Each problem is 20 points. Solve each problem on a separate answer sheet. Show all work. Justify and mark clearly all answers, unless instructed otherwise.

1. The triangle axiom (for vectors) says that $\|x+y\| \leq\|x \mid+\| y \|$ for every two vectors x and y.
Prove that $\|u-v-w\| \leq\|u\|+\|v\|+\|w\|$ for every three vectors u, v, w.

Solution.

By the triangle inequality and since $\|-x\|=\|x\|$, we have $\|u-v-w\|=\|u+(-v)+(-w)\| \leq\|u\|+\|-v\|+\|-w\|=\|u\|+\|v\|+\|w\|$.
2. Let P be the plane passing through the points $(2,0,0),(0,2,0),(0,0,4)$.
a) Find an equation for P in the form $a x+b y+c z=d$.
b) Find the distance from the origin $(0,0,0)$ to P.

Solution.

Looking for an equation in the form $a x+b y+c z=1$ we obtain $a=1 / 2, b=$ $1 / 2, c=1 / 4 ; \frac{1}{2} x+\frac{1}{2} y+\frac{1}{4} z=1$, or $2 x+2 y+z=4$. After normalization, $\frac{2}{3} x+\frac{2}{3} y+\frac{1}{3} z=\frac{4}{3}$. The distance is $|4 / 3|=4 / 3$.
3. True or false questions. "True" means it is always true. "False" means there is at least one case (example) when it is false. Each correct answer is +4 points, each wrong answer is -4 points, no answer -0 points. No explanation or justification is required.
a) Let $m<n$. For every matrix A with m rows and n columns, the homogeneous system of equations $A x=0$ has a nontrivial (nonzero) solution.
b) Let $m<n$. For every matrix A with m rows and n columns and any vector $b \in \mathbb{R}^{n}$, the nonhomogeneous system of equations $A x=b$ has a solution.
c) For every two $n \times n$ matrices A and B, if $A B=O$, then $B A=O$.
d) For every two $n \times n$ matrices A and B, if $A B=I$, then $B A=I$.
e) The determinant of every antisymmetric 13×13 matrix is 0 .

Solution.

a) Since there are fewer equations than unknowns and the right hand side is 0 , there are infinitely many solutions.
b) Since the right hand side is not 0 , there may be no solutions.
c) It is possible even for 2×2 matrices that $A B=O$ and $B A \neq O$.
d) Since $A B=I$ we have that $B=A^{-1}$ (or $A=b^{-1}$). Therefore $B A=I$.
e) We have $\operatorname{det} A=\operatorname{det} A^{t}=(-1)^{13} \operatorname{det} A=-\operatorname{det} A$. Therefore $\operatorname{det} A=0$.
4. Suppose that A is an $n \times n$ matrix such that $A^{340}=O$.

Prove that $\operatorname{det} A=0$.

Solution.

Since $A^{340}=O$ we have that $\operatorname{det} A^{340}=(\operatorname{det} A)^{340}=0$. Therefore $\operatorname{det} A=$ 0.
5. Let \mathbf{n} be the unit vector $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. Find the matrix corresponding to the orthogonal projection of \mathbb{R}^{3} onto the line $\{t \mathbf{n}\}$ spanned by \mathbf{n}.

Solution.

Let the matrix be A. Then $A e_{1}$ (the first column of A) is the projection of e_{1} onto $\{t \mathbf{n}\}$, which is $\left(\mathbf{n} \cdot e_{1}\right) \mathbf{n}=(1 / 3,1 / 3,1 / 3)$. Same for the other columns.

