Each problem is 20 points. Solve each problem on a separate answer sheet. Show all work. Justify and mark clearly all answers.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$, be a contiuosly differentiable curve in \mathbb{R}^{n}. Suppose $\|f(t)\|=340$ for all t. Prove that $f(t) \cdot f^{\prime}(t)=0$ for all t (i.e., $f(t) \perp f^{\prime}(t)$). Solution. Since $\|f(t)\|^{2}=$ const, its derivative is 0 . We have $0=$ $\frac{d}{d t}\|f(t)\|^{2}=2 f(t) \cdot f^{\prime}(t)$.
2. Consider the one sheet hyperboloid $x^{2}+y^{2}-z^{2}=1$ in \mathbb{R}^{3}. Find an equation of the tangent plane to this surface at the point $x=y=z=1$ in the form $a x+b y+c z=d$.
Solution. $f(x, y, z)=x^{2}+y^{2}+z^{2}, \nabla f=(2 x, 2 y,-2 z), \nabla f(1,1,1)=(2,2,-2)$. Hence the tangent plane is given by $2 x+2 y-2 z=2$ or $x+y-z=1$.
3. The equations $\sin (x+u)-\cos (y+v)+x y-u+u v=1$ and $u+v+$ $x+y-u x-v y=5$ implicitly define x and y as functions of u and v. The point $u=2, v=1, x=-2, y=-1$ satisfies the equations.
Find $\frac{\partial x}{\partial u}(2,1)$ (i.e., for $u=2, v=1, x=-2, y=-1$).
Solution. Differentiate both equations with respect to u to obtain a system of two equations for $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$. As it happens only the second equation is needed: $1+\frac{\partial x}{\partial u}+\frac{\partial y}{\partial u}-x-u \frac{\partial x}{\partial u}-v \frac{\partial y}{\partial u}=0$; for the given values of the variables we get $1+\frac{\partial x}{\partial u}+\frac{\partial y}{\partial u}-2 \frac{\partial x}{\partial u}-(-2)-1 \cdot \frac{\partial y}{\partial u}=0$ and $\frac{\partial x}{\partial u}=3$.
4. Find the minimum and maximum values of $f(x, y)=x^{2}+4 x y+y^{2}$ in the region $x^{2}+y^{2} \leq 1$.
Solution. The only critical point is the origin $(0,0)$ and it is a saddle. Using Lagrange multipliers we get: $x^{2}+y^{2}=1,2 x+4 y=\lambda 2 x, 2 x+y=\lambda 2 y$; after simplifying: $y=\frac{\lambda-1}{2} x, x=\frac{\lambda-1}{2} y$. There are 4 solutions: $x=y=$ $\pm \frac{1}{\sqrt{2}}$ (this gives a maximum value of 3) and $x=-y= \pm \frac{1}{\sqrt{2}}$ (this gives a minimum value of -1).
5. Let R be the region in the $x y$-plane bounded by the x-axis and the arc of the sine curve $y=\sin x, 0 \leq x \leq \pi$. Let D be the region in 3 -space which is bounded from below by R (in the $x y$-plane) and from above by the graph of $z=x+2 y$. Find the volume of D.
Solution. $\int_{0}^{\pi} d x \int_{0}^{\sin x} d y(x+2 y)=\int_{0}^{\pi} x \sin x+\sin ^{2} x d x=\frac{3}{2} \pi$
