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Abstract

We study liquid drops lying on a rough planar surface. The drops are minimizers of an energy
functional that includes a random adhesion energy. We prove the existence of minimizers and the
regularity of the free boundary. When the length scale of the randomly varying surface is small,
we show that minimizers are close to spherical caps which are minimizers of an averaged energy
functional. In particular, we give an error estimate that is algebraic in the scale parameter and
holds with high probability.

1 Introduction

1.1 Liquid drops and Caccioppoli sets

We consider liquid drops resting on an planar surface with inhomogeneous adhesion properties.
A drop is represented by a set E of finite perimeter (also called a Caccioppoli set) contained in
Ω = Rd × (0,∞) and having fixed volume |E| = V > 0. Throughout we will use x to denote a point
in Rd, z to denote a point in [0,∞), and y = (x, z) to denote a point in Rd+1. The boundary set
∂Ω = {(x, 0) : x ∈ Rd} is the solid surface on which the drop is resting.

For a given Caccioppoli set E ⊂ Ω, P (E,Ω) will denote the perimeter of the free surface ∂E∩{z >
0} (which represents the liquid-vapor interface) and is defined as follows:

P (E,Ω) = sup
{∫

E
div g(y)dy : g ∈ [C1

0(Ω)]d+1, |g| ≤ 1
}
.

Because the characteristic function φE of a Caccioppoli set is in BV(Ω), it has a trace φ̄E ∈ L1(∂Ω)
(see [5]).

We consider a simple situation in which the energy of a drop is the sum of the surface tension
energy (proportional to the free surface area) and the wetting energy (resulting from the interactions
between the liquid and the solid). After some normalization, we thus assume that the energy of a
drop E is given by

J (E) = P (E,Ω)−
∫

Rd
β(x)φ̄E(x) dx (1.1)

where the coefficient β(x) ∈ R is the relative adhesion coefficient between the liquid and the solid.
Positive values β > 0 correspond to a hydrophilic surface, while negative values β < 0 correspond
to a hydrophobic surface. It is known that if β(x) ≤ −1 for all x, then global minimizers of J (E),
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under the volume constraint |E| = V , are spherical sets in Ω having no contact with the surface ∂Ω.
On the contrary, if β > −1, absolute minimizers of the functional J must touch the solid support,
though a sphere of volume V is still a local (degenerate) minimizer (see [4, 6]).

In this article we study minimizers of J when β(x) is a random field taking values in the
interval (−1, 1). Our first result is a proof of the existence and regularity of global minimizers under
an additional constraint that confines the drop to a bounded region. We then consider the issue of
homogenization. For β(x) = η(x/ε) with ε > 0 small, we show that global minimizers Eε are very
close to minimizers of a homogenized energy functional J0. In particular, we give an error estimate
that is algebraic in ε as ε→ 0 and holds with high probability.

1.2 Free surface, wetted region and contact line

Given a drop E, the free surface of the drop (the liquid-vapor interface) is the set ∂E ∩ {z > 0}
whose area (perimeter of E) is defined above. Note that sets of finite perimeter are defined only up
to sets of measure 0. We will thus normalize E (as in [5]) so that

0 < |E ∩B+
r (y)| < |B+

r (y)| for all y ∈ ∂E and all r > 0

Here and below, |A| denotes the Lebesgue measure of a set A, Br(y) denotes a ball of radius r and
center y, and B+

r = Br ∩ {z > 0}.
For a smooth set, the wetted region (liquid-solid interface), is

ΣE = E ∩ {z = 0},

which is the trace of E on ∂Ω. However in general, it is not obvious that the trace φ̄E of φE is equal
to 0 or 1 almost everywhere, so we cannot yet define ΣE .

Next, the contact line (the liquid-vapor-solid interface) is defined for a smooth set E as the
topological boundary of ΣE :

ClE = ∂ΣE .

For a general Caccioppoli set, the contact line ClE is defined as the set of points x0 such that (x0, 0)
belongs to ∂E, that is such that{

|E ∩B+
r (x0, 0)| > 0 for all r > 0,

|(Ω \ E) ∩B+
r (x0, 0)| > 0 for all r > 0

(1.2)

We immediately see that if x0 /∈ ClE , then either φ̄E is zero almost everywhere in a neighborhood
of x0 or φ̄E is one almost everywhere in a neighborhood of x0. This means that outside of ClE , the
contact set ΣE is well defined.

In Section 2.3, we will show that for minimizers of J , the contact line ClE is indeed a line – it
has finite d − 1 Hausdorff measure. This implies in particular that for minimizers of J , the trace
φ̄E is equal to 0 or 1 almost everywhere, which justifies, a posteriori, our notation ΣE for the wetted
region (ΣE can indeed be defined as the set of points where φ̄E = 1). For such sets, we have∫

Rd
g(x)φ̄E(x)dx =

∫
ΣE

g(x) dx

for all bounded measurable functions g, and

|ΣE | =
∫

Rd
φ̄E(x) dx.
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1.3 Constant adhesion coefficient

Before defining the random field β(x) and stating our results, we first briefly recall some classical
facts about the minimizers of (1.1) when β ≡ β0 ∈ (−1, 1) is constant (see E. Gonzalez et.al. [7] for
details and references). For such a homogeneous surface, the corresponding energy functional is

J0(E) = P (E,Ω)− β0

∫
Rd
φ̄E(x) dx. (1.3)

For any given volume V > 0, we define E0(V ) = {E ⊂ Ω ; P (E,Ω) < ∞, |E| = V }. It is known
that there exists a set E ∈ E0(V ) which is a minimizer of the energy functional (1.3):

J (E) ≤J (F ), ∀ F ∈ E0(V ).

Furthermore, Schwarz symmetrization decreases the energy: For every E ∈ E0(V ), the set

Es = {(x, z) ∈ Ω ; |x| < ρ(z)}, where ρ(z) =
(
ω−1
d

∫
Rd
φE(x, z)dx

) 1
d

is a Caccioppoli set with the same volume V , and we have the inequality

J0(Es) ≤J0(E). (1.4)

The constant ωd is the measure of the unit ball in Rd. Equality holds in (1.4) if and only if E is
symmetric (i.e. Es = E). This fact implies that any minimizer should have axial symmetry, and it
can be shown that minimizers are spherical caps, which are the intersection of the upper-half space
Ω with a ball Bρ0(x0, z0) ∈ Rd+1 having radius ρ0 and center (x0, z0). We use

B+
ρ0

(x0, z0) = Bρ0(x0, z0) ∩ {z > 0}

to denote such a spherical cap. In this case the wetted region ΣE is a disc of radius
√
ρ2

0 − z2
0 , where

z0, ρ0 are such that the Young-Laplace law and volume constraint are satisfied:
z0

ρ0
= β0, V = ωd

∫ ρ0

−z0
(ρ2

0 − r2)d/2 dr. (1.5)

Finally, we recall the following stability result for the minimization problem with constant adhe-
sion coefficient (see [1]), which will play an important role in our analysis for the case of heterogeneous
adhesion coefficient:

Theorem 1.1. Suppose a set E ∈ E0(V ) and R > 0 is such that

E is contained in a ball BR ⊂ Ω, and (1.6)
∃δ > 0 s.t. J0(E) ≤J0(F ) + δ ∀F ∈ E0(V ). (1.7)

There exists a universal s > 0, a constant C (depending on R), and a point x0 ∈ Rd such that

|E4B+
ρ0

(x0, z0)| ≤ Cδs,

where ρ0 and z0 satisfy (1.5)

The notation E4B denotes the symmetric difference of sets E, B. If E also satisfies some non-
degeneracy conditions, then Theorem 1.1 implies the uniform stability in the following sense: For
any η > 0, there exists δ0 such that if (1.7) holds with δ < δ0, then

B+
(1−η)ρ0

(x0, z0) ⊂ E ⊂ B+
(1+η)ρ0

(x0, z0).

In other words, the free surface ∂E ∩ {z > 0} is between ∂B+
(1+η)ρ0

(x0, z0) and ∂B+
(1−η)ρ0

(x0, z0).
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1.4 Random adhesion coefficient

We now describe the framework of this paper and state our main result:
Let {βk}k∈Zd be a collection of independent, identically distributed random variables satisfying

P (βk ∈ (βmin, βmax)) = 1, E[βk] = β0, (1.8)

for some constants −1 < βmin ≤ βmax < 1. We use (H,F ,P) to refer to the probability space over
which these random variables are defined. For ε > 0 and k ∈ Zd, let Qεk = εk + [0, ε)d denote the
nonoverlapping cubes of size ε with corners at the points εZd. Then, we define the random adhesion
coefficient βε(x) according to

βε(x) = βk, if x ∈ Qεk. (1.9)

Observe that βε(x) = β1(x/ε). We will use Jε and J0 to denote the energy functionals associated
with βε(x) and β0, respectively, replacing β(x) in (1.1).

In full generality, the existence of a minimizer for (1.1) can be delicate to establish. Indeed,
it easy to construct a function β(x) for which minimizing sequences do not converge in L1. For
example, let β(x) be a strictly increasing function of x1 (such as β(x) = 1

π arctan(x1), which satisfies
limx1→±∞ β(x) = ±1

2 ∈ (−1, 1)). In that case, any minimizing sequence will drift toward x1 → +∞
and will not converge in L1.

In order to avoid such behavior, we will assume that the drops must stay inside a “container” of
the form

U = BR × [0,∞)

where BR is a ball of radius R in Rd (R will always be assumed to be large enough, so that a
ball of volume V fits in U). The “bottom” of the container is thus BR × {0}, while the “wall” is
∂BR × [0,∞). We will assume that the wall of the container is completely hydrophobic. One way
to take that into account is to include the area of E ∩ (∂BR × [0,∞)) in the wetting energy, with
β = −1. Another way is to include the area E ∩ (∂BR × [0,∞)) in the free surface area. Choosing
the later approach, we define

E (V ) = {E ⊂ U : P (E,Ω) <∞, |E| = V } , (1.10)

and for all E ∈ E (V ) we define the energy

Jε(E) = P (E,Ω)−
∫

Rd
βε(x)φ̄E(x) dx. (1.11)

Our main result is:

Theorem 1.2. With probability one and for all ε > 0, there exists a Caccioppoli set Eε ∈ E (V )
such that

Jε(Eε) = min
E∈E (V )

Jε(E).

Furthermore, for any r > (d + 1)/d there are constants Kr, K2, and K3 such that if α > 0 and
ε < Kr min(1, αr), then there is a random point x0 ∈ Rd such that

|Eε4B+
ρ0

(x0, z0)| ≤ Cαs (1.12)

holds, except possibly on a F-measurable set of measure less than K2e
−K3ε−dα2

. The constants K2

and K3 depend on V , but not on r.
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The exponent s > 0 and the constant C are the same as those appearing in Theorem 1.1. The
estimate (1.12) shows that when ε is small, minimizers of Jε are close to a spherical cap which
minimizes J0, the energy functional associated with the homogeneous medium β ≡ β0. It is not
clear whether the random variable |Eε4B+

ρ0
(x0, z0)| is F-measurable; we do not claim that x0 is F-

measurable. Nevertheless, the set where (1.12) may not hold must be contained in a F-measurable
set of measure less than K2e

−K3ε−dα2
. Therefore, if we choose 0 < p < d/(d+ 1), then the estimate

(1.12) says that |Eε4B+
ρ0

(x0, z0)| ≤ Cεsp with very high probability as ε → 0. In particular, if the
surface dimension is d = 2, then the error |Eε4B+

ρ0
(x0, z0)| is almost O(εs2/3).

Theorem 1.2 builds upon work of Caffarelli and Mellet [1] where they studied the case of periodic
adhesion coefficient β(x/ε). In that setting, they proved the existence of minimizers which are close
to a spherical cap when ε is small. For a random adhesion coefficient, however, some technical issues
arise related to the construction of minimizers, as we have mentioned. In Section 2, we prove the
existence and regularity properties of minimizers of J with the additional constraint E ⊂ U . We
prove the error estimate (1.12) later in Section 3. In view of Theorem 1.1, the error estimate follows
from a suitable bound on the energy difference Jε(Eε) −J0(Eε). To obtain such a bound, we
make use of the uniform regularity of the free boundary and apply concentration inequalities for
sums of independent random variables. We refer to [3] for another example of an error estimate for
a nonlinear, stochastic homogenization problem.

In [2], Caffarelli and Mellet used the result of [1] to show that homogenization leads to hysteresis
phenomena, in the sense that there exist local minimizers for ε > 0 that converge to non-spherical
drops (with contact angle larger than the average of β on parts of the contact line). Such a result
could be extended to the random framework, but would require strong assumptions on the structure
of the oscillations of β. Several results have also been obtained concerning the homogenization of
dynamic contact angle conditions (moving liquid drops). In particular, Kim in [9, 10] has studied the
periodic homogenization of some Hele-Shaw type models for dynamic contact angle, and established
error estimates [8]. Finally, the random homogenization for the Hele-Shaw free boundary problem
is studied in [11].

Acknowledgment. AM was partially supported by NSF grant DMS-0901340. JN was partially
supported by NSF grant DMS-1007572.

2 Existence and regularity of minimizers

In this section, we consider the functional J defined by (1.1) with β(x) being any measurable
function that satisfies

−1 < βmin ≤ β(x) ≤ βmax < 1 for all x ∈ Rd. (2.13)

Our goal is to study the existence and regularity of minimizers for J (with the volume constraint).
Similar results were proved in [1] in the periodic framework, and can be generalized. However, in
the periodic case, it is not necessary to constrain E to a bounded set U : the periodicity prevents
minimizing sequences from drifting away. As pointed out in the introduction, in the general case,
we need to work within a bounded set U in order to find a minimizer, and we have to check carefully
that this additional constraint does not cause any problems.

We will show:

Proposition 2.1. For any measurable function β(x) satisfying (2.13), there exists E ∈ E (V ) such
that

J (E) = min
F∈E (V )

J (F ). (2.14)
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The contact line ClE (defined by (1.2)) has finite (d − 1)-Hausdorff measure and there exists a set
ΣE such that ∫

Rd
g(x) φ̄E(x) dx =

∫
ΣE

g(x) dx for all g ∈ C1
0(Rd).

Finally, there exists a universal constant C > 0 such that

C−1V
d
d+1 ≤ P (E,Ω) ≤ CV

d
d+1 , |ΣE | ≤ CV

d
d+1 (2.15)

and
Hd−1(ClE) ≤ CV

d−1
d+1 . (2.16)

2.1 Existence of a minimizer

Because subsets of BV (Ω) are pre-compact in L1
loc(Ω), Lemma 2.1 and 2.2 below will yield the

existence of minimizers provided that we stay within a bounded subset of Rd+1. We thus define

UT = BR × [0, T ],

and
ET (V ) = {E ∈ E (V ) ; E ⊂ UT },

and we assume that T is large enough, so that ET (V ) is not empty. We then have the following
proposition:

Proposition 2.2. There exists E ∈ ET (V ) satisfying

J (E) = min
F∈ET (V )

J (F ). (2.17)

Moreover, there exists a universal constant C such that

C−1V
d
d+1 ≤ P (E,Ω) ≤ CV

d
d+1 and

∫
Rd
φ̄E(x) dx ≤ CV

d
d+1 . (2.18)

Proposition 2.2 follows from the following lemmas:

Lemma 2.1. The functional J is lower semicontinuous with respect to the L1 topology: If {Ej}∞j=1

is a sequence of Caccioppoli sets such that φEj −→ φE in L1(Ω) then

J (E) ≤ lim inf
j→∞

J (Ej).

Lemma 2.2. If β satisfies (2.13), then

J (E) ≥ 1− βmax

2
P (E,Ω) +

1− βmax

2

∫
Rd
φ̄E(x) dx

for all E ∈ E (V ).

Proof of Lemma 2.2. We recall that for all h ∈ [C1(Rd+1)]d+1, we have∫
Ω
φE div h = −

∫
Ω
〈h, DφE〉+

∫
Rd
φ̄E(x)hd+1(x, 0) dx. (2.19)
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If g(x) is a non-negative measurable function, then taking h = (0, . . . , 0, g(x)), we deduce:∫
Ω
g(x)|DφE | dy ≥

∫
Rd
g(x)φ̄Edx. (2.20)

Hence ∫
Ω

1 + β(x)
2

|DφE | dy ≥
∫

Rd

1 + β(x)
2

φ̄E(x)dx

and therefore ∫
Ω

(
1− 1− β(x)

2

)
|DφE | dy ≥

∫
Rd

(
1− β(x)

2
+ β(x)

)
φ̄E(x)dx

which gives

J (E) ≥
∫

Ω

1− β(x)
2

|DφE | dy +
∫

Rd

1− β(x)
2

φ̄E(x)dx

and implies Lemma 2.2.

Proof of Proposition 2.2. Consider a minimizing sequence φEj with Ej ∈ ET (V ). Lemma 2.2 and
the fact that UT is bounded imply that (φEj )j is bounded in BV (UT ) and thus compact in L1(UT ).
Hence there exists E such that φEj −→ φE . Using Lemma 2.1 we deduce E is a minimizer of J in
ET (V ).

Next, we remark that (2.20) implies (with g = 1)

P (E,Ω) ≥
∫

Rd
φ̄E(x) dx. (2.21)

We recall the isoperimetric inequality

|E|
d
d+1 = V

d
d+1 ≤ µd+1P (E,Rd+1)

and (2.19) gives for all h ∈ [C1
0(Rd+1)]d+1 with |h| ≤ 1∣∣∣∣∫

Rd+1

φE div h
∣∣∣∣ ≤ ∫

Ω
|DφE |+

∫
Rd
φ̄E(x) dx

≤ P (E,Ω) +
∫

Rd
φ̄E(x) dx.

Taking the supremum over all such h, we deduce

P (E,Rd+1) ≤ P (E,Ω) +
∫

Rd
φ̄E(x) dx

and therefore

V
d
d+1 ≤ µd+1

(
P (E,Ω) +

∫
Rd
φ̄E(x) dx

)
. (2.22)

Using (2.21), we deduce
V

d
d+1 ≤ 2µd+1P (E,Ω). (2.23)

Moreover, we have

J (E) ≥ P (E,Ω)− βmax
∫

Rd
φ̄E(x) dx ≥ (1− βmax)P (E,Ω).

7



and since J (E) ≤J (B) where B ⊂ Ω is a ball with volume V , we also have

(1− βmax)P (E,Ω) ≤J (B) = µ−1
d+1V

d
d+1 . (2.24)

Combining (2.21), (2.23) and (2.24), we get (2.18).

In order to prove the first part of Proposition 2.1, it remains to prove that for T large enough,
the minimizer for J in ET (V ) provided by Proposition 2.2 is actually a minimizer in E (V ). This
follows from the following result, the proof of which can be found in [1]:

Lemma 2.3. There exists T1 such that for all T ≥ T1, there exists a minimizer E of J in ET that
satisfies

E ∈ ET1(V ).

2.2 Non-degeneracy estimates and weak regularity of the contact line

In this section, we prove the Hausdorff estimate (2.16). First, we need to show that minimizers of J
enjoy some non-degeneracy properties which will also be useful later on. Throughout this section,
E denotes a minimizer of J in E (V ), as constructed in the previous section.

We recall the following simple fact:

min
E (V )

J ≤ min
E (V+dV )

J ≤ min
E (V )

J + CV −
1
d+1dV. (2.25)

The first inequality can be obtained simply taking the minimizer with volume V +dV and chopping
a piece of volume dV at the top. For the second inequality, we consider the minimizer E with volume
V and take a vertical dilation Et = {(x, z); (x, (1 + t)−1z) ∈ E)}. Then, for t = dV/V , Et is an
admissible set of volume V + dV . See [1] for details.

We now prove the following non-degeneracy estimate:

Lemma 2.4. Let (x0, z0) ∈ ∂E with z0 > 0. There exists c, universal constant, such that for all
r ≤ z0 we have

|Br(x0, z0) ∩ E| ≥ c rd+1

|Br(x0, z0) \ E| ≥ c rd+1.

Proof. In order to prove the first inequality, we define (for r ≤ z0):

U(r) = |Br(x0, z0) ∩ E|, S(r) = H n(∂Br(x0, z0) ∩ E)

and
A = P (E,Br(x0, z0)).

Then, using (2.25) and the fact that E is a minimizer, we have

J (E \Br) = J (E)−A+ S ≥ min
F∈E (V−U)

J (F ) ≥ J (E)− CU

and therefore
A ≤ S(r) + CU(r).
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The isoperimetric formula then yields

U(r)
d
d+1 ≤ 2µd+1(S(r) + CU(r)).

Noticing that U ′(r) = S(r), and using the fact that U(0) = 0 and U(r) > 0 for all r > 0, Gronwall’s
Lemma gives the first inequality.

The second inequality is proved in a similar way, by estimating J (E ∪ Br). However, we
have to be a little bit careful here, since Br might not lie entirely in the domain U . But defining
d0 = d(x0, ∂U) the distance of x0 from the boundary of U (note that we can have d0 = 0), we can
still prove

|Br(x0, z0) \ E| ≥ c rd+1 for all r ≤ d0.

For r > d0, we then have (since E ⊂ U)

|Br(x0, z0) \ E| ≥ |Bd0(x0, z0) \ E|+ |Br(x0, z0) \ U|
≥ c dd+1

0 + |Br(x0, z0) \ U|.

Finally, we note that
|Br(x0, z0) \ U| ≥ α1r

d+1 − α2d
d+1
0

and so replacing |Br(x0, z0)\U| by γ|Br(x0, z0)\U| for some small enough γ in the previous inequality
we deduce

|Br(x0, z0) \ E| ≥ c rd+1 for all r < z0.

Next, we want to derive similar non-degeneracy estimate in the neighborhood of the contact line:

Lemma 2.5. If x0 ∈ ClE, then
|E ∩B+

r (x0, 0)| ≥ c rd+1

and
|(Ω \ E) ∩B+

r (x0, 0)| ≥ c rd+1

for every r such that |E ∩B+
r (x0, 0)| ≤ c1V .

Proof. For r > 0, we define

U(r) = |B+
r (x0, 0) ∩ E|, Σ(r) =

∫
Br(x0)

φ̄E(x) dx

and
S(r) = H n(∂B+

r (x0, 0) ∩ E), A = P (E,B+
r (x0, 0))

(note that for a smooth enough set, we have Σ(r) = |Br(x0) ∩ ΣE |).
We then have

J (E \B+
R(x0, 0)) ≤ J (E)−A+ βmaxΣ + S, (2.26)

and since
J (E \B+

R(x0, 0)) ≥J (E)− CU,

we deduce
A ≤ βmaxΣ + S + CU. (2.27)
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If E′ = E ∩B+
r (x0, 0), then the equality∫

Ω
φE′ div h = −

∫
Ω
〈h, DφE′〉+

∫
Rd
φ̄E′(x)hd+1(x, 0) dx (2.28)

with h(y) = (0, . . . , 0, 1) implies that
Σ ≤ S +A. (2.29)

Inequalities (2.27) and (2.29) imply

(1− βmax)Σ ≤ 2S + CU

and
A ≤ CS + CU.

Finally, the isoperimetric inequality (as in (2.22)) yields

U
d
d+1 ≤ µd+1(Σ + S +A) (2.30)

≤ CS + CU. (2.31)

Using the fact that S = U ′, Gronwall lemma and (1.2) give the first inequality in Lemma 2.5.
The second inequality follows in a similar fashion.

We deduce:

Corollary 2.1. If x0 ∈ ClE, then

P (E,B+
r (x0, 0)) ≥ c rd

for every r such that |E ∩B+
r (x0, 0)| ≤ c1V .

Proof of Corollary 2.1. Let

V1(r) = |E ∩B+
r (x0, 0)|, S1(r) = H n(E ∩ ∂B+

r (x0, 0))
V2(r) = |(Ω \ E) ∩B+

r (x0, 0)| S2(r) = H n((Ω \ E) ∩ ∂B+
r (x0, 0)).

Lemma 2.5 yields
Vi(r) ≥ c rd+1 i = 1, 2. (2.32)

Moreover, the isoperimetric inequality gives (after reflecting the set E about z = 0)

(2V1)
d
d+1 ≤ µd+1(2S1 + 2P (E,B+

r (x0, 0)))
(2V2)

d
d+1 ≤ µd+1(2S2 + 2P (E,B+

r (x0, 0)))

and (since we have equality in the isoperimetric inequality for the ball)

(2(V1 + V2))
d
d+1 = µd+12(S1 + S2).

It follows that
V

d
d+1

1 + V
d
d+1

2 − (V1 + V2)
d
d+1 ≤ 4µd+1P (E,B+

r (x0, 0)),

which yields the result thanks to (2.32).
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2.3 Hausdorff dimension of the contact line

The nondegeneracy estimates enable us to prove the following partial regularity result for the contact
line, and complete the proof of Proposition 2.1:

Proposition 2.3. Let E ∈ E (V ) minimize J . Then, the contact line ClE in Rd has finite (d− 1)-
Haussdorff measure, and there exists a universal constant C such that

Hd−1(ClE) ≤ CV
d−1
d+1 . (2.33)

In particular, the function φ̄E is equal to 0 or 1 almost everywhere, and we can define the wetted
region ΣE ⊂ Rd as the set where φ̄E = 1.

This proposition is a consequence of Corollary 2.1 and the following lemma

Lemma 2.6. There exists a universal constant C such that

P (E, {0 < z < t}) ≤ CV
d−1
d+1 t.

Proof. We cut from E all the points for which z ≤ t and lower it by t. This defines

F = {(x, z); (x, z + t) ∈ E} ∩ {z > 0}.

Then we have |F | ≤ |E| − Ct and so by (2.25) we have J (E) ≤J (F ) + Ct. Moreover

J (E)−J (F ) = P (E, {0 < z < t})−
∫
β(x/ε)

[
φE(x, 0)− φE(x, t)

]
dx,

(where φE(x, 0) and φE(x, t) denotes the trace of φE on {z = 0} and {z = t}) but if x belongs to
the symmetric difference of E ∩ {z = 0} and E ∩ {z = t}, then, going from the slice {z = 0} to the
slice {z = t}, we must cross ∂E, and therefore∫

|φE(x, 0)− φE(x, t)|dx ≤ P (E, {0 < z < t}).

We deduce
(1− βmax)P (E, {0 < z < t}) ≤ CV

d−1
d+1 t

which completes the proof.

Proof of Proposition 2.3. Let ∪j∈JBδ(xj) be a covering of ClE by balls of radius δ with finite over-
lapping. Then by Corollary 2.1, we have P (E,B+

δ (xj)) ≥ Cδd. Due to the finite overlapping
property, ∑

j∈J
P (E,B+

δ (xj)) ≤ CP (E, {0 < z < δ}) ≤ CV
d−1
d+1 δ.

Therefore, the number of balls is less than CV
d−1
d+1 δ1−d. Hence the stated result.
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3 Proof of Theorem 1.2

The first part of Theorem 1.2 follows immediately from Proposition 2.1: with probability one β(x) =
βε(x) satisfies the hypotheses of Proposition 2.1 for all ε > 0. So, for all ε > 0 there exists a minimizer
Eε ∈ E (V ) of Jε and by Proposition 2.3, we can define the wetted region Σε = Eε ∩ {z = 0} and
the contact line ∂Σε = ClEε .

The minimizer Eε is a random set in Rd. Nevertheless, we have shown that there is a deterministic
constant C, independent of ε, such that Eε satisfies:

P (Eε,Ω) ≤ CV
d
d+1 , |Σε| ≤ CV

d
d+1 , and Hd−1(∂Σε) ≤ CV

d−1
d+1 . (3.34)

We recall that J0 denotes the functional defined as Jε but with the constant β0 in the place of
βε(x), and we denote by E0 its minimizer with volume constraint |E0| = V . This set is a spherical
cap E0 = B+

ρ (x0, z0), and it is unique up to translation in x0. The wetted region is Σ0 = ΣE0 . In
order to estimate the symmetric difference |Eε4E0|, we will apply Theorem 1.1. To this end, we
will show that for any α > 0, the set Eε satisfies

J0(Eε) ≤J0(E0) + α (3.35)

with high probability if ε is sufficiently small. More precisely, we will show

Theorem 3.1. Let r > (d + 1)/d. There are constants Kr,K2,K3 such that if α > 0 and ε ≤
Kr min(1, αr), the minimizer Eε of Jε satisfies

P (J0(Eε) ≥J0(E0) + α) ≤ K2e
−K3ε−dα2

.

The bound (1.12) now follows immediately from this estimate and Theorem 1.1.

Proof of Theorem 3.1: By definition of J0, Jε, and Eε, we have:

J0(Eε) = Jε(Eε) +
∫

Σε

(βε(x)− β0) dx

≤ Jε(E0) +
∫

Σε

(βε(x)− β0) dx, (3.36)

where E0 denotes the minimizer of J0. Also, we have

Jε(E0) = J0(E0) +
∫

Σ0

(β0 − βε(x)) dx.

Therefore,

J0(Eε) ≤J0(E0) +
∫

Σ0

(β0 − βε(x)) dx+
∫

Σε

(βε(x)− β0) dx. (3.37)

These two integrals are random variables. In the first integral, the domain of integration Σ0 is fixed.
In the second integral, the domain of integration Σε is random. However, Proposition 3.1 below
shows that both integrals are small with high probability. Consequently, (3.37) and Proposition 3.1
imply

P(J0(Eε) ≥J0(E0) + α) ≤ Ce−Cε−dα2
.

for all ε ≤ Kr min(1, αr).
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Proposition 3.1. There are constants K1,K2,K3 such that for all α > 0 and ε ≤ K1α, we have

P
(∣∣∣∣∫

Σ0

(βε(x)− β0) dx
∣∣∣∣ > α

)
≤ K2e

−K3ε−dα2
. (3.38)

If r > (d+ 1)/d, there is a constant Kr such that for all α > 0 and ε ≤ Kr min(1, αr),∣∣∣∣∫
Σε

(βε(x)− β0) dx
∣∣∣∣ ≤ α (3.39)

also holds, except possibly on a set of measure K2e
−K3ε−dα2

.

Proof of Proposition 3.1: We first prove (3.38). Recall that βε(x) = βεk within the cube Qεk.
Let us define the set of indices k ∈ Zd such that the cube Qεk is contained within Σ0:

Λε,0 =
{
k ∈ Zd ; |Qεk ∩ Σ0| = |Qεk|

}
.

We also define the set of indices

Γε,0 =
{
k ∈ Zd : |Qεk ∩ Σ0| > 0, |Qεk ∩ (Rd \ Σ0)| > 0

}
(3.40)

corresponding to cubes overlapping the contact line ∂Σ0. Therefore,∫
Σ0

(βε(x)− β0) dx =
∑
k∈Λε,0

εd(βεk − β0) +
∑
k∈Γε,0

∫
Qεk∩Σ0

(βε(x)− β0) dx (3.41)

Because Σ0 is a ball with positive radius r =
√
ρ2 − z2

0 , the number of ε-cubes intersecting the

contact line ∂Σ0 is bounded by |Γε,0| ≤ CV
d−1
d+1 ε1−d. Therefore, since βεk ∈ (−1, 1), the last term in

(3.41) is bounded by∣∣∣∣∣∣
∑
k∈Γε,0

∫
Qεk∩Σ0

(βε(x)− β0) dx

∣∣∣∣∣∣ ≤
∑
k∈Γε,0

2|Qεk ∩ Σ0| ≤ 2|Γε,0|εd ≤ CV
d−1
d+1 ε (3.42)

with probability one.
We can estimate the first term in the right hand side of (3.41) using a concentration inequality

for sums of independent random variables. Observe that the set of indices Λε,0 is deterministic, since
Σ0 is a deterministic set. Therefore, Hoeffding’s inequality ([12], Theorem 2) implies that

P

∣∣∣∣∣∣
∑
k∈Λε,0

εd(βεk − β0)

∣∣∣∣∣∣ > α

 ≤ 2e
− ε
−2dα2

2|Λε,0| (3.43)

holds for all α > 0 and ε > 0, since βk ∈ (−1, 1). We also have the bound |Λε,0| ≤ CV
d
d+1 ε−d and so

P

∣∣∣∣∣∣
∑
k∈Λε,0

εd(βεk − β0)

∣∣∣∣∣∣ > α

 ≤ 2e−
1

2C
ε−dα2V

− d
d+1

. (3.44)

By combining (3.42) and (3.44), we deduce that if ε is such that

CV
d−1
d+1 ε ≤ α

2
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then

P
(∣∣∣∣∫

Σ0

(βε(x)− β0) dx
∣∣∣∣ ≥ α) ≤ P

∣∣∣∣∣∣
∑
k∈Λε,0

εd(βεk − β0)

∣∣∣∣∣∣ > α

2

 ≤ 2e−Cε
−dα2

,

which is the estimate (3.38).
Now we prove (3.39). The main difficulty here is that the set Σε is a random set, so the argument

used to prove (3.38) does not work unless we have some control on the regularity of the set Σε. For a
large integer N > 1 (to be chosen later) we set h = Nε and define the family of open cubes Qhk ⊂ Rd

by
Qhk = hk + (0, h)d, k ∈ Zd.

These cubes have volume hd = Ndεd. For h > 0, let Λh,ε be the set of all indices k ∈ Zd such that
the cube Qhk is contained in Σε:

Λh,ε =
{
k ∈ Zd ; |Qhk ∩ Σε| = |Qhk |

}
.

Let Γh,ε be the set of all indices k such that cube Qhk straddles the contact line ∂Σε:

Γh,ε =
{
k ∈ Zd : |Qhk ∩ Σε| > 0, |Qhk ∩ (Rd \ Σε)| > 0

}
. (3.45)

We will use |Λh,ε| and |Γh,ε| to denote the cardinality of these index sets. Now the integral in (3.39)
may be decomposed as∫

Σε

(βε(x)− β0) dx =
∑
k∈Λh,ε

∫
Qhk

(βε(x)− β0) dx+
∑
k∈Γh,ε

∫
Qhk∩Σε

(βε(x)− β0) dx. (3.46)

The integrals in the last sum are over cubes Qhk that intersect the random contact line ∂Σε.
Because of the regularity of the contact line, the number of disjoint cubes of size h covering ∂Σε

cannot be too large:

Lemma 3.1. There is a universal constant C such that |Γh,ε| ≤ CV
d−1
d+1h1−d holds for all h, ε > 0.

The proof of Lemma 3.1 is almost identical to that of Lemma 3.2 below, so we omit it. Therefore,
since βεk ∈ (−1, 1), the second sum in (3.46) is bounded by∣∣∣∣∣∣

∑
k∈Γh,ε

∫
Qhk∩Σε

(βε(x)− β0) dx

∣∣∣∣∣∣ ≤
∑
k∈Γh,ε

2|Qhk ∩ Σε| ≤ 2|Γh,ε|hd ≤ CV
d−1
d+1h (3.47)

with probability one. This is bounded by α/2 if CV
d−1
d+1h ≤ α/2.

In the first sum appearing on the right hand side of (3.46), the integrals are over all cubes Qhk
that are contained within Σε. The collection of such cubes is random. Nevertheless, it is not an
arbitrary collection, since the boundary of their union cannot be too irregular, as we will show.
Given a set of indices S ⊂ Zd, let ∂S denote the set of indices k ∈ S such that k + v ∈ Zd \ S for
some v ∈ Zd with |v| = 1. So, if we define

D(S) =
⋃
k∈S

Qhk ,

then ∂S is the collection of indices corresponding to cubes Qhk ⊂ D(S) having a face on the boundary
of D(S). For S = Λh,ε, we have the following estimate:
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Lemma 3.2. There is a universal constant such that |∂Λh,ε| ≤ CV
d−1
d+1h1−d holds for all h, ε > 0.

We will postpone the proof of this estimate and finish the proof of Proposition 3.1. Suppose
S ⊂ Zd is a fixed set of indices having cardinality |S| = sd. Since h = Nε each cube Qhk contains
Nd cubes of size ε, and there are (sN)d cubes of size ε contained in ∪k∈SQhk . Therefore, since the
random variables βj are independent and identically distributed, we have

P

(∣∣∣∣∣∑
k∈S

∫
Qhk

(βε(x)− β0) dx

∣∣∣∣∣ > α

)
= P


∣∣∣∣∣∣∣∣∣
∑
k∈S

∑
j∈Zd
Qεj⊂Qhk

εd(βj − β0)

∣∣∣∣∣∣∣∣∣ > α


= P

∣∣∣∣∣∣
∑

j∈Zd∩[0,Ns)d

εd(βj − β0)

∣∣∣∣∣∣ > α

 . (3.48)

So, applying Hoeffding’s inequality to (3.48), we conclude that

P

(∣∣∣∣∣∑
k∈S

∫
Qhk

(βε(x)− β0) dx

∣∣∣∣∣ > α

)
≤ 2e−

1
2

(hε)−ds−dα2
(3.49)

holds for the fixed set of indices S.
By definition of Λh,ε we know that |Λh,ε| ≤ h−d|Σε| ≤ C1V

(d/d+1)h−d. Also, Σε ⊂ BR(0), so
Λh,ε ⊂ B2R/h(0). These bounds and Lemma 3.2 show that, with probability one, the random index
set Λh,ε must be an element of

Gh =
{
S ⊂ Zd ∩B2R/h(0) | |S| ≤ C1V

(d/d+1)h−d, |∂S| ≤ CV
d−1
d+1h1−d

}
. (3.50)

We refer to Gh as the collection of admissible index sets, and we use |Gh| to denote the cardinality of
Gh (i.e. the number of admissible sets). A key point in our analysis is that the number of admissible
sets does not grow too fast as h→ 0:

Lemma 3.3. There is a universal constant C such that log|Gh| ≤ Ch1−d| log(h)| for all h ∈ (0, 1/2).

For α, h, and ε fixed and S ∈ Gh, let us define the F-measurable set ΘS ⊂ H by

ΘS =

{
ω ∈ H :

∣∣∣∣∣∑
k∈S

∫
Qhk

(βε(x)− β0) dx

∣∣∣∣∣ > α

}
.

Since Λh,ε ∈ Gh, we observe thatω ∈ H :

∣∣∣∣∣∣
∑
k∈Λh,ε

∫
Qhk

(βε(x)− β0) dx

∣∣∣∣∣∣ > α

 ⊂ ⋃
S∈Gh

ΘS .

Moreover, from (3.49) and the fact that |S| ≤ C1V
d/(d+1)h−d for all admissible index sets, we have

P

 ⋃
S∈Gh

ΘS

 ≤ ∑
S∈Gh

P (ΘS) ≤ |Gh|2 exp
(
−1

2
ε−dα2C−1

1 V −1/(d+1)

)
(3.51)
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where |Gh| is the cardinality of Gh, the number of admissible index sets. Therefore, by Lemma 3.3
we have

P

 ⋃
S∈Gh

ΘS

 ≤ C3 exp
{
ε−d

(
C2εN

1−d log(h)− 1
2
α2C−1

1 V −1/(d+1)

)}
. (3.52)

Considering both (3.47) and (3.52), we now choose N = dε−pe with suitable p so that CV
d−1
d+1h ≤

α/2 holds and so that the exponent in (3.52) is negative for ε sufficiently small. Let us choose p =
1/(d+1) and setN = dε−pe, h = εN = ε1−p = εd/(d+1). Then εN1−d log(h) = (1−p)ε1+p(d−1) log(ε) ≤
(1− p)ε2d/(d+1) log(ε). Therefore, if r > (d+ 1)/d there is a constant Cr such that

C2εN
1−d log(h) ≤ 1

4
α2C−1

1 V −1/(d+1)

holds for all ε ≤ Cr min(1, αr). The condition CV
d−1
d+1h ≤ α/2 is also satisfied for such r. Therefore,

(3.47) and (3.52) imply that∣∣∣∣∫
Σε

(βε(x)− β0) dx
∣∣∣∣ ≤ α

2
+

∣∣∣∣∣∣
∑
k∈Λh,ε

∫
Qhk

(βε(x)− β0) dx

∣∣∣∣∣∣ ≤ α
except possibly on the set ∪S∈GhΘS which has measure less than Ce−Cε

−dα2
. This proves (3.39).

Proof of Lemma 3.2: This is similar to the proof of Proposition 2.3. If k ∈ ∂Λh,ε, then
k ∈ Λh,ε and there exists v ∈ Zd with |v| = 1 such that k + v /∈ Λh,ε. Therefore, there must be a
point xk ∈ Qhk+v for which xk ∈ ∂Σε (the contact line). By choosing such a point xk for each index
k ∈ ∂Λh,ε, we obtain a set of balls B+

h/2(xk, 0) with no more than 2d of the balls overlapping. By
Corollary 2.1 we know that P (Eε, B+

h/2(xk, 0)) ≥ Chd. Therefore,∑
k∈∂Λh,ε

P (Eε, B+
h/2(xk, 0)) ≤ CP (Eε, {0 < z < h/2}) ≤ CV

d−1
d+1h/2.

Hence, the cardinality of ∂Λh,ε is bounded by |∂Λh,ε| ≤ CV
d−1
d+1h1−d.

Proof of Lemma 3.3: If S ∈ Gh, then S ⊂ Zd ∩ B2R/h(0), so there are at most M = dCh−de
cubes that can belong to S. Moreover, the set S is uniquely determined by the cubes that have
faces on the boundary of D(S). That is, S1 = S2 if and only if ∂S1 = ∂S2. By definition of Gh, we
know that |∂S| ≤ Ch1−d ≤ CM q with q = (d− 1)/d. Therefore, the number of possible sets in Gh
is bounded by

|Gh| ≤
CMq∑
n=0

(
M

n

)
≤ (M + 1)CM

q
.

Therefore, we have log |Gh| ≤ Ch1−d log(Ch−d + 1).
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