have

|νR− E · ∇vR| ≤ C|E|
M(v)

1 + |v|
,

which implies (using Remark 2.1)

|R(v,E)| ≤ C|E| M(v)

1 + |v|
for all v ∈ Rd, E ∈ Rd

and the lemma follows.
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