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� RADU BALAN

�� Introduction

Suppose H is an in�nite dimensional separable Hilbert space� A theorem due to
Paley�Wiener �PaWi��� states the following� let feigi�N be an orthonormal basis of
H and let ffigi�N be a family of vectors in H� If there exists a constant � � �	� �

such that

k
nX
i��

ci�ei � fi
 k� � k
nX
i��

ciei k� ��
nX
i��

jcij�
�������


for all n� c�� c�� � � � � cn then ffigi�N is a Riesz basis in H and a frame with bounds
����
� ����
�� An extension of this theorem was given by Christensen in �Chr���
to Hilbert frames and by Christensen and Heil in �ChHe��� to Banach frames�

Du�n and Eachus ��DuSc���
 proposed a converse of the above result by proving
that every Riesz basis after a proper scaling is close to an orthonormal basis in
the sense of ����
� We are going to extend this result to Hilbert frames and to prove
some results about quadratic closeness and distance between two frames�

Let I be a countable index set� A family of vectors F � ffigi�I in H is called a
�Hilbert� frame if there exist two real numbers 	 � A � B � � such that for any
x � H we have�

A k xk� �
X
i�I

j � x� fi � j� � B k xk�����


If A � B we call the frame tight� The largest constant A and respectively the
smallest constant B that satisfy ����
 are called the �optimal� frame bounds�

To a frame F we associate several objects� Consider the operator�

T � H � l��I
 � T �x
 � �� x� fi �
i�I�

called the analysis operator associated to F �see �Ron��� for terminology
� From

����
 we get that it is a bounded operator with norm k T k� p
B and its range is

closed� The adjoint of T is given by�

T � � l��I
� H � T �c �
X
i�I

cifi �

and is called the synthesis operator� With these two operators we construct the
frame operator by

S � H � H � S � T �T or S�x
 �
X
i�I

� x� fi � fi

The condition ����
 can then be read as� A � � � S � B � � and therefore the frame

bounds are� B �k S k A �k S��k�� �for details we refer the reader to �DuSc���
�
To every frame F one can associate two special frames� one is called the �stan�

dard� dual frame and the other �less frequently used
 is called the associated tight
frame �see relation �����
 in �AAG���
� The �standard
 dual frame is de�ned by�

�F � f �figi�I � �fi � S��fi����


and has a lot of useful properties� A few of them are the following�
��
 �F is a frame with frame bounds �

B 
�
A �
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��
 If �T is the analysis operator associated to �F then �T � TS�� and the following
resolutions of identity �or reconstruction formulae
 hold�

� � �T �T � T � �T or x �
X
i�I

� x� fi � �fi �
X
i�I

� x� �fi � fi

��
 In l��I
 T and �T have the same range �E � RanT � Ran �T 
 and P �

T �T � � �TT � is the orthogonal projector onto E�
��
 For any c � l��I
 we can consider the set of sequences d � l��I
 with the

same image as c i�e� T �c � T �d� the minimum l��norm in this set is achieved by
the sequence c� � Pc � E�

The associated tight frame is de�ned by�

F� � ff�i gi�I � f�i � S����fi����


A few properties of the associated tight frame that can be simply checked are the
following�

��
 The associated tight frame is a tight frame with frame bound ��

��
 If T� is the analysis operator associated to F� then T� � TS����� its range
coincides with E � RanT  and the orthogonal projector onto E P  is also equal
to T��T�
��

We shall come back to this associated tight frame in section ��
So far we have just listed properties of one frame and some derived frames�

In this paper we shall discuss mainly the relations between two frames� Let F �
ffigi�I and G � fgigi�I be two frames in H� We de�ne the following notions�

� If Q is an invertible bounded operator Q � H � H and if gi � Qfi then we
say that F and G are Q�equivalent�

� We say they are unitarily equivalent if they are Q�equivalent for a unitary
operator Q�

� If Q is a bounded operator Q � H � H �not necessarily invertible
 and
gi � Qfi then we say F is Q�partial equivalent with G�

� We say F is partial isometric equivalent with G if there exists a partial isom�
etry J � H � H such that gi � Jfi �then J should satisfy JJ� � � since
gi � RanJ and G is a complete set in H
�

The last two relations �Q�partial equivalent and partial isometric equivalent
 are
not equivalency relations because they are not symmetric�

We say that a frame G � fgigi�I is �quadratically� close to a frame F � ffigi�I
if there exists a positive number � � 	 such that�

k
X
i�I

ci�gi � fi
 k� � k
X
i�I

cifi k����


for any c � �ci
i�I � l��I
 �see �You�	�
� The in�mum of such ��s for which ����

holds for any c � l��I
 will be called the closeness bound of the frame G to the
frame F and denoted by c�G�F
�

The closeness relation is not an equivalency relation �it is transitive but not
re�exive in general
� However if G is quadratically close to F with a closeness
bound less than � then F is also quadratically close to G but the closeness bound
is di�erent in general� Indeed from ����
 it follows that�

k
X
i�I

ci�gi � fi
 k� �

�� �
k
X
i�I

cigi k
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The closeness bound can be related to a relative operator bound used in per�
turbation theory �see �Kato���
� More speci�cally if T g � T f denote the analysis
operators associated respectively to the frames G and F  then c�G�F
 is the �T f 
��
bound of �T g
� � �T f 
� �in the terminology of Kato
�

The next step is to correct the nonre�exivity of the closeness relation� We say
that two frames F � ffigi�I and G � fgigi�I are near if F is close to G and G is
close to F � It is fairly easy to check that this is an equivalency relation� In this
case we de�ne the predistance between F and G denoted d��F �G
 as the maximum
between the two closeness bounds�

d��F �G
 � max�c�F �G
� c�G�F

����


It is easy to prove that d� is positive and symmetric but does not satisfy the
triangle inequality� This inconvenience can be removed if we de�ne the �quadratic�
distance between F and G by�

d�F �G
 � log�d��F �G
 � �
����


Then as we shall see later �Theorem ���
 this is a veritable distance �a metric
 on
the set of frames which are near to one another�

Since the nearness relation is an equivalency relation we can partition the set
of all frames on H denoted F�H
 into disjoint equivalent classes indexed by an
index set A�

F�H
 �
�
��A

E�����


with the following properties�

E� � E� � 	 � for � 
� �

�F �G � E�� d�F�G
 �� and �F � E��G � E� with � 
� � � d�F�G
 ��
Let � denote the index projection� � � F�H
 � A with F � ��F
 � � if F � E��
We shall prove that the partition ����
 corresponds to the nondisjoint partition
of l��I
 into closed in�nite dimensional subspaces� Moreover the two equivalency
relations introduced before are identical �i�e� two frames are near if and only if they
are Q�equivalent
 as we shall prove later�

For a frame G we denote by T � the set of tight frames which are quadratically
close to G and by T � the set of tight frames such that G is close to them�

T � � fF � ffigi�I j F is a tight frame and c�G�F
 � ��g����


T � � fF � ffigi�IjF is a tight frame and c�F �G
 � ��g����	


Let d� � T � � R� d� � T � � R� denote the map from each F to the associated
closeness bound i�e� d��F
 � c�G�F
 and d��F
 � c�F �G
� If G is a tight frame
itself then G � T � � T � and mind� � mind� � 	�

Consider now the intersection between these two sets�

T � T � � T � � fF � ffigi�I j F is a tight frame and d�F �G
 � ��g � E��G	
�����


In section � we will be looking for the minima of the functions d� d� and djT �



EQUIVALENCE RELATIONS AND DISTANCES BETWEEN HILBERT FRAMES 


�� Geometry of Hilbert Frames

In this section we are mainly concerned with the relations introduced before�
We shall prove that Q�equivalence is the same as nearness �in other words two
frames are Q�equivalent if and only if they are near
� The following lemmas are
fundamental for all constructions and results in this paper�

Lemma ���� Consider F� � ff�i gi�I and F� � ff�i gi�I two tight frames in H
with frame bounds �� Denote by T� and T� respectively their analysis operators�
Then�

�� RanT� � RanT� if and only if F� and F� are partial isometric equivalent�
moreover� if J is the corresponding partial isometry� then Ker J  RanT��RanT��
more speci�c� Ker J � T �� �RanT� � �RanT�
�
�

	� RanT� � RanT� if and only if F� and F� are unitarily equivalent�

Proof

�� Suppose F� and F� are partial isometric equivalent� Then f�i � Jf�i and
T� � T�J

� for some partial isometry J � Obviously RanT� � RanT�� Now recall
that T� and T� are isometries from H onto their ranges �since F� and F� are
tight frames with bound �
� Therefore they preserve the scalar product and linear
independency� Thus�

RanT� � T��RanJ
� �Ker J
 � T�J

��H
 � T��Ker J
 � RanT� � T��Ker J


and T��Ker J
 is the orthogonal complement of RanT� into RanT�� On the other
hand T �� jRanT� is the inverse of T� � H � RanT� and thus Ker J � T �� �RanT� �
�RanT�
�
 �xing canonically the isometric isomorphismKer J  RanT��RanT��

Conversely suppose RanT� � RanT�� Then the two projectors are P� � T�T
�
�

onto RanT� and P� � T�T
�
� onto RanT� and we have P�T� � T�� Now consider

J � H � H J � T �� T� which acts in the following way�

J�x
 �
X
i�I

� x� f�i � f�i

We have�
JJ� � T �� T�T

�
� T� � T ��P�T� � T �� T� � �

We want to prove now that f�j � Jf�j for all j� We have for �xed j

Jf�j � f�j �
X
i�I

�� f�j � f
�
i � � � f�j � f

�
i �
f

�
i � T �� c

where c � fcigi�I ci �� f�j � f
�
i � � � f�j � f

�
i �� On the other hand�

	 � f�j �
X
i�I

� f�j � f
�
i � f�i �

X
i�I

�	ij� � f�j � f
�
i �
f�i � T �� a

j

where aj � fajigi�I aji � 	ij� � f�j � f
�
i � and 	ij is the Kronecker symbol� Similar

	 � T �� b
j with bj � fbjigi�I bji � 	ij� � f�j � f

�
i �� Thus aj � Ker T �� and bj �

Ker T �� � But Ker T �� � �RanT�
� � �RanT�
� � Ker T �� � Therefore a
j � Ker T ��

and then cj � aj � bj � Ker T �� which means T �� c
j � 	 or f�j � Jf�j � Moreover

T� � T�J
� and as we have proved before Ker J � T �� �RanT� � �RanT�


�
�
�� The conclusion comes from point �� the partial isometry will have a zero

kernel �Ker J � f	g
 and therefore it is a unitary operator �recall that the range
of J should be H
�

This ends the proof of the lemma� �
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Lemma ���� Consider F� � ff�i gi�I and F� � ff�i gi�I two frames in H� Let us
denote by T� and T� respectively� their analysis operators� Then�

�� RanT� � RanT� if and only if F� and F� are Q�partial equivalent for some
bounded operator Q� furthermore� KerQ � T �� �RanT� � �RanT�
�
�

	� RanT� � RanT� if and only if F� and F� are Q�equivalent� for some invert�
ible operator Q�

Proof

Let us denote by S� � T �� T� S� � T �� T� the frame operators�
�� Suppose RanT� � RanT�� We have that F� is Q�equivalent with F�

�

��f�i 

� � S

����
� f�i 
� F�

� is J�partial equivalent with F�
� from Lemma ��� where

J � �T�� 
�T�� is a partial isometry� and F�
� is Q�equivalent with F� with Q �

S
���
� �f�i � S

���
� �f�i 


�
� By composing  we get F� is Q�partial equivalent with

F� via Q � S
���
� JS

����
� � Furthermore since S� and S� are invertible Ker Q �

S
���
� Ker J � T �� �RanT� � �RanT�
�
�
Conversely if F� is Q�partial equivalent with F� and Q is the bounded operator

relating F� to F� then T� � T�Q
� and obvious RanT� � RanT�� On the other

hand since T �� T� � S� is invertible Q � T �� T�S
��
� and then F�

� is J�partial

equivalent with F�� with J � S
����
� QS

���
� � We have�

JJ� � S
����
� QS

���
� S

���
� Q�S����� � S

����
� T ��P�T�S

����
�

where P� � T�S
��
� T �� is the orthogonal projection onto RanT�� But RanT� �

RanT� hence P�T� � T�� Thus� JJ� � S
����
� T �� T�S

����
� � � proving that J is

a partial isometry� Now we apply the conclusion of Lemma ��� and obtain that

Ker J � �T�� 
��RanT� � �RanT�
�
� Substituting this into Ker Q � S
���
� Ker J

we obtain the result�
�� The statement is obtained from �
 by observing that KerQ � f	g� since we

also know that RanQ � H Q is therefore invertible with bounded inverse� �
We now present the connection between the closeness relation and partial equiv�

alency�

Lemma ���� Consider F� � ff�i gi�I and F� � ff�i gi�I two frames in H� Let
us denote by T� and T�� respectively� their analysis operators� Then F� is close
to F� �i�e� c�F��F�
 � �� if and only if F� is Q�partial equivalent with F� for
some bounded operator Q and therefore RanT� � RanT�� Moreover c�F��F�
 �k
Q� � k�
Proof

�
Suppose F� is close to F�� Then k Pi�I ci�f

�
i � f�i 
 k� � k Pi�I cif

�
i k for

� � c�F��F�
� If c � fcigi�I � Ker T ��  then necessarely c � Ker T �� � Therefore
Ker T �� � Ker T �� or RanT� � �Ker T �� 


� � �Ker T �� 

� � RanT�� Now applying

Lemma ��� we get that F� is Q�partial equivalent with F�� Then f�i � Qf�i and if
we denote v �

P
i�I cif

�
i we have�

k �Q� �
v k� � k v k
The smallest � � 	 that satis�es the above inequality for any v � H is k Q � � k�
Therefore c�F��F�
 � k Q� � k�
�
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Suppose F� is Q�partial equivalent with F�� Then it is easy to check that
c�F��F�
 �k Q� � k and then F� is close to F�� �

As a consequence of this lemma we obtain the following result�

Theorem ���� Let F� and F� be two frames� Then they are near if and only
if they are Q�equivalent for some invertible operator Q� Moreover� d��F��F�
 �
max�k Q � � k� k ��Q�� k
� �

Applying this theorem to the set T de�ned in �����
 we obtain the following
corollary�

Corollary ���� Consider a frame G � fgigi�I in H and consider also the set T
de�ned by �����
� Then T is parametrized in the following way�

T � fF � ffigi�I j fi � �Ug�i where � � 	 and U is unitaryg
Proof

Indeed let � � 	 and U unitary� Then by computing its frame operator one
can easily check that F � ffigi�I fi � �Ug�i is a tight frame with bound ���

Conversely suppose F � ffigi�I � T � Then from Theorem ��� we obtain

fi � Qg�i for some invertible Q� We compute its frame operator�

SF �
X
i�I

� �� fi � fi � Q�
X
i�I

� �� g�i � g�i 
Q
� � QQ�

Therefore QQ� � A � � which means that �p
A
Q is unitary� Thus Q �

p
AU for

some unitary U � �
The following result makes a connection between the extension of the Paley and

Wiener theorem given by Christensen in �Chr��� and the relations introduced so
far�

Theorem ���� Let F � ffigi�I be a frame in H and G � fgigi�I be a set of vectors
in H� Suppose there exists � � �	� �
 such that

k
X
i�I

ci�gi � fi
 k� � k
X
i�I

cifi k

for any n �N and c�� c�� � � � in C� Then G is a frame in H and�
�� G is Q�equivalent with F �
	� If T f and T g are the analysis operators associated respectively to F and G�

then RanT f � RanT g�

� c�G�F
 � � � � and d��G�F
 ���

Proof

The conclusion that G is a frame follows from a stability result proved by
Christensen in �Chr���� As we have checked before from c�G�F
 � � we get
c�F �G
 � �

��� � �� Therefore F and G are near and we can apply Theorem ���
and complete the proof� �

Theorem ��� allows us to partition the set of all frames on H denoted F�H

into equivalent classes as follows�

F�H
 �
�
��A

E�

where E� � F�H
 is a set of frames such that any F �G � E� F is Q�equivalent
with G or equivalent F is near to G� Therefore for each index � � A the function
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d� � E� � E� � R� is well�de�ned and �nite� We want to prove now that the
function�

d � E� � E� � R� � d�F �G
 � log�� � d��F �G


is a distance on each class E��
Theorem ���� The function d de�ned above is a distance on E�� Moreover� for
any F � E� and G � F�H
� if d�F �G
 �� then G � E��
Proof

The second part of the statement is immediate� if d�F�G
 is �nite so is d��F �G
�
hence F is close to G and therefore they belong to the same class� To prove that
d is a distance we need to check only the triangle inequality� Let F �G�H � E��
Then there exist Q and R invertible bounded operators on H such that gi � Qfi
hi � Rgi and therefore hi � RQfi� We have�

d�F�G
 � log�� � max�k Q � � k� k Q�� � � k


d�G�H
 � log�� � max�k R� � k� k R�� � � k



d�F �H
 � log�� � max�k RQ� � k� k Q��R�� � � k


and�

k RQ�� k� k �R��
�Q��
�R�Q�� k�k R�� k � k Q�� k � k R�� k � k Q�� k�
� �k R� � k ��
�k Q� � k ��
 � �

Hence�

log�k RQ� � k ��
 � log�k R� � k ��
 � log�k Q� � k ��

Similar for k Q��R�� � � k and therefore d�F �H
 � d�F �G
 � d�G�H
� �

The next step is to relate the partition ����
 with the set of in�nite dimensional
closed subspaces of l��I
� We suppose H is in�nite dimensional and I is countable�
Otherwise the following result still holds providing we replace �in�nite dimensional
closed subspaces� by �subspaces of dimension equal with the dimension of H��

Let us denote by S�l��I

 the set of all in�nite dimensional closed subspaces of
l��I
� Then Lemma ��� and Theorem ��� assert that F�H
 is mapped into S�l��I


by�

i � F�H
� S�l��I

 � i�E�
 � RanT����


where T is the analysis operator associated to any frame F � E�� The natural
question that can be asked is whether i is surjective i�e� if for any closed in�nite
dimensional subspace of l��I
 we can �nd a corresponding frame in F�H
� The
answer is yes as the following theorem proves �see Christensen in �Chr��� Aldroubi
in �Ald��� or Holub in �Hol��� for this type of argument
�

Theorem ���� For any in�nite dimensional closed subspace E of l��I
 there exists
a frame F � F�H
 �and therefore a class E�� such that i�F 
 � E �in other words�
RanT � E with T the analysis operator associated to F�� Therefore i� considered
form the set of classes E� into S�l��I

� is a bijective mapping�

Proof

Let E � l��I
 be an in�nite dimensional closed subspace� Choose an orthonormal
basis fdigi�I in E and a basis feigi�I in H �recall H is in�nite dimensional and
I countable
� Let pi � l��I
 � C be the canonical projection pi�c
 � ci where
c � fcjgj�I i � I and P � l��I
 � C be the canonical projection onto E� Let us
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denote by f	igi�I the canonical basis in l��I
 i�e� 	i � f	ijgj�I� Then it is known

�see �Hol���
 that fP	igi�I is a tight frame with bound � in E �and any tight frame
indexed by I with bound � in E is of this form i�e� the orthogonal projection of
some orthonormal basis of l��I

 since�X

i�I
� c� P	i � P	i � P

X
i�I

� Pc� 	i � 	i � Pc � c � �c � E

We de�ne a tight frame with bound � in H in the following way�

fi �
X
j�I

� P	i� dj � ej �
X
j�I

� 	i� dj � ej �
X
ji

pi�dj
ej

It is easy to prove that fi�s are well de�ned since k fik� �
P

j�I j � P	i� dj �

j� �k P	ik� ��� Let T be the analysis operator associated to ffigi�I and x � H
be arbitrarly� Then�

� x� fi ��
X
j�I

pi�dj
 � x� ej �� pi�
X
j�I

� x� ej � dj
 � �i � I

Thus� T �x
 � f� x� fi � gi�I �
P

j�I � x� ej � dj and obvious RanT � E� It is

simply to check that Tfi � P	i and therefore ffigi�I is a tight frame with bound
�� �

�� Minimal Distances between a Given Frame and a Tight Frame

We are concerned here with the closeness and distance functions d�� d� and djT
introduced earlier� In fact we wold like to characterize the minima of these func�
tions� Here is the main result�

Theorem ���� Consider G � fgigi�I a frame in H with optimal frame bounds A�B

and consider the sets T �� T � and T introduced in ����
� ����	
 and �����
� Let us

denote by 
 �
p
B�

p
Ap

B�
p
A

and � � �
� �logB � logA
� Then the following conclusions

hold�
�� The values of the minima of d�� d� and djT are given by�

mind� � mind� � 
 mindjT � �

�� These values are achieved by the following scalings of the associated tight
frames of G�

F� � ff�i gi�I � f�i �

p
A�

p
B

�
g�i����


F� � ff�i gi�I � f�i �
�
p
ABp

A�
p
B
g�i����


F� � ff�i gi�I � f�i �
�
p
ABg�i����


Hence d��F�
 � d��F�
 � 
 and d�F�
 � �
�� Any tight frame that achieves the minimum of one of the three functions d��

d� or d is unitarily equivalent with the corresponding solution ����
� ����
 or ����
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in the following way�

�d�
���

 � fK � fkigi�Ijki � Uf�i � U unitary and k U � �p
A �

p
B
S��� k� 
g

����


�d�
���

 � fK � fkigi�Ijki � Uf�i � U unitary and k U � �
p
ABp

A�
p
B
S���� k� 
g

����


d����
 � fK � fkigi�Ijki � Uf�i � U unitary and k U � �
p
ABS���� k� k U � �

�
p
AB

S��� k� �g
����


where S is the frame operator associated to G� Moreover� any unitary operator
that parametrizes �d�
���

� �d�
���

 or d����
 as above� has the value � in its
spectrum�

Proof

If G is a tight frame than F� � F� � F� � G and 
 � � � 	 and the problem is
solved� Therefore we may suppose that A � B�

The way of proving is the following� In the �rst step we check that d��F�
 �
d��F�
 � 
 and d�F�
 � �� Then since 
 � � it follows that the in�mum of d�

and d� are less than �� Now using Corollary ��� and Theorem ��� we can reduce
our problem to an in�mum of an operator norm� In the third step we will prove
two lemmas one to be applied to d� and d� and the other to d and this will end
the proof�

i
 Let us check that ����
 ����
 ����
 achieve the desired values for d� d� and d

respectively� For f�i � Qgi with Q �
p
A�

p
B

� S���� we have d��F�
 � c�G�F�
 �k
� � Q�� k� Now

p
A � S��� � p

B where the inequalities cannot be improved�
Therefore�

�
p
B �pAp
B �

p
A
� ��Q�� �

p
B �pAp
B �

p
A

which means k � � Q�� k� 
� Similar for f�i � Lgi with L � �
p
ABp

A�
p
B
S���� we

have d��F�
 � c�F��G
 �k L � � k and a similar calculus shows that d��F�
 � 
�

For F� we have f�i � Rgi with R � �
p
ABS���� and therefore�

d�F�
 � log�� �max�k R� � k� k �� R�� k


Now an easily calculation shows that�

k R� � k� k �� R�� k� max�
�

r
B

A
� �� �� �

r
A

B

 �

�

r
B

A
� �

Therefore� d�F�
 � log �

q
B
A � ��

ii
 Since we are looking for the in�mum of the functions d� d� and since 
 � �
we may restrict then our attention only on the tight frames F � T � �or in T �
 such
that d��F
 � � �respectively d��F
 � �
� But this implies also that d��F
 � �
�respectively d��F
 � �
� Therefore we may restrict our attention only to tight
frames in T � � T � � T �
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Corrolary ��� tells us that these frames must have the form� F � ffigi�I and
fi �

p
CUg�i �

p
CUS����gi for some C � 	 and U unitary� Hence�

d��F
 �k �� �p
C
S���U�� k� k �p

C
S��� � U k����


d��F 
 �k
p
CUS���� � � k� k

p
CS��� � U k����


d��F
 � max�k �p
C
S��� � U k� k

p
CS���� � U k
����


To minimize d is equivalent to minimize d�� since d� has a simpler expression we
prefer to work with d� from now on�

Thus our problem is reduced to �nd minima of the operator norms ����
 ����

����
 subject to C � 	 and U unitary�

iii
 The next step is to solve these norm problems� For d� and d� we apply the
following lemma to be proved later�

Lemma ���� Consider R a selfadjoint operator on H with a �k R��k�� and b �k
R k� Then� the solution of the following inf�problem�

� � inf
� � 	

U unitary

k �R� U k����	


is given by � � b�a
b�a and � � �

a�b � This in�mum is achieved by the identity operator�
any other unitary U that achieves the in�mum must have � in its spectrum�

If we apply this lemma with R � S��� � � �p
C

and a �
p
A b �

p
B then

we get � �
p
B�

p
Ap

B�
p
A
� 
 and � � �p

A�
p
B
 hence the parametrization ����
 of the

solutions� This proves ����� For ����
 we apply the lemmawith R � S���� � �
p
C

and a � �p
B
 b � �p

A
� We get � � 
 and � � �

p
ABp

A�
p
B
 hence the parametrization

����
 of the solutions�
For d we need a similar lemma but this time for another optimization problem�

Lemma ���� Consider R a bounded invertible selfadjoint operator on H with a �k
R��k�� and b � k R k� Then� the solution of the following optimization problem�

� � inf
� � 	

U unitary

max�k �R� U k� k �

�
R�� � U k
�����


is given by � �
q

b
a
� �� � � �p

ab
and U in the set�

fU � H � H jU unitary and k �p
ab
R� U k� k

p
abR�� � U k�

r
b

a
� �g

�����


Moreover� the set �����
 contains the identity and therefore is not empty and the
spectrum of any U contains ��
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The solution for d� is now straightforward� we apply this lemma to ����
 with

R � S��� � � �p
C

and a �
p
A b �

p
B� We get � � mind� � �

q
B
A � � and

� � �
�
p
AB

 hence the parametrization ����
 of the solution and the proof of theorem

is complete� �
It still remains to prove the two lemmas�
Proof of Lemma ���

Let 	 � �� �
a�b � We denote by �X
 the spectrum of the operatorX� Thus a� b �

�R
� Now by Weyl�s criterion �see for instance �ReSi�	�
 there are two sequences
of normed vectors in H �vn
n�N and �wn
n�N such that k vn k�k wn k� � and
limn k �R� a
vn k� 	 limn k �R� b
wn k� 	�

Consider 	 � 	� Let � � �
�b� Then there exists an index N such that for any

n � N  k Rwn � bwn k� �
� � We get k �Rwn k� �b� � � � and�

k ��R�U 
wn k� j k �Rwn k � k Uwn k j �k �Rwn k �� � �b� �� � �
b� a

b� a
� �

Therefore�

k �R� U k� b� a

b� a
� � �

b� a

b� a
� ������


Consider now 	 � 	� Let � � � �
�
a � 	� Then there exists an N such that for any

n � N  k Rvn � avn k� �
�
� We get k �Rvn k� �a� � � � and�

k ��R� U 
vn k� j k �Rvn k � k Uvn k j � �� k �Rvn k� �� �a� � �
b� a

b� a
� �

Therefore�

k �R� U k� b� a

b� a
� � �

b� a

b� a
� ������


From �����
 and �����
 we observe that the in�mum of k �R� U k has the value
b�a
b�a and may be achieved only if 	 � 	 i�e� � � �

a�b � Thus the �rst part of the
lemma has been proved�

The set of all unitary U that achieves the in�mum is then given by�

fU � H � H jU unitary and k �

a� b
R� U k� b� a

b� a
g�����


We still have to prove that the set �����
 contains the identity and � is in spectrum
of any unitary operator from this set�

From a � R � b we get � b�a
b�a � �

a�bR�� � b�a
b�a � Therefore k �

a�bR�� k� b�a
b�a �

But us we have proved b�a
b�a is the minimum that can be achieved� Therefore

k �
a�b

R� � k� b�a
b�a

� � and thus � is in the set �����
�

Now recall the sequence �vn
n and the inequality �����
 which is realized on
�vn
n� For U in the set �����
 we have� k � �

a�bR� U 
vn k� �� But�

k � �

a� b
R� U 
vnk� � �

�a� b
�
� vn� R

�vn � � �

a � b
� vn� �RU � U�R
vn � ��

From �R� a
vn � 	 we get � vn� R
�vn �� a�� Therefore�

lim
n

� vn� �RU � U�R
vn ��
a� b

�
�

�a�

�a � b
�
� �� �
 � �a

Now�
RU � U�R � �R � a
U � U��R� a
 � a�U � U�
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and the previous limit gives limn � vn� �U � U�
vn �� ��
Therefore�

k �U � �
vnk� �� vn� ��� �U � U�

vn �� 	

or limn k �U � �
vn k� 	 which proves � � �U 
� �
Proof of Lemma ���

Firstly let us solve the following scalar problem�

�� � inf
� � 	

max� max
a � x � b

j�x� �j� max
a � x � b

j �
�x

� �j
�����


Because of monotonicity�

max
a � x � b

j�x� �j � max�j�a� �j� j�b� �j


max
a � x � b

j �
�x

� �j � max�j �
�a

� �j� j �
�b
� �j


Therefore �� � inf
� � 	

f��
 where f��
 � max�j�a��j � j�b��j � j �
�a
��j � j �

�b
��j


It is now simply to check that the in�mummay be achieved only when at least two
moduli are equal� This condition is ful�lled at the following points�

�� �
�

a� b
� �� �

�

a
� �� �

�

a
� �

a

r
�� a

b
� �� �

�p
ab
� �
 �

�

b
� �� �

a � b

�ab

We evaluate f��
 at these points and we get�

f���
 �
b� a

�a
� f���
 �

b� a

a
� f���
 �

p
b� a

a
�
p
b�pb� a


f���
 �

r
b

a
� �� f��

 �

b� a

a
� f���
 �

b� a

�a

It is obvious now that� f���
 � f���
 � f���
 � f���
 � f��

 � f���
 and

therefore �� � f���
 �
q

b
a � � and �optim � �� � �p

ab
� Observe also that for

� � �� we have�

max
a � x � b

j��x� �j � max
a � x � b

j �

��x
� �j

Let us now return to the norm problem �����
� Our claiming is that the in�mum is
achieved for � � �p

ab
� �� and U � � �the identity
 and the value of the in�mum

is � �
q

b
a � � � ��� The solution of the scalar problem �����
 proves also that the

set �����
 contains the identity�
We are going now to prove that � � �� is the optimum and � � ��� As in the

previous lemma consider �vn
n�� and �wn
n�� two sequences of normed vectots in
H �k vn k� k wn k� �
 such that limn k �R� a
vn k� 	 limn k �R� b
wn k� 	�
It is simply to check that limn k �R�� � �

a 
vn k� 	 and limn k �R�� � �
b 
wn k� 	
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hold too� Now consider some � � 	 � 
� �� �
�p
ab
� Then as the scalar problem

proved we have�

either max
a � x � b

j�x� �j � �� or max
a � x � b

j �
�x

� �j � �������


Suppose the �rst inequality holds� Now either j�a� �j � �� or j�b� �j � ��� In the
former case we use the sequence �vn
n as follows� Let � � �

� �j�a� �j � ��
 � 	 and
let N� be such that k �R� a
vn k� �

� for any n � N�� Then�

k ��R� U 
vn k� j k �Rvn k � k Uvn k j � j� k avn � �R� a
vn k ��j �
� j�a� �j � � k �R � a
vn k� ��� �

which implies k �R� U k� ��� ��
Similarly in the later case �j�b� �j � ��
 we take � � �

��j�b � �j � ��
 � 	 and
N� such that k �R� b
wn k� �

�
for any n � N�� Therefore�

k ��R� U 
wn k� j k �Rwn k � k Uwn k j � j� k bwn � �R� b
wn k ��j �
� j�b� �j � � k �R� b
wn k� ��� �

Thus in both cases we obtain k �R � U k� ��� If the second inequality in �����

holds a similar argument can be used to prove that for � 
� �� we have k �

�
R���

U k� ��� Therefore the optimum in �����
 is achieved for � � �p
ab

and the value of

it is � �
q

b
a
� �� It is obvious now that the set of unitary operators that achieve

the optimum is given by �����
 and also that the identity operator is in that set�
The only problem that still remains to be proved is that all these unitary operators
have � in their spectra�

The previous argument proves the following conclusion� �x 	� � small enough
and let U be in the set �����
� Then for any 	 � 	 � 	� the following inequality
holds�

�� �k �	R �
�p
ab
R � U 
wn k

for n � N� where N� is an integer depending on 	� Then �� �k �	R� �p
ab
R�U 
wn k

� 	 k R k ��� for n � N� and it is fairly easy to prove now that k � �p
ab
R�U 
wn k�

�� when n��� Now by repeating the argument given in the previous lemma we
obtain limn k �U � �
wn k� 	 which proves � � �U 
 and the lemma is proved� �

�� Conclusions

In this paper we introduced and studied a distance between Hilbert frames having
the same index set I� This distance partitions the set of frames into equivalency
classes characterized �and indexed
 by closed subspaces of the space of coe�cients
l��I
� Thus two frames are at a �nite distance if and only if their analysis operators
have the same �closed
 range in l��I
 and this happens if and only if there exists a
bounded and invertible operator on the Hilbert space that maps one frame set into
the other�

Next we determined the closest respectively nearest tight frame to a given
frame� It turns out that these tight frames are scaled versions of the associated
tight frame�
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We point out that the entire theory can be carried out on the set of Hilbert
frames over di�erent Hilbert spaces but indexed by the same index set� All the
results are similar the changes being straightforward�

As a �nal remark we acknowledge that the two Lemmas ��� and ��� have also been
independently obtained by D�Han and D�R�Larson in a recent paper ��HaLa���
�
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