(1) Find \(\lim_{n \to \infty} n^{205} \left(\sqrt{n^{410} + 2} - \sqrt{n^{410} - 1} \right) \).

Multiply the numerator and denominator by \((\sqrt{n^{410} + 2} + \sqrt{n^{410} - 1})\)
\[
n^{205} \left(\sqrt{n^{410} + 2} - \sqrt{n^{410} - 1} \right) = n^{205} \frac{3n^{205}}{n^{410} + 2 + n^{410} - 1} = \frac{3n^{205}}{2n^{410} + 2n^{410} - 1} \to \frac{3}{2}.
\]

(2) Suppose \(f : \mathbb{R} \to \mathbb{R} \) is a strictly increasing function defined for all real numbers.

Prove that the limit from the right \(\lim_{x \to 0^+} f(x) \) exists.

Let \(S = \{ f(x) : x > 0 \} \). The set \(S \) is not empty (contains \(f(1) \)) and bounded from below (for example, by \(f(0) \)). Therefore, by the completeness axiom, \(\alpha = \inf S \) exists. Claim: \(\lim_{x \to 0^+} f(x) = \alpha \). To prove this fix any \(\epsilon > 0 \). Since \(\alpha + \epsilon \) is not a lower bound for \(S \), there is \(\delta > 0 \) such that \(f(\delta) < \alpha + \epsilon \). Since \(f \) is increasing, \(f(x) < f(\delta) < \alpha + \epsilon \) for each \(x \) with \(0 < x < \delta \). Hence, \(0 \leq f(x) - \alpha < \epsilon \) for \(0 < x < \delta \).

(3) A subset \(S \subseteq \mathbb{R} \) is open if for every \(x \in S \) there is \(\epsilon > 0 \) such that \((x - \epsilon, x + \epsilon) \subseteq S \).

Let \(S_1, S_2, \ldots, S_k \) be open subsets of \(\mathbb{R} \). Prove that the intersection \(\bigcap_{i=1}^k S_i \) is open.

Let \(x \in \bigcap_{i=1}^k S_i \). Then \(x \in S_i \) for each \(i \) and there is \(\epsilon_i > 0 \) such that \((x - \epsilon_i, x + \epsilon_i) \subseteq S_i \). Choose \(\epsilon = \min_{i=1,2,\ldots,k} \epsilon_i \). Then the interval \((x - \epsilon, x + \epsilon)\) is contained in each \(S_i \), and hence in the intersection.

(4) Suppose that \(-x^4 \leq f(x) \leq x^4 \) for all \(x \in \mathbb{R} \).

Prove that \(f \) is differentiable at 0 and that \(f'(0) = 0 \).

Observe that \(f(0) = 0 \). We have: \(\left| \frac{f(x) - f(0)}{x - 0} \right| \leq \frac{|f(x)|}{|x|} \leq |x|^3 \to 0 \) as \(x \to 0 \).

Hence \(f'(0) = 0 \).

(5) Suppose that a function \(g : \mathbb{R} \to \mathbb{R} \) is differentiable at \(x = 0 \). Also, suppose that \(g(1/n) = 0 \) for each natural number \(n \).

Prove that a) \(g(0) = 0 \), b) \(g'(0) = 0 \).

a) Since \(g \) is differentiable at 0, it is continuous at 0. Therefore, since \(\lim_{n \to \infty} 1/n = 0 \), we have \(f(0) = \lim_{n \to \infty} g(1/n) = \lim_{n \to \infty} 0 = 0 \).

b) Since \(g'(0) \) exists, \(\lim_{n \to \infty} \frac{g(x_n) - g(0)}{x_n - 0} = g'(0) \) for every sequence \(\{x_n\} \) with \(\lim_{n \to \infty} x_n = 0 \). Observe that \(\frac{g(1/n) - g(0)}{1/n - 0} = g'(0) \) for each \(n \). Hence, \(\lim_{n \to \infty} \frac{g(1/n) - g(0)}{1/n - 0} = 0 \) and \(g'(0) = 0 \).