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Abstract—This paper discusses the connec-
tion between the phase retrieval problem
and permutation invariant embeddings. We
show that the real phase retrieval problem for
Rd/O(1) is equivalent to Euclidean embeddings
of the quotient space R2×d/S2 performed by the
sorting encoder introduced in an earlier work.
In addition, this relationship provides us with
inversion algorithms of the orbits induced by
the group of permutation matrices.

I. Introduction

The phase retrieval problem has a long and
illustrious history involving several Nobel prizes
along the way. The issue of reconstruction from
magnitude of frame coefficients is related to a
significant number of problems that appear in
separate areas of science and engineering. Here is
an incomplete list of some of these applications
and reference papers: crystallography [1], [2],
[3]; ptychography [4], [5]; source separation and
inverse problems [6], [7]; optical data processing
[8]; mutually unbiased bases [9], [10], quantum
state tomography [11], [12]; low-rank matrix
completion problem [13], [14]; tensor algebra and
systems of multivariate polynomial equations
[15], [16], [17]; signal generating models [18], [19],
bandlimited functions [20], [21], radar ambiguity
problem [22], [23], learning and scattering net-
works [24], [25], [26].

In [27], this problem was shown to be a special
form of the following setup. Let H denote a real
or complex vector space and let A = {ai}i∈I

be a frame for H. The phase retrieval problem
asks whether the map H ∋ x 7→ αA(x) =
{|⟨ x, ai ⟩|}i∈I ∈ l2(I) determines x uniquely up
to a unimodular scalar.

In this paper we focus on the finite dimen-
sional real case of this problem (see also [28]),
namely when H = Rd. In this case, a frame
A = {a1, . . . , aD} ⊂ Rd is simply a spanning
set. The group O(1) = {−1, +1} acts on H by
scalar multiplication. Let Ĥ = H/O(1) denote
the quotient space induced by this action, where
the equivalence classes (orbits) are

[x] = {x, −x} , for x ̸= 0 , [x] = {0} , for x = 0.

The analysis operator for this frame is

TA : H → RD , TA(x) = (⟨ x, ak ⟩)D
k=1. (1)

The relevant nonlinear map αA is given by taking
the absolute value of entries of TA:

αA : H → RD , αA(x) = (|⟨ x, ak ⟩|)D
k=1. (2)

Notice αA produces a well-defined map on Ĥ,
which, with a slight abuse, but for simplicity
of notation, will be denoted also by αA. Thus
αA([x]) = αA(x).

Another customary notation that is often em-
ployed: a frame is given either as an indexed
set of vectors, A = {a1, . . . , aD}, or through the
columns of a d×D matrix A. The matrix notation
is not canonical, but this is not an issue here. We
always identify H = Rd with its columns vector
representation in its canonical basis.

Definition 1. We say that (the columns of a
matrix) A ∈ Rd×D form/is a phase retrievable
frame, if αA : R̂d → RD, αA(x) = (|⟨ x, ak ⟩|)D

k=1
is an injective map (on the quotient space).

In a different line of works [29], [30], [31], [32] it
was recognized that the phase retrieval problem



is a special case of Euclidean representations of
metric spaces of orbits defined by certain unitary
group actions on Hilbert spaces. Specifically, the
setup is as follows. Let V denote a Hilbert space,
and let G be a group acting unitarily on V . Let
V̂ = V/G denote the metric space of orbits, where
the quotient space is induced by the equivalence
relation x, y ∈ V , x ∼ y iff y = g.x, for some
g ∈ G. Here g.x represents the action of the
group element g ∈ G on vector x. For the
purposes of this paper we specialize to the finite
dimensional real case, V = Rn×d and G = Sn, is
the group of n×n permutation matrices acting on
V by left multiplication. Other cases are discussed
in aforementioned papers. In particular, in [30]
the authors have shown a deep connection to
graph deep learning problems. In [31], the authors
linked this framework to certain graph matching
problems and more. The bi-Lipschitz Euclidean
embedding problem for the finite dimensional case
is as follows. Given V̂ = V/G, construct a map
β : V → Rm so that, (i) β(g.x) = β(x) for all
g ∈ G, x ∈ V , and (ii) for some 0 < A ≤ B < ∞,
and for all x, y ∈ V ,

A d([x], [y]) ≤ ∥β(x) − β(y)∥ ≤ B d([x], [y])
(3)

where d([x], [y]) = inf
g∈G

∥x − g.y∥V is the natural

metric on the quotient space V̂ .
In [30] the following embedding was introduced.

Let A ∈ Rd×D be a fixed matrix (termed as key)
whose columns are denoted by a1, . . . , aD. The
induced encoder βA : V → Rn×D is defined by

βA(X) =↓ (XA) =
[

Π1Xa1 · · · ΠDXaD

]
(4)

where Πk ∈ Sn is the permutation matrix that
sorts in decreasing order the vector Xak. It
was shown in [30] that, for D large enough, βA

provides a bi-Lipschitz Euclidean embedding of
V̂ . This motivates the following definition.

Definition 2. We say that A ∈ Rd×D is a
universal key for Rn×d if βA : R̂n×d → Rn×D,
βA(X) =↓ (XA) is an injective map (on the
quotient space).

The purpose of this paper is to show the
equivalence between the real phase retrieval
problem, specifically the embedding αA, and
the permutation invariant embedding βA defined

above, in the special case n = 2.

II. Main Results

Recall the Hilbert spaces H = Rd and V =
R2×d. For A ∈ Rd×D recall also the encoders αA :
Ĥ → RD and βA : V̂ → R2×D given respectively
by αA(x) = (|⟨ x, ak ⟩|)k∈[D], and βA(X)=↓(XA).
Our main result reads as follows.

Theorem 3. In the case n = 2, the following are
equivalent.

1) αA is injective, hence the columns of A form
a phase retrievable frame;

2) βA is injective, hence A is a universal key.

Remark 4. Perhaps it is not surprising that, if
an equivalence between the phase retrieval prob-
lem and permutation invariant representations is
possible, then this should occur for n = 2. This
statement is suggested by the observation that
O(1) is isomorphic with S2, the group of the 2 × 2
permutation matrices. What is surprising that, in
fact, the two embeddings are intimately related,
as the proof and corollaries show.

Proof of Theorem 3. Let X ∈ V = R2×d. Denote
by x1, x2 ∈ Rd its two rows transposed, that is

X =
[

xT
1

xT
2

]
.

Notice that, for each k ∈ [D], the kth column of
βA(X) is given by

↓ (Xak) =
[
max(⟨ x1, ak ⟩, ⟨ x2, ak ⟩)
min(⟨ x1, ak ⟩, ⟨ x2, ak ⟩)

]
.

The key observations are the following relation-
ships between min, max, and the absolute value
| · |:

|u − v| = max(u, v) − min(u, v)
u + v = max(u, v) + min(u, v)

max(u, v) = 1
2(u + v + |u − v|)

min(u, v) = 1
2(u + v − |u − v|)

| |u| − |v| | = min(|u − v|, |u + v|)



In particular, these show that:[
1 −1
1 1

]
βA(X) =

[
1 −1
1 1

]
· ↓ (XA) =

=
[
|⟨ x1 − x2, a1 ⟩|, . . . , |⟨ x1 − x2, aD ⟩|
⟨ x1 + x2, a1 ⟩, . . . , ⟨ x1 − x2, aD ⟩

]
=

[
(αA(x1 − x2))T

(TA(x1 + x2))T

]
Where, TA was introduced in equation (1).

(1) → (2) : Suppose that αA is injective. Let

X =
[
xT

1
xT

2

]
and Y =

[
yT

1
yT

2

]
, such that βA(X) =

βA(Y ). Then[
1 −1
1 1

]
βA(X) =

[
1 −1
1 1

]
βA(Y )

=⇒
[
(αA(x1 − x2))T

TA(x1 + x2)T

]
=

[
(αA(y1 − y2))T

TA(y1 + y2)T

]
.

But now, αA(x1 − x2) = αA(y1 − y2)) =⇒ x1 −
x2 = y1 − y2 or x1 − x2 = y2 − y1 and

TA(x1+x2) = TA(y1+y2)T =⇒ x1+x2 = y1+y2

Thus we have that{
x1 = y1
x2 = y2

}
or

{
x1 = y2
x2 = y1

}
Either case means

⇐⇒ X = Y or X =
[
0 1
1 0

]
Y

⇐⇒ [X] = [Y ]

So, βA is injective.
(2) → (1) : Suppose that βA is injective.

Let x, y ∈ Rd such that αA(x) = αA(y), i.e.

|⟨ x, ak ⟩| = |⟨ y, ak ⟩|, ∀k ∈ [D]. Let X =
[

xT

−xT

]
and Y =

[
yT

−yT

]
. Then,

[
1 −1
1 1

]
βA(X) =

[
αA(2x)T

TA(0)T

]
= 2

[
αA(2x)T

0

]
and[

1 −1
1 1

]
βA(X) =

[
αA(2y)T

TA(0)T

]
= 2

[
αA(2y)T

0

]
Thus βA(X) = βA(Y ). Since βA is assumed

injective, it follows that X = Y or X =
[
0 1
1 0

]
Y .

So, x = y or x = −y. We conclude that [x] = [y],
so αA is injective.

Corollary 5. If βA is injective, then D ≥ 2d − 1.

Corollary 6. If D = 2d − 1, then βA is injective
if and only if A is a full spark frame.

Both results follow necessary and sufficient
conditions established in, e.g. [27]. Recall that
a frame in Rd is said full spark if any subset of d

vectors is linearly independent (hence basis).

Remark 7. Assume D = 2d − 1. Note the
embedding dimension for V̂ = R̂2×d is m =
2(2d − 1) = 4d − 2 = 2 dim(V ) − 2. In particular
this shows the minimal dimension of bi-Lipschitz
Euclidean embeddings may be smaller than twice
the intrinsic dimension of the Hilbert space where
the group acts on. Both papers [30] and [31]
present (bi)Lipschitz embeddings into R2 dim(V ).

Remark 8. As was derived in the proof, αA, βA

and TA are intimately related:

βA

([
xT

1
xT

2

])
= 1

2

[
1 1

−1 1

] [
αA(x1 − x2)T

TA(x1 + x2)T

]
(5)

In particular, any algorithm for solving the phase
retrieval problem solves also the inversion problem
for βA. Let ωA : RD → Rd denote a left
inverse of αA on the metric space R̂d. This means
ωA(αA(x)) ∼ x in Rd/O(1). Denote by T †

A a left
inverse of the analysis operator (e.g., the synthesis
operator associated to the canonical dual frame).
Thus T †

ATA = Id. Then an inverse for βA is:

β−1
A (Y ) = 1

2

[
T †

A(y2) + ωA(y1)
T †

A(y2) − ωA(y1)

]
(6)

where Y =
[

yT
1

yT
2

]
.

Remark 9. Equations (6) suggest a lower dimen-
sional embedding than βA. Specifically, first we
compute the average y1 = 1

2(x1 + x2) which is of
size Rd, and then encode the difference x1 − x2
using αA, y2 = αA(x1 − x2). We obtain the
following modified encoder, β̃A : R2×d → Rd+D:

β̃A(x) =
[ 1

2(x1 + x2)T αA(x1 − x2)T
]

. (7)

With the ωA left inverse of αA, the inverse of β̃A



is given by:

β̃−1
A (Y ) =

 y1 + 1
2ωA(y2)

y1 − 1
2ωA(y2)

 (8)

where y1 = Y (1 : d) and y2 = Y (d+1 : d+D). In
the case when D = Dmin = 2d − 1, the minimal
embedding dimension is m = d + D = 3d − 1
(instead of 4d − 2 or 4d = 2 dim(V )).

Reference [30] shows that an upper Lipschitz
bound for embedding βA is σ1(A), where σ1(A)
is the largest singular value of A. Same reference
shows that if βA is injective then there is also a
strictly positive lower Lipschitz bound without
providing a formula. Using Equation (5) we
provide explicit estimates of these bounds.

Theorem 10. Assume A ∈ Rd×D is a universal
key for R2×d (i.e., βA : R̂2×d → R2×D is
injective), or, equivalently (according to Theorem
3), the columns of A form a phase retrievable
frame in Rd (i.e., αA : R̂d → RD is injective).
Then both αA and βA are bi-Lipschitz with same
Lipschitz constants, where distances are given by
dPR([x], [y]) = min(∥x − y∥, ∥x + y∥) on Ĥ, and
d([X], [Y ]) = min

P ∈S2
∥X − PY ∥ on V̂ , respectively.

The optimal lower and upper Lipschitz constants
are given by:

A0 = min
I⊂[D]

√
σ2

d(A[I]) + σ2
d(A[Ic]) , B0 = σ1(A)

(9)
where σ1(A) is the largest singular value of A

(equals the square-root of upper frame bound) and
σd(A[J ]) is the dth singular value of submatrix of
A indexed by J . Furthermore, these bounds are
achieved by the following vectors. Let I0 denote
a optimal partition in (9) and let u1, u2 denote
the normalized left singular vectors of A[I0] and
A[Ic

0 ], respectively, each associated to the dth

singular value. Let u be the normalized principal
left singular vector associated to A.(i.e., associated
to the largest singular value). Then:

1) The upper Lipschitz constant B0 is achieved
as follows: (i) for map αA by vectors xmax =
u and ymax = 0; (ii) for map βA by vectors

Xmax =
[

uT

0

]
and Ymax = 0.

2) The lower Lipschitz constant A0 is achieved
as follows: (i) for map αA by vectors xmin =
u1 + u2 and ymin = u1 − u2; (ii) for map

βA by vectors Xmin =
[

(u1 + u2)T

0

]
and

Ymin =
[

uT
1

uT
2

]
.

Remark 11. The optimal Lipschitz constants for
the map αA were obtained in [33], [34], including
the optimizers. However, for reader’s convenience,
we prefer to give direct proofs of these results.

Proof. 1) Upper Lipschitz constants.
(i) Let x, y ∈ Rd. Then

∥αA(x)−αA(y)∥2=
∑D

i=1
||⟨ ai,x ⟩|−|⟨ ai,y ⟩||2=

=∑D

i=1
min(|⟨ ai,x−y ⟩|2,|⟨ ai,x+y ⟩|2)≤

≤min
(∑D

i=1
|⟨ ai,x−y ⟩|2,

∑D

i=1
|⟨ ai,x+y ⟩|2

)
≤σ2

1(A) dPR([x],[y])2.

So σ1(A) is an upper Lipschitz bound for the
map αA. Now for xmax = u, ymax = 0 notice
that

∥α(xmax)−α(ymax)∥2=
∑D

i=1
|⟨ ai,u ⟩|2=

=σ2
1(A)∥u∥2=σ2

1(A) dPR([xmax],[ymax])2.

Thus, the upper Lipschitz constant σ1(A) is
in fact optimal (tight).
(ii) Map βA. Let X, Y ∈ R2×D and P0 ∈ S2
be a permutation that achieves the dis-
tance between X and Y , i.e. ∥X − P0Y ∥ =
d([X], [Y ]). Note that

∥βA(X)−βA(Y )∥2=
∑D

k=1
∥(ΠkX−ΞkY )ak∥2=

=
∑D

k=1
∥(ΞT

k ΠkX−Y )ak∥2

for some Πk, Ξk ∈ S2 that align the vectors.
From rearrangement lemma we have that

∥(ΠkX−ΞkY )ak∥≤∥(X−P0Y )ak∥, ∀k∈[D]

so,∑D

k=1
∥(ΞT

k ΠkX−Y )ak∥2≤∥A∥2∥∥X − P0Y ∥∥2

=σ2
1(A) d([X],[Y ])2.

Therefore, we conclude that σ1(A) is an
upper Lipschitz constant for map βA. We still
need to show that this bound is achieved (i.e.,
it is optimal). For Xmax and Ymax defined in
part 1) of theorem 10,

∥βA(Xmax)−βA(Ymax)∥2=∥βA(Xmax)∥2=
∑D

k=1
⟨ u,ak ⟩2=σ2

1(A).

and d(Xmax, Ymax) = 1. Thus B0 is the
optimal Lipschitz constant both for αA and



for βA.
2) Lower Lipschitz constants.

(i) Let x, y ∈ Rd and define the auxiliary set

S=S(x,y):={j∈[D] :| ⟨ x−y,aj ⟩|≤|⟨ x+y,aj ⟩|}

Then

∥α(x)−α(y)∥2=
∑D

i=1
||⟨ ai,x ⟩|−|⟨ ai,y ⟩||2=

=∑
i∈S

|⟨ ai,x−y ⟩|2+
∑

i∈Sc |⟨ ai,x+y ⟩|2≥

σ2
d(A[S])+σ2

d(A[Sc]) dPR([x],[y])2≥A2
0 dPR([x],[y])2.

So A0 is a lower Lipschitz bound for αA, but
we still need to show that it is optimal.
Let I0 be the optimal partition, and let u1,
u2 be normalized left singular vectors as in
the statement of Theorem 10. Then:

∥αA(u1+u2)−αA(u1−u2)∥2=

=
∑D

i=1
||⟨ ai,u1+u2 ⟩|−|⟨ ai,u1−u2 ⟩||2=

=∑D

i=1
min(|⟨ ai,2u2 ⟩|2,|⟨ ai,2u1 ⟩|2)≤

≤4
(∑

i∈I0
|⟨ ai,u1 ⟩|2+

∑
i∈Ic

0
|⟨ ai,u2 ⟩|2

)
=4(σ2

d(A[I0])+σ2
d(A[Ic

0 ]))=A2
0 dPR([u1+u2],[u1−u2])2,

where we used again that | |a| − |b| | =
min(|a− b|, |a+ b|) for any two real numbers
a, b ∈ R, and, for the inequality, at every
i ∈ [D] we made a choice between the two
terms. Since the reverse inequality is also
true, it follows that xmin = u1 + u2 and
ymin = u1 − u2 achieve the lower bound A0
for αA.
(ii) Consider now the map βA. Let X, Y ∈
R2×d and define the auxiliary set

S=S(X,Y ):={j∈[D] :| ⟨ x1−x2−y1+y2,aj ⟩|≤

≤|⟨ x1−x2+y1−y2,aj ⟩|}

Then, using Equation (5) we have that

∥βA(X)−βA(Y )∥2=

1
2 (∥αA(x1−x2)−αA(y1−y2)∥2+∥TA(x1+x2−y1−y2)∥2)=

1
2

∑
j∈S

|⟨ x1−x2−y1+y2,aj ⟩|2+|⟨ x1+x2−y1−y2,aj ⟩|2+

+ 1
2

∑
j∈Sc |⟨ x1−x2+y1−y2,aj ⟩|2+|⟨ x1+x2−y1−y2,aj ⟩|2=

=
∑

j∈S
|⟨ x1−y1,aj ⟩|2+|⟨ x2−y2,aj ⟩|2+

+
∑

j∈Sc |⟨ x1−y2,aj ⟩|2+|⟨ x2−y1,aj ⟩|2≥

≥σ2
d(A[S])(∥x1−y1∥2+∥x2−y2∥2)+

+σ2
d(A[Sc])(∥x1−y2∥2+∥x2−y1∥2)≥

≥A2
0 d([X],[Y ])2.

Therefore A0 is a lower Lipschitz constant
for βA.
It remained to prove that this bound is tight,
i.e., it is achieved. Let Xmin and Ymin be as
in the statement of Theorem 10. Then

∥βA(Xmin)−βA(Ymin)∥2=

1
2 (∥αA(u1+u2)−αA(u1−u2)∥2+∥TA(u1+u2−u1−u2)∥2)=

1
2 (∥αA(u1+u2)−αA(u1−u2)∥2)=A2

0 d([Xmin],[Ymin])2

where the last equality follows from the fact
that the lower Lipschitz constant of αA is
achieved by u1 + u2 and u1 − u2, and the
fact that d([Xmin], [Ymin])2 = 2.
So A0 is indeed the optimal lower Lipschitz
constant for βA.

III. Conclusion

In this paper we analyzed two representation
problems, one arising in the phase retrieval
problem and the other one in the context of per-
mutation invariant representations. We showed
that the real phase retrieval problem in a finite
dimensional vector space H is entirely equivalent
to the permutation invariant representations for
the space V = R2×dim(H). Our analysis proved
that phase retrievability is equivalent to the
universal key property in the case of encoding
2 × d matrices. This result is derived based on the
lattice space structure (R, +, min, max). It is still
an open problem to understand the relationship
between αA and βA in the case n > 2. A related
problem is the implementation of the sorting
operator using a neural network that has ReLU
as activation function (or, even the absolute value
| · |). Efficient implementations of such operator
may yield novel relationships between αA and βA,
in the case n ≥ 3.
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