EXISTENCE AND ASYMPTOTICS OF FRONTS IN NON
LOCAL COMBUSTION MODELS
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ABSTRACT. We prove the existence and give the asymptotic behavior
of non local fronts in homogeneous media.
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1. INTRODUCTION

This paper is devoted to the study of fronts propagation in homogeneous
media for a fractional reaction-diffusion equation appearing in combustion
theory. More precisely, we consider the following classical scalar model for
the combustion of premixed gas with ignition temperature:

(1) W+ (—0p)u = f(u) inRxR,
where the function f satisfies:
f : R — R continuous function
(2) f(u) >0 for all w € R and supp f = [0, 1]
f(1) <0

where 6 € (0,1) is a fixed number (usually referred to as the ignition tem-
perature).

The operator (—0,,)* denotes the fractional power of the Laplace oper-
ator in one dimension (with a € (0,1]). It can be defined by the following
singular integral

ool — o u(@) —u(z) o
(3) (*am:) u(ﬂj) - aPV /IR |:L‘ _ Z|1+2a d
1
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where PV stands for the Cauchy principal value. This integral is well de-
fined, for instance, if u belongs to C?(R) and satisfies

()
— - d
L@u+wmﬂa$<+w

(in particular, smooth bounded functions are admissible). Alternatively, the
fractional Laplace operator can be defined as a pseudo-differential operator
with symbol |£|?*. We refer the reader to the book by Landkof where an
extensive study of (—0.;)® is performed by means of harmonic analysis
techniques (see [LanT72]).

In this paper, we will always take o € (1/2,1], and we are interested in
particular solutions of (1) which describe transition fronts between the sta-
tionary states 0 and 1 (traveling fronts). These traveling fronts are solutions
of (1) that are of the form

(4) u(t, ) = ¢(z + ct)
with
oot ) =0

The number ¢ is the speed of propagation of the front. It is readily seen
that ¢ must solve

(=0pz)*® + ' = f(9) forall z € R

When o = 1 (standard Laplace operator), it is well known that there
exists a unique speed ¢ and a unique profile ¢ (up to translation) that
correspond to a traveling front solution of (1) (see e.g. [BLL90, BN92,
BNS85]). The goal of this paper is to generalize these results to the case
a € (1/2,1). We are thus looking for ¢ and ¢ satisfying

(—0pz)*0+cd' = f(&) for all z € R
lim ¢(z) =0
6(0) = 0

(the last condition is a normalization condition which ensures the uniqueness
of ¢). Our main theorem is the following:

()

Theorem 1.1. Let o € (1/2,1) and assume that f satisfies (2), then there
exists a unique pair (¢o,co) solution of (5). Furthermore, co > 0 and ¢q is
monotone increasing.

We will also obtain the following result, which describes the asymptotic
behavior of the front at —oco:
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Theorem 1.2. Let a € (1/2,1) and assume that f satisfies (2). Let ¢o be
the unique solution of (5) provided by Theorem 1.1. Then there exist m, M
such that

M
QZ)O(CL’) S Wﬁ fO'f’I é -1
and m
o) > e for x < —1.

The proof of Theorem 1.1 follows classical arguments developed by Berestycki-
Larrouturou-Lions [BLL90] (see also Berestycki-Nirenberg [BN92]): Trun-
cation of the domain, construction of sub- and super-solutions and passage
to the limit. As usual, one of the main difficulty is to make sure that we
recover a finite, non trivial speed of propagation at the limit. The main
novelty (compared with similar results when a = 1) is the construction of
sub- and super-solutions where the classical exponential profile is replaced
by power tail functions.

2. TRUNCATION OF THE DOMAIN

The first step is to truncate the domain: for some b > 0, we consider the
following problem:

(=0z2) + cudy, = f(dp)  forall w € [~b,b]

op(z) =0 for s < —b

op(x) =1 fors >b

¢p(0) = 0.

The goal of this section is to prove that this problem has a solution for b

large enough. More precisely, we are now going to prove:

Proposition 2.1. Assume a € (1/2,1) and that f satisfies (2). Then there
exists a constant M such that if b > M the truncated problem (6) has a
unique solution (¢p, cp). Furthermore, the following properties hold:

(i) There exists K independent of b such that —K < ¢, < K.

(ii) ¢y is non-decreasing with respect to x and satisfies 0 < ¢p(x) < 1 for
all z € (—=b,b).

Before we can prove this Proposition, we need to detail the construction
of sub- and super-solutions.

(6)

2.1. Construction of sub- and super-solutions. In the proof of the
existence of traveling waves for the standard Laplace operator (aw = 1), sub-
and super-solution of the form e play a crucial role, in particular in the
determination of the asymptotic behavior of the traveling waves as x — —oc.
These particular functions are replaced, in the case of the fractional Laplace
operator, by functions with polynomial tail. In what follows, we will rely on
two important lemmas:
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Lemma 2.2. Let € (0,1) and define
1 .
L 1
_fEp W<
wle) { 1 ifr> -1
Then ¢ satisfies

a / . —Ca B 1
(00 + /) = gy + el +0 (e

when x — —o0.

and

Lemma 2.3. Let 3 > 1 and define
1
= -1
o) =4 P TS
#(@) { 0 x> -1
then

B i  —Ca 1 I} 1
(=022)@ + g’ (z) = G 1]gpatt Tt 0 <W+2a>

when x — —o0.

Proof of Lemma 2.2. We want to estimate (—0y5)%p for z < —1. We have:

which we decompose as follow:

o —1—x ) — x—l—y —+00 ) — x+y
et = o [T gy, [ S,
—00 |y [y
= I+1I

A simple explicit computation yields:

1 Ca
InH=({—%-1) ———.
(]:Jc|ﬁ > 2a|x + 1]2
Performing the change of variables y = zz, one gets
1
I = 7 / o ‘Z—i_l‘ﬁ_il dz
FIREl R PR T P

Note that the integrand has a singularity at z = 0, and this integral has to
be understood as a principal value. We also observe that the integrand has
a singularity at z = —1, but since 8 < 1, this singularity is integrable, and

thus
1 ooz 418 —1
I~ _CQWPV /1 Wdz as r — —0OQ.

—1—x

We deduce:

(-0 o(0) = 55+ 0 (i

- 20|z |2
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when z — —o0, and the result follows. O

Proof of Lemma 2.3. Again, we decompose (—0,,)*¢ as follow:

—1-x — — 400 = _
- o(z) — p(x +y) o(r) — p(z +y)
(=012)p(z) = ca /_OO [y 1+20 dy + ca . [y 1+20 dy

= I+1I

Now, a simple explicit computation yields:

Co 1
11 = .
|z|? 20| + 1|2

And performing the change of variables y = xz, one gets

I = /z Cer L dz.
|z[Ft2e [ |24 1B 12
Note that the integrand as a singularity at z = 0, and this integral has to be

understood as a principal value. We also observe that the integrand has a
singularity at z = —1 and since 8 > 1, this singularity is divergent and thus

I~ —% P,
e
We deduce:

a— _ —Ca # ;
(_aa:x) 90(‘7:) - ﬁ ‘$|2a+1 +0 (’x|ﬁ+2a>

which yields the result. O

2.2. Proof of Proposition 2.1. We now turn to the proof of Proposition
2.1. First, we fix ¢ € R and consider the following problem:

(—0p2)¢ + ¢ = f(9) for all x € [~b,b]
(7) d(x) =0 for x < —b

o(x)=1 forz >0
We have:

Lemma 2.4. For any ¢ € R, Equation (7) has a unique solution ¢.. Fur-
thermore ¢ is non-decreasing with respect to x and ¢ — ¢ is continuous.

Proof. Since 1 and 0 are respectively super- and sub-solutions, we can use
Perron’s method (recall that the fractional laplacian enjoys a comparison
principle) to prove the existence of a solution ¢.(x) for any ¢ € R. By a
sliding argument, we can show that ¢. is unique and non-decreasing with
respect to . The fact that the function ¢ — ¢, is continuous follows from
classical arguments (see [BN92] for details). O

We now have to show that there exists a unique ¢ = ¢, such that ¢, (0) =
f. This will be a consequence of the following lemma:
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Lemma 2.5. There exist constants M, K such that for b > M the followings
hold:

(1) if ¢ > K then the solution of (7) satisfies ¢.(0) < 6,
(2) if c < —K then the solution of (7) satisfies ¢p.(0) > 6.

Together with the fact that ¢.(0) is continuous with respect to ¢, Lemma 2.5
implies that there exists ¢;, € [-K, —K]| such that ¢., satisfies ¢, (0) = 6
and is thus a solution of (6). This completes the proof of Proposition 2.1.

Proof of Lemma 2.5. We consider the function
1
A -1
— ] RpeT TS
) o) = { T TS
and note that Lemma 2.2 (with § = 2« — 1) yields that if ¢ is large enough
(C Z m), then
(—0s2)% () + ' () > 0

for # < —A (for some A large enough). We can also assume that ¢(x) < 6
for x < —A, and so

(—02a)%0(x) + e’ (x) > f(p) =0 for z < —A.
Furthermore, for —A < x < —1, (—02)%¢(x) is bounded while

2a0 -1
CQO/(x) Z Cw.

For c large enough, we thus have
(—022)%p(x) + ' (x) > sup f > f(p) for —A <z < —1.
We deduce that there exists K such that if ¢ > K then
(—0ux)"p(2) + e () = flp)  forz < -1

and so ¢ is a supersolution for (7).

Choosing M such that p(—M) < 6, we now see that if ¢ > K and b > M,
then ¢(x — M) is a super-solution for (7). By a sliding argument, we deduce
that ¢.(z) < p(x — M) and so ¢.(0) < p(—M) < 6.

For the lower bound, we define ¢1(z) = 1 — ¢(—x). Then we we have, if
—c> K (¢ < —K) and for z > 1

(=02e)"01(7) + 01 (7) = =[(=0ra) (=) + (=)' (—2)] < 0 < f(¢).

Moreover, we have ¢i(x) = 0 for z < 1. Proceeding as above, we deduce
that if ¢ < —K, then ¢.(0) > 6, which concludes the proof. O
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3. PROOF oF THEOREM 1.1

In order to complete the proof of Theorem 1.1, we have to prove that
we can pass to the limit b — oo in the truncated problem. More precisely,
Theorem 1.1 follows from the following proposition:

Proposition 3.1. Under the conditions of Proposition 2.1, there exists a
subsequence b, — oo such that ¢p, — ¢o and c,, — co. Furthermore,
co € (0, K] and ¢ is a monotone increasing solution of (5).

Proof of Proposition 3.1. We recall that ¢, € [—K, K|, and classical elliptic
estimates (see [BCP68]) yield:

[|b]lc2r < C
for some v € (0,1). Thus there exists a subsequence b,, — oo such that

Cn i =¢p, — ¢ € [-K, K]

Pn = P, — Po
as n — oo. It is readily seen that ¢q solves
(9) (—02z)d0 + cody = f(do)  forallz € R.

It is also readily seen that ¢o(x) is monotone increasing, ¢o(0) = 6 and
¢o is bounded. By a standard compactness argument, there exists vg, 71
such that lim,_,_~ ¢o(x) = 70 and limg_, o ¢o(x) = v1 with

0<v%<0<v<L1

It remains to prove that c¢g > 0, 79 = 0 and ~; = 1. For that, we will mainly
follow classical arguments (see [BLL90], [BHOT7]).

First, we have the following lemma:

Lemma 3.2. The function ¢y satisfies
/(—&w)aq&o(az) dz = 0.
R

Proof of Lemma 3.2. The result follows formally by integrating formula (3)
with respect to x and using the antisymmetry with respect to the variables
x and z. However, because of the principal value, one has to be a little bit
careful with the use of Fubini’s theorem.

To avoid this difficulty, we will use instead the equivalent formula for the
fractional laplacian:

(_amx)a¢0($) - e /]R\[x—s z+e] W e

(10) +ca/[_ +]¢0(95)—¢0(Z)+¢6(:U)(z—x) .

|LL‘—Z|1+2a
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which is valid for all € > 0 and does not involve singular integrals. Integrat-
ing the first term with respect to x € R, and using Fubini’s theorem, we
get,

// ) 1?:)2(&)d2d$ - // - 1ﬁo2i)d$dz
R\[z—e,z+¢] |1,‘—Z| R\[z—¢,z+¢] |:L‘—Z|
Y[ e,
R\ [z—e,z+¢] |$ - Z|

and so this integral vanishes. Using Taylor’s theorem, the second term in
(10) can be rewritten as

xr+e 1 z y £ 1 T+y "

Integrating with respect to « and using (twice) Fubini’s theorem, we deduce

r+te 1 P .,
R 7 — 2[iF2a (z —t)¢y(t) dt dz da
Tr—E€ T
) 1 e 1"
:/ |y|1+2a/ / (y+x —t)py(t) dt dz dy
—&
+o0
/ 1+2a/ / (y+x — )i (t) de dt dy
—€ |y‘ t y
_/EW/OO o(t) dtdy

=0,

where we used the fact that lim, 4. ¢(z) = 0 and so fjozo o(t)dt = 0.
The lemma follows. O

Now, we can integrate equation (9) with respect to z € R, and using
Lemma 3.2, we get:

(1) | #enta))do = colon =) <
R
In particular, we observe that (11) implies that

f(v) = f(m) =0,

otherwise the integral would be infinite.

Next, we prove:
Lemma 3.3. The limiting speed satisfies:
co > 0.

Proof. First of all, we note that for all n, there exists a,, € (0,by,) such
that ¢p(a,) = ITH). Furthermore, up to another subsequence, by elliptic
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estimates, the function ¢, (z) = ¢y, (an + x) converges to a function .
Note that since g € C7, there exists » > 0 such that

34+0 14+ 30
Yo(x) € [1—, —tl ] for z € [—r, 7]

and so there exists kg > 0 such that

(12) /R F(0) dz > rio.

Up to a subsequence, we can assume that b,, + a,, is either convergent or
goes to +0o0. We need to distinguish the two cases:

Case 1: b, + a, — +oo: In that case, 1y solves

(13) (—0ua) ™0 + coty = f (o) for all z € R.

Furthermore, 1¢(0) = % and g is monotone increasing. In particular, it
is readily seen that there exists 49 and 7; such that lim,_,_ ¥o(x) = o
and lim, 4 ¥o(z) = 41 with

146
ogf‘yog%ﬂlgl.

Integrating (13) over R, and using the fact that

[ (-002) () dw =0
R

(the proof is the same as in Lemma 3.2) we deduce

(14) co(y1 — %) = /Rf(%) dr < 0o

and so

This implies that
=1 and Jo < 6.
Finally, (14) and (12) yields

co(1— ) > /R F(wo) dz > ko

which gives the result.

Case 2: a, + b, — a < oco: In that case, 1y solves

(15) (—=0rz)*0 + oy = f(10) for all z € (—o0,a)

and we need to modify the proof slightly. First, we notice that ¢g(z) = 1
for x > a, and we observe that (—0.)%o(z) > 0 for x > a. In particular

| Comrnte) s < [ (<o) ds =0

—00 R
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Proceeding as above, we check that lim,_, o, 1o(2) = 79 < 0 and integrating
(15) over (—o0,a), we deduce

co(1— ) > /wao)dx >0,

The positivity of the speed, together with the sub-solution constructed in
Lemma 2.2 will now give 79 = 0. More precisely, we now prove:

Lemma 3.4. The function ¢y satisfies:
lim ¢o(x) =0.
T——00

Proof. Let ¢ = ¢p/2 > 0 and take n large enough so that ¢, > c;.
We recall that by Lemma 2.2 (see also the proof of Lemma 2.5) that the

function
1
e -1
_ [z[2a—1 T <

#(@) { 1 x> -1

satisfies
(—=0pe)%0+ K¢ >0 in {p <1}
for some K large enough. Introducing ¢.(z) = ¢(ex), we deduce
(—0z2) e + 52a_1K80;(33) >0 in {pe(z) <1}
and taking e small enough (recalling that 2« > 1), we get
(—0za)p= + 0130/5(1:) >0 in {p. <1}

Furthermore, ¢, = 1 for x > 0, and so by a sliding argument, we deduce
®p, () < @:(x) for all n such that ¢, > ¢; and thus

do(x) < ()
which implies in particular that 9 = 0. O

Finally, we conclude the proof of Proposition 3.1 by proving that v, = 1:
Lemma 3.5. The function ¢y satisfies:

lim ¢o(x) =1

r—+00

Proof. We recall that (11) implies that either v; = 6 or v; = 1 (otherwise
the integral is infinite). Furthermore, if v = 6, then ¢9 < 6 on R and
so [p f(¢o(x))dx = 0. Since 49 = 0 < 6, (11) implies ¢o = 0, which is a
contradiction. Hence v; = 1. O

O
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4. ASYMPTOTIC BEHAVIOR

We now prove Theorem 1.2, which further characterizes the behavior of
¢o as x — —oo. We recall that in the case of the regular Laplacian (o = 1),
¢o and its derivatives decrease exponentially fast to 0 as x — —oo. When
a € (1/2,1), it is readily seen that the proof of Lemma 3.4 actually implies:

Proposition 4.1 (Asymptotic behavior of ¢g). There exists M such that
M

¢0($) < W forx < —1
Noticing that ¢f, > 0 solves
(_axz)a¢g + CO(¢6)/ =0 forz< 0,
we can also prove:

Proposition 4.2 (Asymptotic behavior of ¢(). There exists a constant m

such that
m

bo(x) > e forz < —1.

Proof. Lemma 2.3 implies that the function

1

e —1
s(z) =4 B TS
#(e) {0 x> -1

satisfies

. , B Cor 1 2c 1
(—022) P+ @ (z) = "0 — 1 gt + C|x|2a+1 + 0 <W>

when x — oo, and so
(—02e)?@ + k@' (z) <0 forz < —A

if k is small enough and A is large.
We introduce ¢, (z) = @(ex), which satisfies

(_axw>a80s + 51_2(1]{(,0/5 <0 forax< —6_1A
hence
(—Oz) e + coc,olE <0 forz<-—c'A

provided we choose € small enough.
Finally, we take r so that

o0 () > re.(z) for —e A<z < — .

Proposition 4.2 now follows from the maximum principle and a sliding ar-
gument using the fact that ¢.(z) =0 for z > —e~1. O
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