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Abstract

This paper is concerned with a class of singular equations modeling
the combustion of premixed gas in periodic media. The model involves
two parameters: the period of the medium |L| and a singular parameter
€ related to the activation energy.

The existence of pulsating travelling fronts for fixed ¢ and |L| was
proved by H. Berestycki and F. Hamel in [BH]. In the present paper, we
investigate the behaviour of such solutions when ¢ < g|L| < 1. More
precisely, we establish that Pulsating Travelling Fronts behave like Trav-
elling Waves, when the period |L| is small and € < ¢|L|. We also study
the convergence as € goes to zero (and |L| is fixed) of the solution toward
a solution of a free boundary problem.

1 introduction

In this paper, we focus on front propagation phenomena for a class of one phase
free boundary problems describing laminar flames:

ug +q(x) - Vu = Au in Qu) ={u>0} (1)
|Vul|? = 2f ()M on O0Q(u).

Such an equation naturally arises as the asymptotic limit (¢ goes to zero) of the
following advection-reaction-diffusion equation:

ur +q(x) - Vu(z) = Au — f(x)B:(u), (2)

where the reaction term is defined by fB.(s) = 13(£), with ((s) a Lipschitz
function satisfying:

{ B(s) > 0in (0,1) and S(s) = 0 otherwise, 3)

1
M = [, B(s)ds.
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Note that, in combustion theory, one usually models the evolution of the tem-
perature T = 1 — u; the limit ¢ — 0 is then referred to as the high activation
energy limit.

When the domain is the whole space R", or a cylinder R? x w (with w
bounded open subset of R"~%), and when the media is homogeneous (i.e. when
the reaction term f(x) and the advection term ¢(x) are constant), it is natural
to seek for travelling waves solutions. These are solutions of the form u(z,t) =
¢(x - e — ct) (where e is the direction of propagation and c is the speed), with

o(s) — 0, as s — —oo,
o(s) — 1, as s — +0o0.

The existence of travelling waves solving (2) in cylindrical domains is proved
in [BN] (see [BNS] for the one dimensional case). Moreover, such solutions are
proved to be stable (see [BLR], [R1] and [R2]).

The question of the approximation of (1) by (2), though formally simple,
is a delicate problem. The elliptic case was first dealt with in [BCN], where
travelling waves solutions of (2) were proved to converge (as € — 0) to solutions
of (1). The situation in the parabolic context appears to be more delicate. The
first results were obtained by L. A. Caffarelli and J. L. Vazquez [CV], for the
initial value problem of the advection-free model (¢ = 0); the convergence of u®
as € goes to zero was studied under suitable assumptions on the initial data.

More recently, fundamental gradient estimates for solutions of (2) have been
established in [CK] in a very general setting. The behaviour of the solutions as
€ — 0 is also studied for the two phases parabolic problem in [CLW1], [CLW2],
[LVW] and [D], under a nondegeneracy condition on the negative part of u° (all
those results do not apply in the one phase situation).

In this paper, we are concerned with equation (2) when the advection term
q(x) and the reaction term f(z) are no longer constant, but have some period-
icity. In this framework, the notion of travelling waves can be replaced by the
more general notion of pulsating travelling fronts.

The space domain will be assumed to be an infinite cylinder in R™:
Q=R?xw, with w bounded connected subset of R*~<. (4)

We also assume that the boundary of w is smooth. In the sequel, we will split
the space variable (x,y) € Q, with z € R%, and y € w.

Let L = H?:o L;7Z be a lattice in R%, with L; > 0, and denote C =
H?:O[O,Li] x w, and |L| = sup,_; 4Li;. We assume that f(z,y) and g(z,y)
satisfy:

flx+ky) = f(z,y), for all k € L.
There exist two constants A and A such that
0< A< fz,y) <A.



and .
divy 4 g(z,y) =01in Q

/qi(w,y)dmdy=0, Vi<i<d

c
q-v=0o0n 90N
qlx+k,y) =q(x,y), forall k € L,

In this framework, we can define pulsating travelling fronts as follows:

Definition 1

Let e be any unit direction in R?. We say that the function u(x,y,t) is a
pulsating travelling front, in the direction e, and with effective speed ¢ # 0, if
(u(z,y,t),c) is the classical solution of the following free boundary problem

ur+q-Vu =Au in Qu) = {u > 0}
|Vul?> =2f(x,y)M  on 0Q(u)\OQ
u, =20 on 00
u —0 as x - e — —00, (P)
u —1 as x - e — +00,

u(z + k,y,t) :u(x,y, —%), Vk e L

where v(x,y) denotes the outward unit normal to 9, and u, = %.
As we said before, the solutions of (P) can be formally obtained as limits of
solutions of the following singular perturbation problem:

ui +q-Vu' = Aut — f(z,y)8:(u)
u;, =0 on Of)
ut —0 as x-e — —00, (P.)
ut —1 as r - e — 400,
u(x+k,y,t) =u (as,y,t—k'e), Vk e L

cE

where . is as in (3).

The existence of pulsating travelling fronts for (P.) has been established by
H. Berestycki and F. Hamel in [BH]; we recall their result, as well as a couple
of other properties of such solutions in Section 2. Given a solution, it seems
natural to investigate its behaviour when

- the singular parameter ¢ goes to zero (convergence to the free boundary
problem),

- the period |L| goes to zero (homogenization limit).

In this paper, we wish to investigate the behaviour of the pulsating travelling
fronts when
e<ell| <1,

for some constant €.



First, in Section 3, we show that the solution of (P.) oscillates between two
travelling waves propagating with the speed c*:

Proposition 1 Let e be a unit vector in R? and denote by (u,c?) the corre-
sponding solution of (P.).

For all L, > 0, there exist £,(L,) > 0 such that if e < e, and |L| < L,, then we
have

max (0, 1- 1e_AYE(e'g”_cz(t"'l\/f*))
K

<uf(z,y,t) < (6)

max (6, 1-— /ﬁe_vg(e'x_ce(t_M*E»

)

where M*, M, and k are universal constants, and v = v(c®) > 0 is an increas-
ing function of c*.

Moreover, when Q =R" (i.e. d=n) and € < g|L| we have
M* < pr|L,
with p* universal constant, and k — 1 as |L| — 0.

Here and subsequently, a constant is said to be universal if it only depends on
B, A, A\, |¢| and Q (diam(w), d and n). In particular, it is important to note
that, unless stated otherwise, all the estimates will be uniform with respect to
|L|, € and e.

The key point to establish Proposition 1 is Proposition 13, which states
that the free boundary remains in a finite neighbourhood of the hyperplane
z-e—ct=0. As a consequence of Proposition 1, when Q = R™ and ¢ < ¢|L]|,
the e-level set of the solution is almost an hyperplane in R™ x R when the period
is small, and u® converges to an ordinary travelling wave when |L| — 0.

Whether similar result holds for a general domain  satisfying (4) is still an
open question. However, in Section 4 we obtain partial results in this direction
and we establish in particular the following nondegeneracy estimate:

Proposition 2 There exists Lo, €, px and R, such that if |L| < L, and ¢ <
e|L|, then for any (x,,Yo,to) satisfying

ug(zm Yo, to) =g,

we have:
sSup us(x7 Y, to) > CT,
B (%0,0)
for all v such that
p«|L| <r < R,.



Finally, the last section of this paper is concerned with the singular limit
e — 0, when the period of the lattice is fixed. We prove the following theorem,
which shows that the limit u of u® satisfies the free boundary condition at any
regular point of the free boundary.
Theorem 3

Let e € S971, and denote by (uf,c) the corresponding solution of (P.) (given
by Theorem 4). There exists a subsequence €; — 0 such that

cfi — ¢,

u®i (z,y,t) — u(x,y,t), uniformly on compact sets,
with u € CHY/2(Q x R) solution to

us+q-Vu=Au in {u> 0}, u, = 0 on 09,

and satisfying u (x, y,t — %) =u(z + k,y,t), Vk € L.
Moreover, if (Xo,to) = ((o,Y0),to) s a free boundary point (X,,t,) €
O{u > 0} \ 09) such that

there exist Y, € Q and r > 0 such that
X, € 0B,.(Y,) and B, (Y,) C {u(X,t,) > 0},

then, u has a linear behaviour in B.(X,) X (t, — 7"2,750), and satisfies the free
boundary condition:

w(X,t) = 2M f(X (X — Xo, )T +0(|X — Xo| + |t — t,|Y/?),

Yo =X,

with v = ox

Acknowledgement: K.-A. Lee and A. Mellet would like to thank the De-
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2 Existence and first properties of solutions of
(P:)
2.1 Existence and uniqueness.

H. Berestycki and F. Hamel [BH] have shown the existence and uniqueness of a
solution of (P.) (for fixed € > 0). More precisely, Theorem 1.13 in [BH] gives:

Theorem 4



Let e be a unit vector in R%, then we have:

1. there exists a classical solution (c,u) = (¢=¢,u*¢(z,y,t)) of (P:) (by clas-
sical solution, we mean u € CH*(QxR), with continuous second derivatives
in space).

2. The speed ¢ is unique and positive. The solution u(x,y,t) is unique up to
a translation with respect to t.

r-e—s

8. The function u(x,y, ©<=2) is L—periodic with respect to x, and increasing
with respect to s (in particular, u(x,y,t) is decreasing with respect to t).

The key point of the proof is the following change of variables:

r-e—s

¢(S,I,y) :u(gjvyaf)' (7)

Then, ¢(s,z,y) is L-periodic with respect to x and satisfies

d)(svxay) I Oa as r — —00,
o(s,x,y) — 1, asxz — 4oo.

Moreover, ¢ solves the following degenerate nonlinear elliptic equation

Am,y¢ + ‘6‘2(;555 + 2e - vz,y(bs + Cd)s - ¢56 q—q- vz,y¢ = f(xa y)ﬂs(¢)

2.2 Holder estimates in space and time.

It was proved by L. Caffarelli and C. Koenig [CK] that solutions to (2) have
local Lipschitz regularity in space. We deduce:

Lemma 5 (Uniform gradient estimate)

Let u® be the solution of (P.) given by Theorem 4. There exists a universal
constant Cy such that

|V yus(z,y,t)| < Co, V(x,y,t) € QxR

Proof: Since 0 < u® < 1, interior estimate is given by [CK]. We only have
to check that the result also holds in the neighbourhood of a boundary point
(0, Yo) € ON. Consider a local transformation of the y variable which straight-
ens out the boundary so that it becomes y - e, = 0, and, nearby, Q lies in
y - en > 0. We also assume that the normal vector v becomes e, in such a way
that the Neumann boundary condition allows us to extend « by making it even
in y,. The result of [CK] then applies, and gives Lemma 5. (J

Moreover, as usual with parabolic type equations, Lipschitz regularity in
space implies %—Hélder regularity in time. Therefore we have (see D. Danielli
[D] for detail):



Proposition 6 The solution u® given by Theorem /4 is uniformly bounded in
the holder space C'/2(Q x R): There exists a universal constant Ny such that

[ (X, ) = u (X', )] < No (1X = X'+t = ¢//2),

for all (X,t), (X', t') € (2 x R)2.

2.3 A upper bound for the effective speed.

For later purpose, we now want to show that the speed of propagation ¢°(e) is
bounded by above by a universal constant:

Lemma 7 For all e € S, and for all ¢ < 1/2, we have
Cs(e) < Crmaz = 4V 2AK + ‘Q|ooa

with K = sup 3(s) (note that this bound is far from being sharp).

Proof: We construct a subsolution of (P.) which moves at speed 4v/2AK +|¢|oo:
We start with the following subsolution of (P):

2v2AK
oz, t) = Y08
1%

It is easy to check that v is a subsolution of

(1= exp(-v(z- e = v+ lal)t) )

us + q(x) - Vu = Au,

and satisfies |V,v| > v2AK in {0 < v < 1/2}. By regularizing v(z,t) in the
level set {0 < v(z,t) < €} we can construct a smooth function v satisfying

’Uf + q($) Vot < Avf - f(x,y)ﬁs(va),

such that
{ vé(z,t) = v(z,t) in {v° > e},

ve(z,t) =0 in{z-e< @+ |qlo)t — 1}.
(We can proceed in a similar way as described in Appendix A for supersolutions;

see also the proof of Lemma 29).

Next, we observe that when v > 4v/2AK, we have v — 2 ?}A
x - e — 00. Hence, there exists R such that

=

< as

N[

u®(z,y,0) > v°(z + Re,0), V(z,y) € Q. (8)

We now have to prove that (8) holds for all ¢ > 0. Since we shall make this
reasoning a couple of times in this paper, let us write it properly. First, we
introduce

2(z,y,t) = u®(z,y,t) — v (x + Re,0),



and denote by t, the first time for which z vanishes at some point:
te =sup{t| 2(z,y,t) > 0 V(z,y) € Q}.

We can always assume ¢, > 0 (if not, we translate v some more, by choosing a
larger R), and we have:

N,
8tz—Az+q-V22—w% in  x [0, t.],
z, =0 on 09, (9)
z—1/2, asz-e— +oo,

where N is the Lipschitz constant of 3. Assume now that t, < oco.
Then, there exists a sequence (T, Yn, tn) in Q X [ts, t, + 1] such that

t, — ty, and z(zn, Yn, tn) < 0.

Since w is bounded, we can assume that y, — y., and we have to consider two
situations:

Case I: (Zn)nen is bounded in RY.

Then, we can assume x,, — &, and by continuity of z we deduce: z(z, y«, tx) <
0. The strong maximum principle (and the Hopf principle if y, € Ow) implies
that z =0 in Q x [0, t,], which contradicts z — 1/2 as z - e — +o0.

Case II: (2, )nen is unbounded.

First of all, we note that, since v°(z,t) =0 in { - e < (v + |gloo)t — 1}, we
have z,, - e > (v + |¢|0 ) (tx) — 1. Moreover, since z — 1/2 as z - e — +00, there
exists a constant C such that z,, - e < C.

Therefore, for all n, there exists k, € L such that:

Fp =20 —kn € Br(0), |kn-e|<C,

with R, such that Bgr, (0) contains a cell of the lattice L. We set u,(x,y,t) =
u(x + kn,y,t) = u(z, y, Hf"e) and v, (z,t) = v(x + kn,t) = v(x + (k, - e)e,t).
Since k, - e is bounded, we can assume that u, and v, converge to 4 and 9.
Using the periodicity of ¢(z,y) and f(z,y) with respect to L, we are back to
case I, with Z = u — 0.

As a conclusion, we have ¢, = oo and therefore (8) holds for all ¢ > 0. It
follows that the e-level set of u¢ cannot move faster than v+ |¢|-, and the proof
is complete. [

2.4 A lower bound for the effective speed

Finally, we end this preliminary section by proving that ¢(e) is also bounded
by below:



Lemma 8 There exists a universal constant cpin (independent of € and |L|)
such that if € < g|L|, we have:

CE 2 Cmin

Proof: The proof of Lemma 8 is very different from the proof of the previ-
ous Lemma. As a matter of fact, the advection term ¢ - V, prevents us from
constructing a supersolution to (P.) that propagates with a positive speed.

Instead, the proof relies on the following equality obtained in [BH] by inte-
grating (2) over G x R, for any subset G of Q of the form G = U;C(x;) X w
(where C(z;) denotes a cell of the lattice L centered in z;):

/ / f(,y)Be(u)dz dy dt = |G, (10)
RJG

Before going any further, let us introduce some notation that we shall use
later on: Br(X,) denotes the Euclidean ball in R™ centered in X, = (2,,¥0) €
R? x w, with radius R, and we denote by Qr(X,,t,) the parabolic neighbour-
hood:

QR(Xm to) = BR(XO)X]tO - R2»to['

We denote by £™ (resp. H"™!) the Lebesgue measure in R™ (resp. the n — 1-
Hausdorftf measure), and we introduce the density (for A C 2 and B C 2 x R):

n _ L"(ANBg)
©"(ANBg) = E"(gR)R' "

We also introduce K a positive constant such that 5(s) > K for all s €

[£, 22]; we therefore have:

5 e 3¢

Be(s) > for all s € [17 Z] (12)

€

Let us now go back to the proof of Lemma 8. We start with the following
observation: The quantity

3e
O ({U‘E(‘rv Y, t) 2 4} N B20|L|(0)>
is null for large positive ¢t and is equal to 1 for large negative t; Therefore, there

exists a time t, for which

1

o ({us(ay,y,to) > ?f} an(o)) -7 (13)



Next, we show that for such a t, we have:

3e 1
e <{u6(xay7t) > 4} mB20|L(O)) > 17
1
< 3 for all t € [t, — |L|/c%, o],
(14)
and
n € 3
S ({us(:c,y,t) < 1} N B20|L|(xo»yo)) < %7
> T for all ¢ € [t, — |L|/c%, o).

(15)
We postpone the proof of (14) and (15) to the end of this section and conclude
the proof of Lemma 8:
Using the coarea formula (see [F]) we can write

to

/ (2, y)Pe(u”) dz dy di
Bao|L)|

> —/ /ﬁg 2)H"H({uf(t) = 2} N Bag) ) )dzdt.
No Jio-izise Jr

t,—

o—I|Ll/c (16)

For all z € [£, 28] and t € [t, — 20|L], t,], we have

£ (4) 2 2} 0 Baojry) > 1£" (Baojn)
L"({u(t) <z} N Bygyz)) > iﬁn(Bsz\),

therefore, Lemma 31 (i) (which is a consequence of the isoperimetric inequality)
gives (for all z € [£, %]):

HP({us (1) = 2} N Baoiny) = e (L7({us(£) = 2} A Bygyy)) "~
> ”(En(Bsz\))(nfl)/(n)-

Together with (16), it yields

€ Ke n n—=1)/n
/ / f@,y)B:(u) du dy dt > 7§u (L (Baoz) ",
to=|Ll/c< / Baojr| €

K
/ / f(x,y)Be(u®) de dy dt > —|L|".
R J Bag|r| ¢
The lemma follows from (10). O

Proof of (14) and (15): The first inequality in (14) follows from (13) and the
monotonicity of u with respect to . The second inequality is a consequence of

10



the periodicity of u: with k, € L such that k, - e > |L| and k, < 2|L| we have,
for all t € [t, — |L|/c5,to):

3¢ ko - e 3¢
{us(gc,yj) > 4} N Baoi)(0)  C S u(z,y,t0 — 7) > 4} N Baor)(0)

3¢
C ue(x7yat0) > 4} N B20|L\(k‘0a0)'

Since

1
L" <B2O\L|(koa 0) \ Baor (0, 0)) < Z[," (B20|L\ (0))7
we get (14).
In order to establish the second inequality in (15) (the first one is an imme-

diate consequence of (14)), we need the following lemma:

Lemma 9 For any parabolic neighbourhood Qg such that B C ), we have

Applying Lemma 9, we see that the set {u® < ¢/4} has density at least
1/2 in Qa(|(20, Yo, 0), for some g small enough. Using again the translation
property, we easily deduce the second inequality in (14). O

Proof of Lemma 9: We integrate equation (2) on Qgr(%o, Yo, t,), and get:

to

/ue(x,to) —uf(z,t, — R?)dx dy — / Vu® - vdo(z,y)dt
Br to—R? JOBg

Qr

Since |uf(t,) — u®(t, — R?)] < N,R and |V,uf| < N, (see Proposition 6), it
follows:

f(z,y)B:(u®) de dy dt < CR" !,
Qr

On the other side, (12) gives
€ K n+1 € € €

f(xay)ﬂE(u )d.TdydtZAf,C ({7 <u (.’E,y,t) < 7}0623)7
Qr € 4 2

and the result follows. [

11



3 Global behaviour of the pulsating travelling
fronts

This section is devoted to the proof of Proposition 1. To begin with, we estab-
lish two key properties satisfied by the pulsating travelling fronts: The Birkoff
property and a weak nondegeneracy property. We then show that the oscilla-
tions of each level set at a given time are uniformly bounded, and deduce that
pulsating travelling fronts remain in a finite (and uniform) neighbourhood of a
standard travelling wave propagating with the speed ¢°.

Throughout this section, (u¢, ¢®) denotes the solution of (P.) given by The-
orem 4.

3.1 Birkoft’s property

The Birkoff property is a simple geometric property that will allow us to control
the global behaviour of the level sets of u. Similar Property was first used by
L. Caffarelli and R. de La Llave [CL] (Theorem 8.1) for minimal surfaces.

For any vector m € R?, we denote by T}, the translation operator in the
direction m:

Tn(D) = {(x +m,y)|(z,y) € D},
where D is a subset of 2. We also define
Q,(t) = {(z,y,t) € @ x Rlu*(x,y,t) > n}.
Then, we have:

Lemma 10 (Birkoff’s Property)
For alln >0 and t € R, we have

T (09, (t)) C Qy,(t) for allm € L such that m-e <0,
T (09, (t)) C Q,(t) for allm € L such that m-e > 0.

Proof: This is an immediate consequence of Theorem 4 (3):
For m € L such that m - e > 0, we easily check that

m-e
,U’E(x +mayat) = ue(m’yat - T) Z ue(x,y,t) )

and the lemma follows. O

A first consequence is the following lemma, which tells us that the homoge-
nization limit of u® does not depends on the transverse variable x — (x - €)e:

Lemma 11 For all m € R? such that m - e =0, we have

|u®(z + m,y,t) — u(x,y,t)| < No|L|.

12



Proof: Let kg, k1 be such that
k‘iEL, |k‘l—’l77/|§|L|7 k)()'eZO, ki-e<0.
Then thanks to the Birkoff property we have

us (z + ko, y, t) > us(z,y,1)
u (@ + ko, y,t) < u(w,y,t),

and therefore

uE(x +mayat) - UE(:C + kanat)
< uE(:L, +m7yat) - ua(x,y,t) <
u(x +m,y,t) —u(x+ k1,y,t).

The lemma follows from the gradient estimate. [J

3.2 A weak nondegeneracy property

The derivation of a nondegeneracy property is always the key point in the study
of the limit € — 0. However, the nondegeneracy property that we derive in this
section only describes the behaviour of u® at distance larger than p,|L| from the
most left end point of the free boundary.

We assume first that «® is such that:

(0,0) € 9Q.(0) and 992.(0) C {e-x >0}, (17)

and we denote by B,.(0) the ball in R? with radius r and centered in z = 0.
Then we have:

Lemma 12

There exist e, and p, universal such that, for all e < e, and R, > p,|L|, there
exists a positive constant Co(R,) such that

sup  u(z,y,8) > C(R,)r, Vs<O0,
(z,y)€B,(0) xw

for all po|L| <1 < R,.
Proof: We are going to prove that
sup u (z,y,t) > Co(Ro)r. (18)

(,y,t)EQXR~, z-e—ct<r/2
Let us first check that (18) gives the Lemma: let (z,y,t) be such that
x-e—ct<r/2 and u°(z,y,t) > Cr,
and let £ € L be such that

—k-e<ct<-—-k-e+]|L|.

13



Then, we have

g [ € I
U (l’+k,y,0) =u (xvy - ?) 2 u (xayat) Z CT~
Set T = x + k. In order to conclude, we need to find a vector [ € L such that
T+1€ B, and l-e > 0. This is possible if the set {r/2 < z-e < 7r,|z| < r}
contains a cell of the lattice L, which holds for r > p,|L|. We deduce

l-
W(F+Ly,0) = (F,y,~ ) > Or,

which gives Lemma 12.
Let us therefore assume that (18) does not hold, that is

sup u®(z,y,t) < (r, VyeQ, (19)
(z,y,t) EQXR™, z-e—cst<r

for ¢ small, which will be chosen later. The contradiction will come from the
following remark:

Remark 1 There exists ko, € L such that |L|/2 < k, - e < 2|L|, and for such a

point, we have:
|L]
2cE”

u®(ko,0,t) > forallt <

We shall get a contradiction by constructing a supersolution h¢ of (P.),
which moves faster than 4c and therefore reaches the point k, before time ¢, =
éﬁi For ¢ small enough, we will see that h® is greater than u® along the
boundary {z - e — ¢t = r}, and for all & such that z - e — ¢*T < r for some
T < 0 very large. The maximum principle and the previous remark will lead to

a contradiction.

We first define the following supersolution of (P):

— e [1-ep (- tld)@ - vt)], (20)

with A to be determined later. It is easy to check that h(z,t) satisfies:
hi — Ah+q(z) - VR >0, onQ xR,
and
|V.h(z,t)]> = A, along the F.B. {h > 0}.

Therefore, h is a supersolution of (P), as soon as A < 2AM. Moreover, it is easy
to check that if v = 4c¢®, the e—level set of h® will reach the point k, defined in
remark 1 before time t,. (Note that, in view of Lemma 7, we have v < 4¢pq40
universal constant).

Next, we construct h® supersolution of (P.) such that h* = h in {h > e}:
Let a, b € [0,1] and K > 0 be such that

B(s) > K Vs € la,b],

14



then, we prove in Appendix A that for ¢ < ¢, (&, only depending on a, b, K
and A) we can construct h® supersolution of (P.) such that:

he(z,t) = h(x,t) in {h(z,t) > be},
he(z,t) > ae, V(z,y,t) € A x R.

Moreover, it is easy to check that if v = 4¢®, the e—level set of h® will reach the
point k, defined in remark 1 before time ¢,. (Note that, in view of Lemma 7,
we have v < 4¢;q, universal constant).

Now, we want to check that for ¢ small enough, one has h® > u® in {z - e —
ct < r}.

First of all, along the boundary x - e — ¢*t = r, and for t < t,, we have
z-e—uvt>r4 (€ —v)t, >r+ S=¢|L|, and therefore

2c®
VA

v+ 4l

ct —

14
>
)] = CoRo)r,

he(z,t) >

[1—exp (= (v + laloo)(r +

as soon as 3|L| < r < R,. Next, we want to see that for a large negative T we
have
he(x,T) > u®(z,y,T), for all x such that z-e— T <r.

To that purpose, let us introduce

r-e—s )
)

¢(s,2,y) = u(2,y, =
(s, ) = h(z, 5=2)
VA

= T lde [1—exp (= (v + Jaloe)(1 - D)aet C%s))} ,

Since ¢° is L-periodic with respect to x, and lim,_,_ ¢°(s,z,y) = 0, there
exists B > 0 such that

o°(s,z,y) < ae Vs < —B.
Moreover, for |T'| large, we have:
Ve(s,x) > €, Vs> —-B,xz-e<r+cT.

It follows that

he(z,T) > ae > u(x,y,T), x-e—cT < -B,
h(z,T) > e >u(x,y,T), —-B<z-e—cT<0,
he(z,T) > Cr > u(x,y,T), 0<z-e—=cT<r.

Hence z(z,y,t) = h®(x,t) — u(z,y,t) is positive along the parabolic boundary
M (z,y,t) s.t. t € [T,t,], x-e—ct <r}\IN (and satisfies z, = 0 along 99N),
and using the maximum principle and Hopf Lemma, we deduce in the same way
as in the proof of Lemma 7, that:

he(x,t) > u®(z,y,t), in {(z,y,t); t€[T,t,], x-e—ct<r}

15



which contradicts
he (koyto) < & < uf(ko,0,t,),

with k, € L as in Remark 1.

Remark 2 When (17) is not satisfied, since the equation (P:) is invariant
under discrete translations with respect to the x variable, we may always assume
that Q. (u®) C {e-x > c°t} and that there is a point (To,Yo) € 00 o(u) N{0 <

e-x < VdL}. It is readily seen that a small modification in the proof of Lemma
12 then yields:

sup u®(z,y,8) > C(Ry)r, Vs<O0.
(z,y)EBy (o) Xw

3.3 Oscillations of the Free Boundary.

The next proposition states that the e-level set remains in a finite neighbourhood
of the hyperplane x = ¢°t:

Proposition 13 For all L, > 0, there exist €,(L,) > 0 and M*(L,) > 0
depending only on L, such that, if € < e, and |L| < L,, the solution of (P¢)
satisfies:

{u(z,y,t) =¢e} C{(z,y,t) | Ft<e-z<ct+ M},

after a suitable translation in time.

Moreover, when Q@ =R"™ and ¢ < p,|L|, we have M* < p*|L| with p* depending
only on L,.

Proof: After translation with respect to z, we may assume that Q.(¢) C {e-x >
c°t} and that there exists a point (2., y,) € 92 (0)N{0 < e-x < VdL}. Applying
Lemma 12 (see Remark 2) with R, > poL,, we find (Z,9) € Bg,(z,) X w and
C, = C(R,) such that

sup  u® =u(Z,y,0) > C,.
BRU(O)XUJ

Define R, = max{diam(w), pL,}, with p such that the ball B,z (0) contains
the cell Y] — L;, L;[. If we prove that for some ¢, we have

BR*(Z%,ZJ)OQ C Qs(t*)v (21)

for some ¢, under control, then, we are done. As a matter of fact, the Birkoff
property (Lemma 10) implies

UmEL,e-mZOTm (Bp|L\<-'i') X OJ) - Qg(t*),
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and since Uper, e.m>0Tm (Bpz|(Z) X w) contains a half plane {(z,y) € R? x
wl|xz-e> M}, we deduce:

00:(t,) C {(z,y)|0<e-x < M}.

and the proposition follows from the propagation property, with M™* ~ M +
2(2R?)¢max + VdL,.

Let us therefore assume that for some large negative t. (21) does not hold,
and therefore that we have (using the monotonicity of u®):

u (x1,y1,t) <e and sup u(z,y,t) > C, Vi € [ts, 0]. (22)
Br. (2,9)

With ¢, = C, /4, if € < g,, the gradient estimate (Lemma 5) gives:

C,, in BfT" (z1,91) Vit € [t,,0],

DN | =

u®(z,y,t) <

and therefore (since u® is a subsolution of the heat equation):

sup  us(z,y,te + (2R)H) < sup  us(w,y,t) — Lo,
Br, (%,9) Bar, (2,9)

with ¢, = é% (fﬁ) depending only on L,.

By iterating, we get:

sup  u® (z,y,tx) < sup uS(x,y,t.) — ko
Br, (2,9) Ban g, (2,9)
S 1- kem

for all k such that t; = t, + (2R.)? Z?:o 227 is nonpositive (here, we use the
fact that u® < 1). Therefore, choosing k. such that 1 — k.f, < C, and t, =
—(2R.)? Y25, 2% in (22), we obtain:

C, < sup uf(z,y,0)

Br, (%,7)
k
< sup o |yt + (2R)? Z 272
Br, (Z,9) =0
S 1- k‘gov

for all k < k, which gives a contradiction. Hence (21) holds. [J

Remark 3 Whend=n (2 =R"), we can derive a better estimate: Lemma 12
gives
sup  u® =u(Z,0) > Cp,|L|.
B, (0)xw

17



Moreover, we observe that, if t is such that

u®(Z,t) > p(N, + 1)|L|,

then, the gradient estimate (Lemma 5) yields

us(z,t) > ¢, in By (%),

as soon as € < |L|.
Now, if we rescale u(x,t) = ﬁu(\ﬂx, |L|%t), it is easy to check that, pro-

ceeding as in the proof of Proposition 13, there exists a t. ~ |L|? such that
Bp|L\(3~3) - Qg(t*).

And we conclude in the same way as before, by mean of a Birkoff argument. It
follows that one can take M* = p*|L|, with p* universal constant. In particular,
the free boundary behaves like a hyperplane as the period of the lattice goes to
zero.

Proposition 13 and Remark 3 also allow us to improve our nondegeneracy
property when d = n:

Corollary 14

When d = n, there exists a positive constant C,(R,) such that, for any x, €
00 (t,), we have:
sup u(z,t) > Co(R,)r (23)
B, (o)

for0<e<e, and 0 < po|L| <r < R,.

Proof: Thanks to Remark 3, we note that z, is at distance at most p*|L| from

the most left point of the free boundary. Therefore, a small modification of

proof of Lemma 12 will give us the result: we choose ¢ small enough in (19),

such that the free boundary of h reaches any point at distance (p* +2)|L| before
[L]

time 5. O

3.4 Comparison with Travelling Waves.
We can now establish our main result announced in the introduction:

Proposition 15 For all L, > 0, there exist £,(L,) > 0 and M*(L,) > 0 only
depending on L, such that, if € < e, and |L| < L,, there exists an increasing
function ¢ — ~(c) > 0, defined for ¢ > 0 such that:

Hax <0’ 1- 167(05)(6'165(t+M*))>

K
< uf(z,y,t) < (24)

max (5, 1- ,{efv(cs)(e-zfcf(th*g)) ,

18



where k and M, only depend on A, M and |q|s, and M* is as in Proposition
13. Moreover, v(c) goes to zero as ¢ goes to zero.

Proof: We want to construct a barrier for (P) of the form
h(z,y,t) =1 —p(z,y)e 1=

with ¢(z,y) L-periodic with respect to x, and v > 0. Then, h is a solution of
hy + q - Vh = Ah if and only if v solves:

A —(g+7e) Vo + (77 = (e —e.q)) = 0 (25)
The existence of such a 1 follows from the following lemma (see [BH)):

Lemma 16

(i) For all v there exist a unique real number p(y) > 0 and a unique function
(up to a multiplicative constant) ¥ (x,y) > 0 such that

A — (q+7e) - Voo + (V2 —v(c— €)= p(y)y .

(i) Moreover, we have u(y) = ¢y + p(y) where the function ¢ : R — R is
concave and satisfies p(0) = ¢’(0) = 0.

It is easy to deduce that there exists a unique v > 0 such that p(y) = 0. The
corresponding eigen function ¢ furnishes a solution of (25). Moreover, 1 being
defined up to a multiplicative constant, we can choose sup ¢(z,y) = 1. Finally,
we remark that 7 is uniformly bounded (lemma 7). Therefore, equation (25)
and the Harnack inequality give us the existence of a universal x such that

0<k<¢x)<1.

‘We now define

h+(x, y,t) =1—(x, y)e*“/(:r.efct) >1— o—(@e—ct)

h™ (LE, y,t) =1 MB*V(I-G*CQ S 1— ef'y(a:.efct)
K

The next step is to prove that, for some constant M,, we have:
h=(x,y,t + M*) <u'(x,y,t) < h¥(z,y,t — Mue), Va,t. (26)
To that purpose, we define

=+ _ +
h’n (as,y,t) - (1 + T’)h (I,y,t) :

and
r-e—s
¢6(87x7y) =u’ (xvyvc>
r-e—s
wni(sax7y) = h% (xaya C) .
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Since ¢°(t,z,y) — 1 when x - e — 400 uniformly with respect to y, for any
n > 0, there exists T such that

Yy (s =S, m,y) < ¢°(s,2,y) <P (s+ S, w,y), VY(r,y) e, seR,
and therefore, there exists T' such that
- +
hy (z,y,t +T) <wu(z,y,t) < hy(2,y,t =T), V(z,y) €, teR. (27)

Let us now introduce

T =inf{T st. h, (z,y,t +T) < u’(x,y,t)}
T. =if{T st. hy(z,y,t —=T) > u(z,y,t)}.

We pretend that T* < M* and T, < M,e for some universal M,. Let us check
this fact for T only:
Assume T* > M*. Then, there exist sequences T,, < T*, $p,Tn,Yyn such
that:
T, —>T*a and w;(snaxnvyn) > ¢E(sn;xnayn)'

Since lim—, 100 ¢° =1 > 1—n = lim,_, ¥,, the sequence (s, )nen is bounded
in R. Moreover, using the periodicity of ¢° with respect to x, we can assume
that x,, € C. Passing to the limit n — oo, it follows that there exists (¢, Zo, Yo)
such that
by (Tos Yos to + 1) = u (20, Yo, to)-

The function z(z,y,t) = u® (v, y,t)—h, (z,y,t+T") is nonnegative and vanishes
at (To, Yo, to). In {uf (20, Yo, to) > €}, z is solution of a parabolic type equation.
Therefore, the maximum principle implies

(ToyYos to) € H{(z,y,t) € R x Q; u®(z0, Yo, to) > €}

Finally, the Hopf principle tells us that we cannot have (z,y) € 99Q. It follows
that u¢ (o, Yo, to) = €, and Proposition 13 gives the result. O

3.5 Homogenization limit when () = R"

For the sake of simplicity, we assume that L = §Z"™ (and therefore |L| = §), and
we consider two sequences (0 )ren and (ex)gen such that

o — 0, e < 0k

We denote by (u”, c¥)ren the corresponding solutions of (P.).
According to Proposition 15 we have:

1

max (0 1-— —e_"fk(ck)(e'x—ck(t-‘rp*&k))
b K‘/k

< ub(z,y.t) < (28)

max (6, 1-— nkeka(ck)(e'wfck(t*M*E"‘)> )
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Moreover, thanks to Proposition 6, Lemmas 7 and 8, it is easy to prove that

(u*) converges uniformly on any compact set to u(z,t),
(c*) converges to a positive constant c.

Next, we recall that v*(c*) and k¥ in (28)were determined by solving (25),
which amounts to solving (after rescaling 1 (z) = ®*(z/d},))

AD* — (5pq + dpve) - Vo ®F + ((617)? — Sy (rc® — €.01q))@" =0 (29)

with ® Z™-periodic. Adapting the result from [BH], one can show that there

exits a unique such v¥(c*) and that v*(c¥) — ¢ as ¥ — ¢. Finally, it is easy to

check that the corresponding function ®* converges to a constant, and therefore,
k

kY — 1.

Hence we have:

(1) — u(, ) = max (0,1 — ¢~elee)

4 A weak Nondegeneracy estimate

In the previous section (see Corollary 14), we showed that when Q = R", u®
grows linearly away from the free boundary except maybe in a small neighbour-
hood of size p*|L]|.

In this section, we generalize this result for general domains Q = R? x w:

Proposition 17 There exists Lo, £, po, R, and C, such that if |L| < L, and
e <¢gl|L|, then for any (xo,Yo,to) satisfying

us(ajoa Yo, to) =&,

we have:
sup  u(w,y,to) > Cor,
B (%0,Y0)
for all v such that
polL| < r < R,.

Throughout the proof, we shall always assume that p, is big enough in such
a way that any ball B, | in R? contains a cell of the lattice L. Moreover, we
denote by ~ a positive number that will be fixed later, and will satisfy

0<y<1/4.
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The starting point of the proof is the following claim: There exists M, € R
such that .
0" ({u*(@,5,0) = 2} Bar(o + Mot ) ) = 7. (30)

(We recall that ©™ is defined by (11).)
We find such a point by sliding a ball By, in the e-direction, noticing that
the quantity

0" ({u(2,5,0) = S} 1 Bar (o + Me, ) )
is zero for large negative M and 1 for large positive M.

We note Z, = z, + M,e. Proposition 17 will then be a consequence of the
following proposition, the proof of which is the object of the remainder of this
section:

Proposition 18 There exist |Lo|, €, po, Ro and C such that if |L| < L,, ¢ <
e|L| and po|L| < r < R,, then

(%) us(x,y,to +72) < e in Br(To,Yo)

(i) SUPQ,, (F0,50,t0) uf(z,y,t) > Cr (31)

Proof of Proposition 17: With k such that &€ > (p,|L|)?, k < C|L| and

cE

k —k-e < |L|, we have (applying (i) with r = p,|L|):

k-e

€
u (@, ysto + —

) <e in Bpo\Ll('i‘ovyo)

and therefore
Ug(l%y,to) <e in Bpo\Ll(jo_kayo)'

The Birkoff property (Lemma 10) and the choice of p, yield:
U (T, Yoy to) <€ in{zeR?| (z—%,) e < —C|L|}.
Since u®(z,, Yo, to) = &, we deduce
(20 — ) - ¢ > ~ClLJ.
Next, using (ii) and the Birkoff property, we have:

sup u® > Cr, for all z; € R? such that (z; — &,) - e > 0.
Qsr(T1,Yo5to)

Hence, for some large (universal) P, we also have

sup u® >Cr, for all z € R? such that (z — Z,) - e > —C|L|
QPT'(a:ﬁontu)

(since r > p,|L|). The proposition follows. O
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4.1 Proof of Proposition 18.

We have to consider the cases when Ba,.(z,,y,) lies entirely in  or not. For
the sake of simplicity we only treat the first case.

The first point follows from the following cleaning lemma:

Lemma 19 There exist v > 0 such that, if

e" ({ue(xvy’ 0) > g} N BQT(moa yo)) <7z

then 5
o (1w (er®) = 510 Bl 0.

Proof: First, we rescale according to (40), which amounts to assuming that u®
is solution to
ou® +rq, - Vu = A’ — f.(z,y)B:(u®) (32)

with € < &/p,.
The proof relies on a De Giorgi type argument. Let us introduce

€0

Em+1 :5m+W 5025/2
r

T+l = Tm — Qm% ro =1
1

tmt1 =1tm + om to = 0.

and define
Vin = L"(Qe,, (tm) N By, (%0, Yo))

(we recall that Qs(t) = {u®(z,y,t) > §}). We are going to prove that

n—1

m

with C,,, = C22™, which gives the result if  is small enough.

Integrating (32) over Qc,, N (By X [tm, tm+1]) = {u > e} N(Br X [tm, tm+t1])s
for r € [rm+1,7m] the left hand side gives:

/tm+1 /
tm Q

Oyudx dy dt S/ u(x, y, tm) dz dy

(t)NB, Qe,, (tm)NB,

€m

- u(xvyatm-‘rl)dz dy
Qam (t.m+1)ﬂBT.
< L™, (tm)NBy.,)
< Vi,
(34)
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and

tm41 m1
[ e Vadedgde <N, [ 2700, 000 B, ) d
tm Q... (OB, tm
CR,
< fi
= om
(35)

For the right hand side, we have:

tm41 tm+1
/ / Audrdydt < / / Vu-vdo(z,y)dt
Qe,,, ()NB t 09, (t)NB,.

m

t7n+1
/ / |Vul|do(z,y) dt
t (t)NdB;.

m Qe m

m—+41
<N/ HH Q. () N OB,)dt

= 27mHn 1( Em( m) maBr))
(36)

(since Vu - v < 0 along 99, (t) N B,). Finally, the coarea formula and (12)

yield:
tma1
[ f ()8 (uF) da dy dt
tim Q.. (t

> v /M /:W DH LU () = 2} O B,) d= dt

tm+1 Em+1
/ H* ' ({uf(t) = 2} N B,) dz dt.

tm m

>

Noe
Since {u®(t) > s} C {u®(t,n) > €/2} for all s € [em, Emt1], We have
Lr{uf(t) > s} N B,) < L™(B,)/2,

for all » € [1,2] (we have to choose v such that v < £"(By)/(2L"(Bs))).
Lemma 31 (ii) thus implies:

/m“/ o £, 9)Be () d dy

B (n-1)/
> A / / (. ()N B,) o
> om £n( Em—+1 (tm-i-l) N BTm+1))(n_1)/n
2 N
= 22mN m+1 ’

Putting (34), (35), (36) and (37) together, we deduce:

n— n NO -
v i < oo (Vm o1 (e, (t) 8BT)> :
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Inequality (33) follows by integrating with respect to r € [ry41,7m] and using
the coarea formula. [J

In order to prove the second point in Proposition 18, we start by noticing
that

0" ({u(@.y.t) 2 5} N Barlwon) 27, )
g% for all t € [—(2r)?,0],
and
O ({uf (2, y,t) < S} N Bap(z0,90)) < (1—7),
( Y 4 Y ) 1 v (39)

2 for all ¢ € [—(2r)?,0].

These inequalities are derived in the same way we obtained (14) and (15).
Note that in order to get the second inequality in (38), we need to find a k, € L
such that k, - e > (2r)2cnqee and k, < 2r. Such a k, exists if p, is large enough
and R, is small enough.

Proposition 18 is now a consequence of the Green formula. First, we rescale
according to the following parabolic rescaling:

1
’U(l‘7 Y, t) = ;ue(xo + 712, Yo + 1Y, Lo + 7‘2t), (40)

which amounts to assuming that r = 1, € < g/p, and (z,, o) = (0,0). Then we
have:

w(0.0,0) = [ ey 4Gy ~(4)) drdy
By
0
+/ / ug(m7y7t)8uG(0,0,0) (xvy’t) dO'(I,y)dt
—42 JoB,
_</Q f(m?y)ﬁs(ug)G(O,O,O) (l‘,y,t) dx dy dt.
4
Since u®(0,0) > 0, G(0,0,0) = C in Q(2)(0,0,0) and f(z,y) > A, we deduce:
Be(u)dxdydt <C sup u(x,y,t). (41)
Q2 Q4(0,0,0)

Therefore, we are left with the task of proving that the left hand side is bounded
by below: this follows from (38), the coarea formula and the isoperimetric in-
equality:

First, using the coarea formula (see [F]) we can write

1

’ —1
o, Be (uf) dz dy dt > A /_22 /Rﬁe(z)H ({u®(t) = 2z} N Bg)dzdt.  (42)
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Then, we notice that for all z € [, §] and ¢ € [-22,0], we have

L({u(t) = z} N Ba) Zlvﬁ"(Ba)
L ({u(t) < 241 By) = L™ (By).

Therefore, using Lemma 31 (i) (consequence of the isoperimetric inequality) we
have (for all z € [§, §]):

HL({us(t) = 2} 1 Ba)

Together with (42), it gives

Ke ne1)/n
Bo(uf) dr dy dt > — Lk (vL"(B2)"7V" = C,,
Q2

and (41) gives Proposition 18 (ii). O

5 Singular limit

This section is devoted to the proof of Theorem 3. First of all, we notice
that the convergence of u® as € goes to zero is a consequence of Proposition 6
and Arzela-Ascoli’s theorem, and that the convergence of ¢¢ is a consequence
of Lemma 7. Further estimates can be derived; they are summarized in the
following proposition:

Proposition 20 (Convergence) For any sequence (€;);en such that e; — 0,
there exists a subsequence (still denoted by €;), a function u € CHY/2(Q xR) and
a real ¢ > 0 such that:

i) u®i — u uniformly on compact subsets of Q@ x R, ¢*i — ¢,

i) Vusi — Vu in L2 (2 x R),

ii1) Oputi — Oyu weakly in LY (2 x R),

w) Be,(u%) is bounded in L},
with suppy € 0{u > 0}.

v) Ou—Au+q-Vu=0 in {(z,t), u(z,t) > 0}.

(@ x R) and converges to a positive measure

The detail of the proof of Proposition 20 can be found in [CLW1]; the first
part of Theorem 3 follows easily. The aim of this section is therefore to prove
that the free boundary condition is satisfied at any 'nice’ point. From now on,

26



we shall drop the distinction between x and y, and denote by a single x any
point in Q = R? x w. We also use the notations

B, (z,) ={xz € R"; |z — x,| <1}

Qr(woato) = Br(xo) X [to - 7"2,t0]

Throughout this section, (z,,t,) denotes a point on the free boundary d{u >
0} \ 09, such that there exists a tangent ball from inside:

dr>0and y, € Q st. Br(y,) C{u>0}, 2z, € 9B, (yo)- (43)
We also denote
Yo — o
v=2_"2
1Yo — To|

The proof will be divided in three steps: First, we establish a weak nonde-
generacy inequality in B,(y,). Next, using a monotonicity formula due to G.
Weiss [W], we deduce that u has a linear behaviour in Q1(z,,%,) (Proposition
26):

u(z,t) = alr — 2o, v) " +y{x — 20, v) " +o(|x — 20| + |t — to|1/2).

Finally, we shall see that v =0 and « = \/2f(x,) M.

5.1 Nondegeneracy in the neighbourhood of the free bound-
ary.

First, we start with the following consequence of our nondegeneracy lemma 12:

Corollary 21 If B,(y,) C Qe (u®), then there exists a constant C(r) > 0
(independent of €) such that

u®(z,t,) > C(r), for all x € Bz (yo)

Proof: First of all, we notice that u®(x,t) > 0 in B, (y,) for all time ¢t < ¢,, and
therefore ¢ is solution to u§ 4+ ¢ - Vu® = Au® in B, (y,) X (—00 X t,]. Moreover,
thanks to Proposition 15, it is easy to see that for large universal T, we have:

u (z,to —T) > A, in By(xo).
Let us now define
—v(t—to+T) _(z=wo)? I 1
h(z,t) = Ae™ 7% (e a? —e a2>/(1—e a?)
Then, one can check that with a = 1/(2v/2) and y > ﬁ, h(zx,t) satisfies:

he +q-Vh < Ah.
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Moreover, h vanishes along 0B,.(y,), and satisfies h(z,t,—T) < A < u®(z,t,—T)
for all x € B, (y,). Therefore

u®(x,t,) > h(x,t,), forall z € Br(y,),

which gives the result with C(r) ~ ce™+*. [
Note also that for , € 0B, (y,), the proof gives the existence of a > 0 such

that
Yo =0 \ "
u(z,t) >a<x—xo,oo>
|yo_x0|

in any non tangential cones.

5.2 Blow-up limit and monotonicity formula

Let (z,,t,) satisfy (43). We introduce

us(x,t) = %us(xo +rx,t, +rit),
up(x,t) = %u(xo +rax,t, + rit),
which are respectively solution to
Oup +1q(@0 + rx) - Vug = Aug — f(@0 +72) ey (uy), in €, (44)
and
Oy + 1rq(zo + 72) - VU = Auy, in {u, > 0}.

Since the rescaling preserves the C*'/2 norm, and u,-(0,0) = 0, it is easy to
check that w, is uniformly bounded in C%'/2. Tt follows from Ascoli-Arzela’s
theorem that there exists a sequence r; — 0 such that

ur;(z,t) — U(z,t), uniformly on compact subsets.

More precisely, one can prove (the proof being similar to the one of Propo-
sition 20, details can be found in [CLW1]):

Lemma 22 For every sequence (r;);en such that r; — 0, there exists a subse-
quence u,,, and U € CYY/2 such that:

i) up; — U uniformly on compact subsets of Q@ x R,
i) Vup, — VU in L} (Q x R),

loc

iii) Opur, — U weakly in L7, (Q x R),

loc

) 0,U — AU =0 in {(z,t) € Q xR, U(x,t) > 0}.
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We want to show that U is linear. First, we note that Corollary 21 and the
monotonicity of U with respect to ¢ gives

U(z,t) >0, imR"Nn{z-r>0}xR".
Applying Lemma A.1 in [CLW1], we deduce:

Lemma 23 U(z,t) has a linear behaviour in R™ N {z -v > 0}: there exists
o > 0 such that

Uz, t) = alz, )T +o(jz| +t|*?), eR*N{{z,v) >0} x R™.

Moreover, we shall see that the blow-up limit U(¢,x) is homogeneous along
parabolic paths:

Lemma 24 For all (z,t) € R® x R™, and all 0 € R, we have
U(Ox,6%t) = 0U (z,1t).
Let us postpone the proof of this result. Together with Lemma 23, it yields:
Ux,t) = alz,v)t eR"N{z-v>0} xR,

and in particular U(z,t) = 0 along {«x - v = 0}. Applying Corollary A.1 in
[CLW1], it follows:

Lemma 25 U(z,t) has a linear behaviour in R™ N {x - v < 0}: there exists
v > 0 such that

Ulz,t) = y(z,v)~ +o(lz] + [t|/?), eR"N{z v <0} xR".
Finally, putting together Lemma 23, 25, and 24, we get:
Uz, t) = alz,v)t +y(z,v)”, inR" xR, (45)
with @ > 0 and v > 0, which is equivalent to

Proposition 26 Let (x,,t,) satisfy (43), then there exists o > 0 and v > 0
such that

u(z,t) = ala — 20, 0) " + (= 20,) " + 0|z — 20| + [t — to]'/?),

in Q1(xo,t,).

The rest of this section is devoted to the proof of Lemma 24, which is a
consequence of a parabolic monotonicity formula, similar to the monotonicity
formula introduced by G. Weiss in [W]. For the sake of simplicity, we shall write
the result in R™. The case of a domain 2 with Neumann boundary condition
could be treated similarly.
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Lemma 27 (Weiss monotonicity formula) Let u be a solution of
Ou+q - Vyu=Dgu— f(x)B:(u), inR™xR.
For (z,,t,) € R™ x R, we define the quantity

u2

wr) = 5 / / (190?427 ) Bt) — 55 ) Ol )t

with ( ) | 2
4r(t, — t T — T
t) = t)= — —_——
Gln) = Gtao ) (2:8) = e —gyy5m1 ex 4t —t))
and Be( fo B:(s)ds = u/s B(s)ds. Then we have:
to—r? 2 G(x,t
Ul (r) = —/ e /n 2t6tu+:c Vu—u) Q(t(o—z)dxdt
to —r?
/ wf(x)fe(w)G(x,t) dx dt
tt’i‘: ! (46)
—|— 3 B.(u)z - Vf(z)G(z,t) dx dt
T t0747“2 Rn
2 tofr
+r3 / q - Vu(2toru + x - Vu — u)G(z, t) dx dt.
—4r2 n

Proof: The proof is similar to the proof of Theorem 3.1 in [W], with only minor
modifications. It relies on the weak formulation obtained by multiplying (2) by

(Ou)2tG(x,t) + (x - Vau)G(z,t),

and it requires the following estimate:

|z — %2) 2 2
exp | ——————— | ( ()" +u” | (t,z)dxdt < C, (47
/(tlaton)u(to+77,t2) /n ( 4(to _ t) (( i ) )( ) ( )

(for all ¢1,t5 such that t; < ¢, < t3 and small i), which is derived by multiplying
(2 )byexp( lz— T t))&gu
O

Proof of Lemma 24: Let 0 < o < p be two constants. The previous lemma
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gives (after change of variable, and noting G(z,t) = G(o,0)(z,1)):
Ve(ps) — Ue(os) =
P2 2G(x,t)
2 —
/ /4T2 /n tous + - Vug ) 3—0) dx dt dr

/ / /n ug f(sz)Beys(ug)G(a,t) da dt dr

/p : /W / Beys(ug)sx - (Vf)(s2)G(x, t) do dt dr

)
/ / / sq(sx) - Vui (2t0us + = - Vui — ul)G(x, t) de dt dr.
4r2 n

(48)
In view of Lemma 5, estimate (47), and the fact that B.(u) < M for all u, it
is easy to check that the last two terms are bounded by C's, with C' constant
which does not depend on €. Moreover, we have:

/p 2 /4/“ f(s52)Be5(u5)G (2, 1) da dt dr

/ —/ / (0w — DG + sq(sx) - Vu)G(z, t) de dt dr
e T

/33/ / WAl + |V 2)G(a, ¢)

(uEVus — (uf)?sq(sx)) - VG(x,t)) dx dt dr

p
- / 2 / / (usOpus + |Vu5\2)G(x7t)
4r2 {U>0}
+(usVus — (u ) sq(sx)) - VG(z,t) dx dtdr

P
/ 2/ / us(Opus — Dug + sq(sx) - Vug)G(z,t) de dt dr
4r2 J{us>0}

Therefore, denoting W, (r) = lim; o ¥, (r), when € = £; goes to zero (48)
yields:

Vo(os
/ / / Qt&gus + - Vi, — uS)ZC;EZ? dedidr  (49)

hence
lim i(I)lf (ﬁlo(ps) - \Ilo(os)) > 0.

Assume that the limit is positive. Then, for s small enough, we have
o
U(s)— W (s) >6 >0,
p
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and denoting 0 = % < 1, we get

i (v s)—w (O *s)) =ws) —w(®)Vs) = No.

n=0

We get a contradiction as N — oo, since it is easy to see (after rescaling) that
U, (r) is uniformly bounded with respect to 7.

Finally, taking the limit in (48) with s = r,,, the lower semicontinuity of the
L2 —norm with respect to the weak convergence gives:

=N 2661 4o
/U 73/4&2 / (20U +2-vU -U) Sy dwdtdr =0,

i.e. 2t0,U(z,t)+x-VU(z,t)—U(z,t) = 0 for almost all (x,t) € R"x (—4p?, —c?).
Since the result holds for any 0 < o < p, the lemma follows. [J

5.3 The free boundary condition

In order to recover the free boundary condition, we have to determine the value
of the coefficients a and v introduced by Proposition 26. This will be done in
two steps:

- First, we show that u is degenerate on one side, i.e. that v =0,

- then, we will see that we have o = \/2f(z,) M.

In this section, we use the following lemma, which combines the convergence
with respect to € and r (see [CLW1] for details):

Lemma 28 Let (u%)jen be a sequence of solution to (2) such that u® — u as
Jj — oo (in the sense of proposition 20). Assume (x,,t,) € 0{u > 0}, and define

= |

up(z,t) = tu(x, + 1T, t, +12t),
uy (1) ui(x, + ra,t, + rit)

<

Suppose r, — 0 and u,, — U asn — oco. Then there exists j(n) — oo such
that for every j, > j(n) there holds that ETJ— — 0 and

i) ugin — U uniformly on compact subsets of Q x R,

i) Vurir — VU in L2 (Q x R),

loc
iii) Oyurit — OU weakly in LE (Q x R).

In the sequel, we shall denote

u(z,t) = us (z,t),

32



which is solution to

0" + 1y - Vu" = Au™ — f,Be, (un)a (50)

™n

with Qn(x) = (](SCO + T’nl') and fn(x) = f(xo + 7ﬂnx)'

As a consequence of the previous section, we have:
u(x,t) — alr — xo, V)T +y{x —30,v)7,  asn — oco.

The next lemma shows that if v > 0, u®(x,,t,) is bounded away from zero by
a positive constant independent of e, which contradicts the fact that (z,,t,)
belongs to the free boundary. Hence v = 0.

Lemma 29 Let (x,,t,) € 2 X R be such that

w(x,ty) > alr — 2o, )T+ y(x — 20, 0) " +0(|lT — 20| + |t — to|1/2),

in Bi(z,), with o and v positive. Then uf(x,,t,) > n > 0 with n independent
of € (and therefore u(x,,t,) #0).

Proof: After translation and rotation, we may assume (z,,t,) = (0,0), and
v = e,. Using the monotonicity of u® with respect to t, we note that for any
small §, we have

ut(z,t) > () +~x, —6r)L  in B.(0) x R™,

for all r < r,(d) and € < ,(0).
Let ¢, solve

—ANpr +rq(z/r) - Vo, =0, in By(0),
or(x) = (azt +~yz, —0)T Vo € 0B1(0).

We want to show that ¢, can be approached by a subsolution of the e-problem:

AgL —q(z/r) - V. > f(z/r)B:(¢r)-

To that purpose, we introduce

0 t<0
1
T.(t) = 2—8152 t €]0,¢]
t— S t>e,
with .
B(t)= [ A(s)ds (51)



It is easy to check that

A(T(o0) = rafar/r) - F(Telior)) = Txfozpce) Vil

Moreover, with @ = sup 3(s), we have

1 1
gX{()S(pT.SE} > @ﬁs/Q(Fa(%)),

since {0 < ¢, <e} ={0<T.(¢,)) <e&/2}.
Therefore, 2 = T's.(¢,) is a subsolution of the e-problem if we can show
that:
Vo2 >2QA in {0 < ¢ < el

Classic elliptic estimates tells us that o, converges as r — 0 (uniformly and in
H'(B1(0))) to a harmonic function on By; the Poisson formula gives:

lim p,.(x) = o(z :le:cQ/ oY) ds,.
ment) = o) = CO— ) [ CEds,

We easily deduce that |Vyp(z)| — 00 as © — y,, if y, is an angular point (a
point for which V¢, is discontinuous). Therefore, if 6 < 6; and r < ry, there
exists a small neighbourhood N of {z € By;|z,| < §/a,|z,| < 5/} such that

Vo, > >2QA in{0<p<el, inN.
Moreover, when ¢ < €7 small enough, we have
{0 <. <e} CN.

Introducing ¥ (x) = ret(x/r), we get (with 6 = d1, r < min(r,(d1),r1) and
e < rmin(e,(d1),€1)):

AP —q(@) - Vyr = f(x)B(47),  in B(0)
Ve(z) > (axt + vz, —or)t, on € dB,(0).

We now want to apply the maximum principle and show that ¢ < ¢ in B,.(0) x
R~. To that purpose, we introduce z(x,t) = u®(x,t) — ¥5(z). Then we have
z(x,t) > 0 along 0B,(0) for all ¢ < 0, and since u®(z,t) — 1 as t — —o0, we
have z(x,T) > 0 in B,.(0) for large negative T. Denote by t; the first time such
that z vanishes at some point 21 € B1(0). Then in B, x [T, t1], z(z,t) solves

827Az+q~szfC—é\z.
€

If t; < 0, then 7 belongs to the interior of By(0), and therefore z(xz1,t1) = 0,

Vz(x1,t1) =0, Az(z1,t1) > 0 and dz(x1,¢1) < 0, which gives a contradiction,
and yields t; > 0.
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Finally, we have u¢(0,0) > ¥2(0), and since
lim ¢7.(0) = r-(0) > 1 > 0,
E—

the proof of Lemma 29 is complete. [

Proof of Theorem 3: We are now in position to complete the proof of Theo-
rem 3. Collecting our previous results, we know that there exist two sequences
r, — 0 and &, — 0 such that

u(x,t) = uir(z,t) — Uz, t) = ale —xo,v)",  as j — +o0.
We are left with the task of proving that o = /2f(z,) M

Let ((z,t) € C°(Q2 x R). Multiplying (50) by w7, ¢, and integrating by part,
we get:

//utu Vu )2, ¢+ (U™)g, VU V¢

//rqr-w 2= [ @0n B )

J[ @ a6 = ST, + @) Vv

[ rae vag //f Jo Bea (u"),
w= [ " Bu(s)ds = / " a(s)ds

Introducing p"(z,t) = Bea (u"), we have 0 < p"(z,t) < M, and therefore

and therefore

where we recall that

P (z,t) — p(z,t) * -weakly in L.

Taking the limit as in Lemma 28, we deduce:

J[vwac- o0, s vvove= [[ o 62

where f. — fo = f(z,). Moreover, since U(x,t) = ax;}, we have

V.U = axiz,>01en
atU =
P(@, ) {2,501 = M.
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When ¢ is such that suppl C Q. (20, t0) N {z, < 0}, (52) gives:

//QT folorp(z,t) =0

which implies that p(x,t) = M1 (t) in @, (2o, t0) N {zs < 0}.
With k& = n, (52) leads to:

which also reads:
o? = 2f,(M — M;(t)). (53)

In particular, M;(t) = Mj is constant in Q. (2, t,) N {z, < 0}
Note that Vp" = ., /p, (u™)Vzu™ is bounded in L' (Proposition 20 (iv)),
and for any ¢ > 7 and K compact set we have:

T T P
// |Opp™ |dtdx = — // Orp"dxdt = — [/ p"dx] <2MLM(K).
ocJK oJ K K o

It follows that p™ is bounded in Wlloc1 (Q x R), and therefore

p"(x,t) — p(z) strongly in L'(Q1), and almost everywhere.

Now, in view of (53), and since o > 0 (nondegeneracy), we have M; < M.
We want to prove that M; = 0. Assume that M; > 0, and let kK > 0 be such
that My €]k, M — k[. There exist a, and b positive such that

B.(u) €]k, M — k[ < ae <u<be,
and

pt(x,t) €]k, M — K] — at < u(x,t) < b
Tn Tn

The next lemma, the proof of which is similar to that of Lemma 9, gives a
contradiction. It follows that M; = 0, and (53) yields

a=/2f(x,)M.
The theorem is therefore proved. O

Lemma 30 For any a, b > 0, there exists a constant K such that
€ € €
£t ({af <wup <b=}nN Qs(xmto)) < K-s"t
r r r

for all s < s,.
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A Approximation of supersolutions

In the proof of Lemma 12, we omitted the construction of the supersolution h°.
We recall that h(t, z) is a supersolution of (1) which reads h(t, x) = p(x-e—vt),

with
VA

v+ q|os

p(s) =

Therefore, it is enough to construct a supersolution ¢° of

[1 = exp(=(v + lalo)s)] -

"+ (g-e—v)p = —f(x)B(p) . (1)
Let us define
©(s) for s > s,,
c K\ 5
©(s) = TE(S—SO) +VA(s — s5) +be  for s; <5< s,,
ae for s < s1,

Where sg is such that ¢(sg) = be. First of all, if € < g, small enough, we have
¢'(s§) < VA= ¢'(sy), and therefore the jump of the derivatives at sy has the
right sign.

Next, choosing s1 = s, — 5%, we check that with A = AK(b— a), we have
¢(s1) = ae, and ¢'(s7) = /(1) = 0.

In order to conclude, it only remains to check that ¢° is a supersolution of
(1) in [s1, So):

N

—B2(G +elg-e—v)
—K\e
—f(@)B:(¢%),

if £ < g¢, with ¢ small enough (depending only on |¢|s and A).

)

—"+(qg-e—v)y

VIV IV

B The isoperimetric inequality

Let us first recall that given an Euclidean ball B in R™ and a subset £ of R™,
the isoperimetric inequality gives:

(LM(BNQ)m=D/m <y, (K100 N B) + P(QN dB))

with equality when B C ().
In this section, we establish a couple of results that allow us to control the
perimeter P(Q2 N 0B) by the Hausdorff measure of 02 N B in some situations.
We note

Vi=L"(BNQ), Va=L'(B\Q) andV =L"(B),
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and
S, =P(QNdB), Sy=POB\Q), S=P@OB)and A=H"102NB).
Then, we have the following result:
Lemma 31 (i) For any v > 0, there exists a constant C() such that if
Y<Vi<V -y,

then
Vl(”*l)/” < CA.

(i) if Vi < V/2, there exists a constant C' such that
Vl("—l)/" <CA

Proof:
(i) Noting p = (n — 1)/n, the isoperimetric inequality gives:

VP <u(A+S;), fori=1,2, and VP =pusS.
It follows

VP+ Ve < p(A+8) < pA+ V7,
and therefore
VE+(V—=W)P = VP < uA.
It remains to see that for v < V; <V — ~, there exists a constant C' such that:

VWOV +(V-Wn)P-v?)

(ii) If V1 = 0, the result holds. Otherwise, since Vi < V/2, we have A > 0, and
we may write S1 = M A. The isoperimetric inequality gives:

VI <M +1)A, VY <p(S—(M—-1)A).
Writing VP = pS, we deduce:
SHP < (M +1)A)YP 4 (S — (M —1)A)/P,

and therefore

ANL/p A
1< (M + 1)§) (1= (M =1
If M islarge (and M +1 ~ M —1 ~ M), it implies that A/S is bounded by
below (since A > 0) (for example, we check that, with p = 3/2, ift M > 10 we
have % > 0.08), and therefore

Ascs=CSyrs Sy,
I I

Otherwise, M is bounded, and since S1 = M A we have
VP < p(M+1)A.
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