Each problem is 20 points. Solve each problem on a separate answer sheet. Show all work. Justify and mark clearly all answers.

1. Let $f: \mathbb{R} \to \mathbb{R}^n$, be a continuously differentiable curve in \mathbb{R}^n . Suppose ||f(t)|| = 340 for all t. Prove that $f(t) \cdot f'(t) = 0$ for all t (i.e., $f(t) \perp f'(t)$). Solution. Since $||f(t)||^2 = \text{const}$, its derivative is 0. We have $0 = \frac{d}{dt} ||f(t)||^2 = 2f(t) \cdot f'(t)$.

2. Consider the one sheet hyperboloid $x^2 + y^2 - z^2 = 1$ in \mathbb{R}^3 . Find an equation of the tangent plane to this surface at the point x = y = z = 1 in the form ax + by + cz = d. **Solution.** $f(x, y, z) = x^2 + y^2 + z^2$, $\nabla f = (2x, 2y, -2z)$, $\nabla f(1, 1, 1) = (2, 2, -2)$. Hence the tangent plane is given by 2x + 2y - 2z = 2 or x + y - z = 1.

3. The equations $\sin(x + u) - \cos(y + v) + xy - u + uv = 1$ and u + v + x + y - ux - vy = 5 implicitly define x and y as functions of u and v. The point u = 2, v = 1, x = -2, y = -1 satisfies the equations. Find $\frac{\partial x}{\partial u}(2,1)$ (i.e., for u = 2, v = 1, x = -2, y = -1). **Solution.** Differentiate both equations with respect to u to obtain a system of two equations for $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$. As it happens only the second equation is needed: $1 + \frac{\partial x}{\partial u} + \frac{\partial y}{\partial u} - x - u \frac{\partial x}{\partial u} - v \frac{\partial y}{\partial u} = 0$; for the given values of the variables we get $1 + \frac{\partial x}{\partial u} + \frac{\partial y}{\partial u} - 2 \frac{\partial x}{\partial u} - (-2) - 1 \cdot \frac{\partial y}{\partial u} = 0$ and $\frac{\partial x}{\partial u} = 3$.

4. Find the minimum and maximum values of $f(x, y) = x^2 + 4xy + y^2$ in the region $x^2 + y^2 \le 1$.

Solution. The only critical point is the origin (0,0) and it is a saddle. Using Lagrange multipliers we get: $x^2+y^2 = 1$, $2x+4y = \lambda 2x$, $2x+y = \lambda 2y$; after simplifying: $y = \frac{\lambda - 1}{2}x$, $x = \frac{\lambda - 1}{2}y$. There are 4 solutions: $x = y = \pm \frac{1}{\sqrt{2}}$ (this gives a maximum value of 3) and $x = -y = \pm \frac{1}{\sqrt{2}}$ (this gives a minimum value of -1).

5. Let R be the region in the xy-plane bounded by the x-axis and the arc of the sine curve $y = \sin x$, $0 \le x \le \pi$. Let D be the region in 3-space which is bounded from below by R (in the xy-plane) and from above by the graph of z = x + 2y. Find the volume of D.

Solution.
$$\int_0^{\pi} dx \int_0^{\sin x} dy (x+2y) = \int_0^{\pi} x \sin x + \sin^2 x dx = \frac{3}{2}\pi$$