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Abstract. We prove the existence and give the asymptotic behavior
of non local fronts in homogeneous media.
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1. Introduction

This paper is devoted to the study of fronts propagation in homogeneous
media for a fractional reaction-diffusion equation appearing in combustion
theory. More precisely, we consider the following classical scalar model for
the combustion of premixed gas with ignition temperature:

(1) ut + (−∂xx)αu = f(u) in R× R,

where the function f satisfies:

(2)


f : R→ R continuous function

f(u) ≥ 0 for all u ∈ R and supp f = [θ, 1]

f ′(1) < 0

where θ ∈ (0, 1) is a fixed number (usually referred to as the ignition tem-
perature).

The operator (−∂xx)α denotes the fractional power of the Laplace oper-
ator in one dimension (with α ∈ (0, 1]). It can be defined by the following
singular integral

(3) (−∂xx)αu(x) = cα PV
∫

R

u(x)− u(z)
|x− z|1+2α

dz

1
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where PV stands for the Cauchy principal value. This integral is well de-
fined, for instance, if u belongs to C2(R) and satisfies∫

R

|u(x)|
(1 + |x|)1+2α

dx < +∞

(in particular, smooth bounded functions are admissible). Alternatively, the
fractional Laplace operator can be defined as a pseudo-differential operator
with symbol |ξ|2α. We refer the reader to the book by Landkof where an
extensive study of (−∂xx)α is performed by means of harmonic analysis
techniques (see [Lan72]).

In this paper, we will always take α ∈ (1/2, 1], and we are interested in
particular solutions of (1) which describe transition fronts between the sta-
tionary states 0 and 1 (traveling fronts). These traveling fronts are solutions
of (1) that are of the form

(4) u(t, x) = φ(x+ ct)

with {
lim

x→−∞
φ(x) = 0

lim
x→+∞

φ(x) = 1.

The number c is the speed of propagation of the front. It is readily seen
that φ must solve

(−∂xx)αφ+ c φ′ = f(φ) for all x ∈ R

When α = 1 (standard Laplace operator), it is well known that there
exists a unique speed c and a unique profile φ (up to translation) that
correspond to a traveling front solution of (1) (see e.g. [BLL90, BN92,
BNS85]). The goal of this paper is to generalize these results to the case
α ∈ (1/2, 1). We are thus looking for φ and c satisfying

(5)


(−∂xx)αφ+ c φ′ = f(φ) for all x ∈ R

lim
x→−∞

φ(x) = 0

lim
x→+∞

φ(x) = 1

φ(0) = θ

(the last condition is a normalization condition which ensures the uniqueness
of φ). Our main theorem is the following:

Theorem 1.1. Let α ∈ (1/2, 1) and assume that f satisfies (2), then there
exists a unique pair (φ0, c0) solution of (5). Furthermore, c0 > 0 and φ0 is
monotone increasing.

We will also obtain the following result, which describes the asymptotic
behavior of the front at −∞:
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Theorem 1.2. Let α ∈ (1/2, 1) and assume that f satisfies (2). Let φ0 be
the unique solution of (5) provided by Theorem 1.1. Then there exist m,M
such that

φ0(x) ≤ M

|x|2α−1
for x ≤ −1

and
φ′0(x) ≥ m

|x|2α
for x ≤ −1.

The proof of Theorem 1.1 follows classical arguments developed by Berestycki-
Larrouturou-Lions [BLL90] (see also Berestycki-Nirenberg [BN92]): Trun-
cation of the domain, construction of sub- and super-solutions and passage
to the limit. As usual, one of the main difficulty is to make sure that we
recover a finite, non trivial speed of propagation at the limit. The main
novelty (compared with similar results when α = 1) is the construction of
sub- and super-solutions where the classical exponential profile is replaced
by power tail functions.

2. Truncation of the domain

The first step is to truncate the domain: for some b > 0, we consider the
following problem:

(6)


(−∂xx)αφb + cbφ

′
b = f(φb) for all x ∈ [−b, b]

φb(x) = 0 for s ≤ −b
φb(x) = 1 for s ≥ b
φb(0) = θ.

The goal of this section is to prove that this problem has a solution for b
large enough. More precisely, we are now going to prove:

Proposition 2.1. Assume α ∈ (1/2, 1) and that f satisfies (2). Then there
exists a constant M such that if b > M the truncated problem (6) has a
unique solution (φb, cb). Furthermore, the following properties hold:

(i) There exists K independent of b such that −K ≤ cb ≤ K.
(ii) φb is non-decreasing with respect to x and satisfies 0 < φb(x) < 1 for

all x ∈ (−b, b).
Before we can prove this Proposition, we need to detail the construction

of sub- and super-solutions.

2.1. Construction of sub- and super-solutions. In the proof of the
existence of traveling waves for the standard Laplace operator (α = 1), sub-
and super-solution of the form eγx play a crucial role, in particular in the
determination of the asymptotic behavior of the traveling waves as x→ −∞.
These particular functions are replaced, in the case of the fractional Laplace
operator, by functions with polynomial tail. In what follows, we will rely on
two important lemmas:



4 ANTOINE MELLET, JEAN-MICHEL ROQUEJOFFRE AND YANNICK SIRE

Lemma 2.2. Let β ∈ (0, 1) and define

ϕ(x) =
{ 1
|x|β if x < −1
1 if x > −1.

Then ϕ satisfies

(−∂xx)αϕ+ cϕ′(x) =
−cα

2α|x|2α
+ c

β

|x|β+1
+O

(
1

|x|β+2α

)
when x→ −∞.

and

Lemma 2.3. Let β > 1 and define

ϕ̄(x) =
{ 1
|x|β x < −1
0 x > −1

then

(−∂xx)αϕ̄+ cϕ̄′(x) =
−cα
β − 1

1
|x|2α+1

+ c
β

|x|β+1
+O

(
1

|x|β+2α

)
when x→ −∞.

Proof of Lemma 2.2. We want to estimate (−∂xx)αϕ for x < −1. We have:

(−∂xx)αϕ(x) = −cαPV
∫

R

ϕ(x+ y)− ϕ(x)
|y|1+2α

dy,

which we decompose as follow:

(−∂xx)αϕ(x) = cα

∫ −1−x

−∞

ϕ(x)− ϕ(x+ y)
|y|1+2α

dy + cα

∫ +∞

−1−x

ϕ(x)− ϕ(x+ y)
|y|1+2α

dy

= I + II

A simple explicit computation yields:

II =
(

1
|x|β
− 1
)

cα
2α|x+ 1|2α

.

Performing the change of variables y = xz, one gets

I =
cα

|x|β+2α

∫ − 1
x
−1

+∞

|z + 1|β − 1
|z + 1|β|z|1+2α

dz.

Note that the integrand has a singularity at z = 0, and this integral has to
be understood as a principal value. We also observe that the integrand has
a singularity at z = −1, but since β < 1, this singularity is integrable, and
thus

I ∼ −cα
1

|x|β+2α
PV

∫ +∞

−1

|z + 1|β − 1
|z + 1|β|z|1+2α

dz. as x→ −∞.

We deduce:

(−∂xx)αϕ(x) =
−cα

2α|x|2α
+O

(
1

|x|β+2α

)
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when x→ −∞, and the result follows.

Proof of Lemma 2.3. Again, we decompose (−∂xx)αϕ̄ as follow:

(−∂xx)αϕ̄(x) = cα

∫ −1−x

−∞

ϕ̄(x)− ϕ̄(x+ y)
|y|1+2α

dy + cα

∫ +∞

−1−x

ϕ̄(x)− ϕ̄(x+ y)
|y|1+2α

dy

= I + II

Now, a simple explicit computation yields:

II =
cα
|x|β

1
2α|x+ 1|2α

.

And performing the change of variables y = xz, one gets

I =
cα

|x|β+2α

∫ − 1
x
−1

+∞

|z + 1|β − 1
|z + 1|β|z|1+2α

dz.

Note that the integrand as a singularity at z = 0, and this integral has to be
understood as a principal value. We also observe that the integrand has a
singularity at z = −1 and since β > 1, this singularity is divergent and thus

I ∼ −cα
β − 1

|x|β−1.

We deduce:

(−∂xx)αϕ̄(x) =
−cα
β − 1

1
|x|2α+1

+O

(
1

|x|β+2α

)
which yields the result.

2.2. Proof of Proposition 2.1. We now turn to the proof of Proposition
2.1. First, we fix c ∈ R and consider the following problem:

(7)


(−∂xx)αφ+ c φ′ = f(φ) for all x ∈ [−b, b]
φ(x) = 0 for x ≤ −b
φ(x) = 1 for x ≥ b

We have:

Lemma 2.4. For any c ∈ R, Equation (7) has a unique solution φc. Fur-
thermore φc is non-decreasing with respect to x and c→ φc is continuous.

Proof. Since 1 and 0 are respectively super- and sub-solutions, we can use
Perron’s method (recall that the fractional laplacian enjoys a comparison
principle) to prove the existence of a solution φc(x) for any c ∈ R. By a
sliding argument, we can show that φc is unique and non-decreasing with
respect to x. The fact that the function c → φc is continuous follows from
classical arguments (see [BN92] for details).

We now have to show that there exists a unique c = cb such that φcb(0) =
θ. This will be a consequence of the following lemma:



6 ANTOINE MELLET, JEAN-MICHEL ROQUEJOFFRE AND YANNICK SIRE

Lemma 2.5. There exist constants M , K such that for b > M the followings
hold:

(1) if c > K then the solution of (7) satisfies φc(0) < θ,
(2) if c < −K then the solution of (7) satisfies φc(0) > θ.

Together with the fact that φc(0) is continuous with respect to c, Lemma 2.5
implies that there exists cb ∈ [−K,−K] such that φcb satisfies φcb(0) = θ
and is thus a solution of (6). This completes the proof of Proposition 2.1.

Proof of Lemma 2.5. We consider the function

(8) ϕ(x) =
{ 1
|x|2α−1 x < −1
1 x ≥ −1

and note that Lemma 2.2 (with β = 2α− 1) yields that if c is large enough
(c ≥ cα

2α(2α−1)), then

(−∂xx)αϕ(x) + cϕ′(x) ≥ 0

for x ≤ −A (for some A large enough). We can also assume that ϕ(x) ≤ θ
for x ≤ −A, and so

(−∂xx)αϕ(x) + cϕ′(x) ≥ f(ϕ) = 0 for x ≤ −A.

Furthermore, for −A < x < −1, (−∂xx)αϕ(x) is bounded while

cϕ′(x) ≥ c2α− 1
A2α

.

For c large enough, we thus have

(−∂xx)αϕ(x) + cϕ′(x) ≥ sup f ≥ f(ϕ) for −A < x < −1.

We deduce that there exists K such that if c ≥ K then

(−∂xx)αϕ(x) + cϕ′(x) ≥ f(ϕ) for x < −1

and so ϕ is a supersolution for (7).
Choosing M such that ϕ(−M) < θ, we now see that if c ≥ K and b > M ,

then ϕ(x−M) is a super-solution for (7). By a sliding argument, we deduce
that φc(x) ≤ ϕ(x−M) and so φc(0) ≤ ϕ(−M) < θ.

For the lower bound, we define ϕ1(x) = 1− ϕ(−x). Then we we have, if
−c ≥ K (c ≤ −K) and for x > 1

(−∂xx)αϕ1(x) + cϕ′1(x) = −[(−∂xx)αϕ(−x) + (−c)ϕ′(−x)] ≤ 0 ≤ f(ϕ).

Moreover, we have ϕ1(x) = 0 for x ≤ 1. Proceeding as above, we deduce
that if c ≤ −K, then φc(0) > θ, which concludes the proof.
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3. Proof of Theorem 1.1

In order to complete the proof of Theorem 1.1, we have to prove that
we can pass to the limit b → ∞ in the truncated problem. More precisely,
Theorem 1.1 follows from the following proposition:

Proposition 3.1. Under the conditions of Proposition 2.1, there exists a
subsequence bn → ∞ such that φbn −→ φ0 and cbn −→ c0. Furthermore,
c0 ∈ (0,K] and φ0 is a monotone increasing solution of (5).

Proof of Proposition 3.1. We recall that cb ∈ [−K,K], and classical elliptic
estimates (see [BCP68]) yield:

||φb||C2,γ ≤ C

for some γ ∈ (0, 1). Thus there exists a subsequence bn →∞ such that

cn := cbn −→ c0 ∈ [−K,K]

φn := φbn −→ φ0

as n→∞. It is readily seen that φ0 solves

(9) (−∂xx)αφ0 + c0 φ
′
0 = f(φ0) for all x ∈ R.

It is also readily seen that φ0(x) is monotone increasing, φ0(0) = θ and
φ0 is bounded. By a standard compactness argument, there exists γ0, γ1

such that limx→−∞ φ0(x) = γ0 and limx→+∞ φ0(x) = γ1 with

0 ≤ γ0 ≤ θ ≤ γ1 ≤ 1.

It remains to prove that c0 > 0, γ0 = 0 and γ1 = 1. For that, we will mainly
follow classical arguments (see [BLL90], [BH07]).

First, we have the following lemma:

Lemma 3.2. The function φ0 satisfies∫
R

(−∂xx)αφ0(x) dx = 0.

Proof of Lemma 3.2. The result follows formally by integrating formula (3)
with respect to x and using the antisymmetry with respect to the variables
x and z. However, because of the principal value, one has to be a little bit
careful with the use of Fubini’s theorem.

To avoid this difficulty, we will use instead the equivalent formula for the
fractional laplacian:

(−∂xx)αφ0(x) = cα

∫
R\[x−ε,x+ε]

φ0(x)− φ0(z)
|x− z|1+2α

dz

+cα
∫

[x−ε,x+ε]

φ0(x)− φ0(z) + φ′0(x)(z − x)
|x− z|1+2α

dz(10)
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which is valid for all ε > 0 and does not involve singular integrals. Integrat-
ing the first term with respect to x ∈ R, and using Fubini’s theorem, we
get∫

R

∫
R\[x−ε,x+ε]

φ0(x)− φ0(z)
|x− z|1+2α

dz dx =
∫

R

∫
R\[z−ε,z+ε]

φ0(x)− φ0(z)
|x− z|1+2α

dx dz

= −
∫

R

∫
R\[x−ε,x+ε]

φ0(x)− φ0(z)
|x− z|1+2α

dz dx

and so this integral vanishes. Using Taylor’s theorem, the second term in
(10) can be rewritten as∫ x+ε

x−ε

1
|x− z|1+2α

∫ z

x
(z − t)φ′′0(t) dt dz =

∫ ε

−ε

1
|y|1+2α

∫ x+y

x
(y + x− t)φ′′0(t) dt dy.

Integrating with respect to x and using (twice) Fubini’s theorem, we deduce∫
R

∫ x+ε

x−ε

1
|x− z|1+2α

∫ z

x
(z − t)φ′′0(t) dt dz dx

=
∫ ε

−ε

1
|y|1+2α

∫ +∞

−∞

∫ x+y

x
(y + x− t)φ′′0(t) dt dx dy

=
∫ ε

−ε

1
|y|1+2α

∫ +∞

−∞

∫ t

t−y
(y + x− t)φ′′0(t) dx dt dy

=
∫ ε

−ε

y2

2|y|1+2α

∫ +∞

−∞
φ′′0(t) dt dy

= 0,

where we used the fact that limx→±∞ φ
′
0(x) = 0 and so

∫ +∞
−∞ φ′′0(t) dt = 0.

The lemma follows.

Now, we can integrate equation (9) with respect to x ∈ R, and using
Lemma 3.2, we get:

(11)
∫

R
f(φ0(x)) dx = c0(γ1 − γ0) <∞.

In particular, we observe that (11) implies that

f(γ0) = f(γ1) = 0,

otherwise the integral would be infinite.

Next, we prove:

Lemma 3.3. The limiting speed satisfies:

c0 > 0.

Proof. First of all, we note that for all n, there exists an ∈ (0, bn) such
that φn(an) = 1+θ

2 . Furthermore, up to another subsequence, by elliptic
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estimates, the function ψn(x) = φbn(an + x) converges to a function ψ0.
Note that since ψ0 ∈ Cγ , there exists r > 0 such that

ψ0(x) ∈
[

3 + θ

4
,
1 + 3θ

4

]
for x ∈ [−r, r]

and so there exists κ0 > 0 such that

(12)
∫

R
f(ψ0) dx > κ0.

Up to a subsequence, we can assume that bn + an is either convergent or
goes to +∞. We need to distinguish the two cases:

Case 1: bn + an → +∞: In that case, ψ0 solves

(13) (−∂xx)αψ0 + c0ψ
′
0 = f(ψ0) for all x ∈ R.

Furthermore, ψ0(0) = 1+θ
2 and ψ0 is monotone increasing. In particular, it

is readily seen that there exists γ̄0 and γ̄1 such that limx→−∞ ψ0(x) = γ̄0

and limx→+∞ ψ0(x) = γ̄1 with

0 ≤ γ̄0 ≤
1 + θ

2
≤ γ̄1 ≤ 1.

Integrating (13) over R, and using the fact that∫
R

(−∂xx)αψ0(x) dx = 0

(the proof is the same as in Lemma 3.2) we deduce

(14) c0(γ̄1 − γ̄0) =
∫

R
f(ψ0) dx <∞

and so
f(γ̄0) = f(γ̄1) = 0.

This implies that
γ̄1 = 1 and γ̄0 ≤ θ.

Finally, (14) and (12) yields

c0(1− θ) ≥
∫

R
f(ψ0) dx ≥ κ0

which gives the result.

Case 2: an + bn → ā <∞: In that case, ψ0 solves

(15) (−∂xx)αψ0 + c0ψ
′
0 = f(ψ0) for all x ∈ (−∞, ā)

and we need to modify the proof slightly. First, we notice that ψ0(x) = 1
for x ≥ ā, and we observe that (−∂xx)αψ0(x) ≥ 0 for x ≥ ā. In particular∫ ā

−∞
(−∂xx)αψ0(x) dx ≤

∫
R

(−∂xx)αψ0(x) dx = 0
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Proceeding as above, we check that limx→−∞ ψ0(x) = γ̄0 ≤ θ and integrating
(15) over (−∞, ā), we deduce

c0(1− θ) ≥
∫

R
f(ψ0) dx > 0.

The positivity of the speed, together with the sub-solution constructed in
Lemma 2.2 will now give γ0 = 0. More precisely, we now prove:

Lemma 3.4. The function φ0 satisfies:

lim
x→−∞

φ0(x) = 0.

Proof. Let c1 = c0/2 > 0 and take n large enough so that cbn ≥ c1.
We recall that by Lemma 2.2 (see also the proof of Lemma 2.5) that the

function

ϕ(x) =
{ 1
|x|2α−1 x < −1
1 x > −1

satisfies
(−∂xx)αϕ+Kϕ′ ≥ 0 in {ϕ < 1}

for some K large enough. Introducing ϕε(x) = ϕ(εx), we deduce

(−∂xx)αϕε + ε2α−1Kϕ′ε(x) ≥ 0 in {ϕε(x) < 1}

and taking ε small enough (recalling that 2α > 1), we get

(−∂xx)αϕε + c1ϕ
′
ε(x) ≥ 0 in {ϕε < 1}.

Furthermore, ϕε = 1 for x ≥ 0, and so by a sliding argument, we deduce
φbn(x) ≤ ϕε(x) for all n such that cbn ≥ c1 and thus

φ0(x) ≤ ϕε(x)

which implies in particular that γ0 = 0.

Finally, we conclude the proof of Proposition 3.1 by proving that γ1 = 1:

Lemma 3.5. The function φ0 satisfies:

lim
x→+∞

φ0(x) = 1

Proof. We recall that (11) implies that either γ1 = θ or γ1 = 1 (otherwise
the integral is infinite). Furthermore, if γ1 = θ, then φ0 ≤ θ on R and
so
∫

R f(φ0(x)) dx = 0. Since γ0 = 0 < θ, (11) implies c0 = 0, which is a
contradiction. Hence γ1 = 1.
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4. Asymptotic behavior

We now prove Theorem 1.2, which further characterizes the behavior of
φ0 as x→ −∞. We recall that in the case of the regular Laplacian (α = 1),
φ0 and its derivatives decrease exponentially fast to 0 as x → −∞. When
α ∈ (1/2, 1), it is readily seen that the proof of Lemma 3.4 actually implies:

Proposition 4.1 (Asymptotic behavior of φ0). There exists M such that

φ0(x) ≤ M

|x|2α−1
for x ≤ −1

Noticing that φ′0 > 0 solves

(−∂xx)αφ′′0 + c0(φ′0)′ = 0 for x ≤ 0,

we can also prove:

Proposition 4.2 (Asymptotic behavior of φ′0). There exists a constant m
such that

φ′0(x) ≥ m

|x|2α
for x ≤ −1.

Proof. Lemma 2.3 implies that the function

ϕ̄(x) =
{ 1
|x|2α x < −1
0 x > −1

satisfies

(−∂xx)αϕ̄+ cϕ̄′(x) = − cα
2α− 1

1
|x|2α+1

+ c
2α
|x|2α+1

+O

(
1
|x|4α

)
when x→∞, and so

(−∂xx)αϕ̄+ kϕ̄′(x) ≤ 0 for x ≤ −A

if k is small enough and A is large.
We introduce ϕε(x) = ϕ̄(εx), which satisfies

(−∂xx)αϕε + ε1−2αkϕ′ε ≤ 0 for x < −ε−1A

hence
(−∂xx)αϕε + c0ϕ

′
ε ≤ 0 for x < −ε−1A

provided we choose ε small enough.
Finally, we take r so that

φ′0(x) ≥ rϕε(x) for − ε−1A < x < −ε−1.

Proposition 4.2 now follows from the maximum principle and a sliding ar-
gument using the fact that ϕε(x) = 0 for x ≥ −ε−1.
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