
Upgrade to the GSP Gyrokinetic Code
Final Presentation

George Wilkie (gwilkie@umd.edu)

May 10, 2012

Supervisor: William Dorland (bdorland@umd.edu)

George Wilkie () Upgrade to the GSP Gyrokinetic Code May 10, 2012 1 / 56



Outline

1 Background
Gyrokinetics
GSP Algorithm

2 Challenges
Collision Operator
Particle Trapping
Monte Carlo Integration

3 Validation and Testing
Phi Integral Validation
Z-pinch Entropy Mode
Parallel Scaling

4 Conclusion

George Wilkie () Upgrade to the GSP Gyrokinetic Code May 10, 2012 2 / 56



Background Gyrokinetics

Outline

1 Background
Gyrokinetics
GSP Algorithm

2 Challenges
Collision Operator
Particle Trapping
Monte Carlo Integration

3 Validation and Testing
Phi Integral Validation
Z-pinch Entropy Mode
Parallel Scaling

4 Conclusion

George Wilkie () Upgrade to the GSP Gyrokinetic Code May 10, 2012 3 / 56



Background Gyrokinetics

Particle Drift

A charged particle in a magnetic field
undergoes circular motion in the plane
perpendicular to the magnetic field.

A perpendicular force on a gyrating
particle has the effect of causing a
constant drift velocity perpendicular to
both the magnetic field and the force in
question.

In general, vd ,F = c
qBF× B, but

specifically:

“E× B” drift: vE = c
B E× B

Curvature drift: vc = c
qB

mv 2
‖

Rc
r̂ × B

Grad-B drift: v∇B = − c
qBµ∇B× B
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Background Gyrokinetics

Gyrokinetics Review

The dynamics of many
charged particles are
described by a probability
distribution in phase
space: f (x , y , z , v⊥, v‖, θ)

In the appropriate limit,
the kinetic transport
equation is expressed in
”gyrocenter” coordinates
R, averaging over
gyroangle θ.
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Background Gyrokinetics

δf vs h

For f ≈ F0 + δf , we can express the gyrokinetic equation in terms of
either form of the perturbed distribution: 〈δf 〉R or h = 〈δf 〉R + φF0.

Both versions of the code now exist.

Summary:

Function: 〈δf 〉R h

RHS of GK 〈Ez〉R = −∂〈φ〉R
∂z

∂〈φ〉R
∂t

equation contains:
Introduces a Courant Inaccurate due

Complication: stability condition to delayed effect
due to z derivative. of time derivative.
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Background Gyrokinetics

The Gyrokinetic Equation - Form

D

Dt
〈δf 〉R = 〈C [δf ]〉R − vE · ∇F0 − (vc + v∇B) · ∇ 〈φ〉R F0 + v‖ 〈Ez〉R F0

Where:

F0 is the equilibrium Gaussian velocity distribution, with possible
gradients in n and T

C [δf ] is the collision operator

〈〉R signifies the gyroaverage at constant gyrocenter R:

〈g(r)〉R =

∫
dθ g (R + ρ(θ))
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Background Gyrokinetics

The Gyrokinetic Equation - Method of Solution

D

Dt
〈δf 〉R = 〈C [δf ]〉R − vE · ∇F0 − F0 (vc + v∇B) · ∇ 〈φ〉R + v‖ 〈Ez〉R F0

In the coordinates E = 1
2 mv 2 and µ =

mv2
⊥

2B , we can solve via the method
of characteristics with:

dz

dt
= v‖ =

√
2
m

√
E − µB0

dR⊥
dt

= vE + vc + v∇B

dE

dt
=

dµ

dt
= 0

The objective of this project was to make this coordinate transformation in
GSP and allow for a spatially-varying magnetic field B0(z).
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Background GSP Algorithm

GSP Algorithm

1 Initialize particles in phase space
2 Predictor step

Calculate fields at step n
Calculate marker weights along characteristics for step n +1 /2

Advance marker positions for half timestep
Update weights with collision operator for step n +1 /2

3 Corrector step
Calculate fields at step n +1 /2

Calculate marker weights along characteristics for step n + 1
Advance marker positions for the full timestep
Update weights with collision operator for step n + 1

4 Output results as necessary

Repeat steps 2-4 Nt times
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Challenges Collision Operator

Collision Operator - Form

C [h] = L[h] + D[h] + U‖[h] + U⊥[h] + Q[h]

Where:

L is a diffusion operator in pitch angle ξ ≡ cos−1 v‖
v

D is a diffusion operator in speed v

U‖ and U⊥ are integral operator designed to conserve momentum

Q is an integral operator designed to conserve energy

There is a collision term for each species interacting with like-particles,
and an additional term for electrons interacting with ions.
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Challenges Collision Operator

Collision Operator - Implementation

1 Using the updated positions and weights, distribute onto a 5D grid
(x , y , z ,E , ξ)

2 Fourier transform into kx , ky

3 Solve for diffusion in velocity space with a finite-difference implicit
scheme

4 Calculate appropriate integrals over velocity grid to conserve
momentum and energy

5 Inverse Fourier transform back
6 Reinterpolate weights back to particles’ positions, appropriately

weighted so that the effect of collisions is null if ν = 0.
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Challenges Collision Operator

Collision Operator - Status

All components are coded

Diffusion operators appear well-behaved, but there is something
wrong with the conservation terms.

Conservation terms do not conserve momentum and energy, and
instead introduce numerical instability!
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Challenges Particle Trapping
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Challenges Particle Trapping

Particle Trapping

A particle gyrating with magnetic moment µ ≡ mv2
⊥

2B0
will experience a

changing magnetic field as an effective potential with respect to its
parallel motion:

Ueff = µB0(z)

If the particle does not have sufficient energy (i.e. if E < Ueff ), then
the particle is forbidden in a region with such a field.

The particle is said to be ”trapped” in regions of lower magnetic field

A gradient in the magnetic field results in an apparent force changing
the particle’s parallel velocity v‖
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Challenges Particle Trapping

Bouncing Logic

We can always find v‖ = ±
√

E − µB(z)

When advancing a particle’s z position, check if it is predicted to
travel beyond its turning point z∗ and into the forbidden region. If so:

1 Analytically solve for the particle’s trajectory in a linear field
B(z) ≈ B(z∗) + (z − z∗)B ′(z∗)

This relationship is exact for the current implementation in which the
field is piecewise linear.

2 Reverse the sign of v‖
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Challenges Particle Trapping

Particle Trajectories
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Challenges Monte Carlo Integration
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Challenges Monte Carlo Integration

Monte Carlo Integration

In general, we can express any integral as an expectation value over
some probability distribution p:

b∫
a

dx f (x) =

b∫
a

dx

(
f (x)

p(x)

)
p(x) =

〈
f (x)

p(x)

〉
p

Now, approximate the expectation value with a discrete set of
markers distributed according to p(x)

b∫
a

dx f (x) ≈ 1

Np

Np∑
i

f (xi )

p(xi )
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Challenges Monte Carlo Integration

Monte Carlo Integration

Source of error is stastistical. ε ∼ σ√
Np

indepdent of dimensionality.

Naive Monte Carlo with a uniform distribution function in one
dimension is worse than first order!

To improve accuracy, reduce σ by employing importance sampling: a
strategic choice of p(x)

Monte Carlo really shines in multiple dimensions, but unfortunately
that’s not what we’re doing...

φ ∝
Emax/B∫

0

dµJ0 (a
√
µ)

Emax∫
µ

dEe−E

√
E − µB

w(E , µ)

≈
Nµ∑
j

(∆µ)j J0(a
√
µj B)Ij
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Challenges Monte Carlo Integration

Importance Sampling

At every grid point for every discrete µi , we evaluate the following 1D
integral:

Ij =

∫
dE e−E

√
E − µB

w(E , µj ) = 〈w〉p(E) ≈
1

Np

Np∑
i

w(Ei , µj )

Where the markers are distributed according to p(E ) = e−E
√

E−µi B

Important: as the particles move around in space, this distrubtion
must hold everywhere and for all times, else the method fails.

There is hope. Despite its appearence, because the denominator is
just the Jacobian for E ,µ coordinates, it is indeed symmetric in E and
thus is a Gaussian distribution in velocity space!
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Challenges Monte Carlo Integration

Velocity Space Distribution

Some regions of velocity
space are forbidden
depending on the local
value of B0

Regions of lower magnetic
field have more particles
and vice versa

Distribution is maintained
throughout the simulation
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Challenges Monte Carlo Integration

Velocity Space Distribution
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Challenges Monte Carlo Integration

Velocity Space Distribution
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Validation and Testing Phi Integral Validation

Phi Integral

At the heart of the algorithm is the process of calculating the
electrostatic potential φ.

We wish to ensure this is being done properly with simple test cases.

Substitute “dummy” functions for the weights such that we know the
integral analytically:

1 w = 1→ φ ∝ e−k2
⊥/2

2 w = E → φ ∝ 1
2

(
3− k2

⊥
)

e−k2
⊥/2

3 w = sin(2π
√

E − µB)→ φ ∝ D+(π)e−k2
⊥/2

Perform this integration for each combination of kx , ky on the grid
and compare against analytic results
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Validation and Testing Phi Integral Validation

Analytic Phi Integral Results
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Validation and Testing Phi Integral Validation

Random Nature of Phi Error
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Validation and Testing Phi Integral Validation

Monte Carlo Error Analysis

Error is as expected from Monte Carlo: ∝ 1√
N
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Validation and Testing Phi Integral Validation

Pseudorandom vs Quasirandom

But we can do better!

Psuedorandom numbers and truly random numbers tend to over- or
under-populate regions of the distribution unpredictably.

If we use a quasi-random sequence, we can be guaranteed to fill out
the distribution uniformly.
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Validation and Testing Phi Integral Validation

Monte Carlo Improvement
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Validation and Testing Z-pinch Entropy Mode

Z-pinch Entropy Mode

The z-pinch confines a hot plasma in a collapsing ring of current.

Limited by plasma instabilities due to radial density gradient.
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Validation and Testing Z-pinch Entropy Mode

Z-pinch Geometry

Gradients and curvature perpendicular to B0 causes structure along
the ŷ-direction.

Analyze the growth rate of the ”Entropy Mode” instability for given
radius R; gradient scale 1

Ln
≡ ∇n

n ; temperature etc.
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Validation and Testing Z-pinch Entropy Mode

Entropy Mode Growth Spectrum

Find the exponential growth rates of different Fourier modes

Compare against a well-established Eulerian gyrokinetic code: GS2
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Validation and Testing Z-pinch Entropy Mode

GS2 Growth Rate Spectrum Comparisons

c
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Validation and Testing Z-pinch Entropy Mode

Equivalent Physics

In the analytic dispersion relation, Ln and R only appear together as
R
Ln

, except for a single factor of 1
Ln

overall.

Increasing radius and length scale together should give the same
physics, up to this factor.
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Validation and Testing Parallel Scaling

Parallelization Scheme

Each processor as its own set of particles that it manipulates
independently of others

Each processor has a copy of the grid (which takes up much less
memory than the particles), and independently computes grid-related
quantities on the grid

Except for some operations in the collision operator (FFTs and
tridiagonal matrix inversions): those are split among processors
appropriately

Processors only communicate when their respective contributions to
the Monte Carlo integral are summed.

As long as Nper cell is sufficiently greater than Nproc , this should be
advantageous.
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Validation and Testing Parallel Scaling

Parallelization Results

Nper cell = 1600,Ntot ∼ 400k
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Conclusion

Progress

Goals

Change coordinates used in GSP - Complete

Code collision operator in new coordinates - Complete

Validate accuracy of updated code - Complete

Test parallel performance - Complete
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Conclusion

Deliverables

A tarball to be sent via email by May 15, containing:

GSP source code

Makefiles with instructions for compiling and running

Sample input file

Data used in this presentation

Final written report and presentation
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Conclusion

Thank you!

Special thanks to:

Prof. Bill Dorland for insight and encouragement

Anjor Kanekar for the thoughtful discussions

Dr. Ingmar Broemstrup for the carefully-designed base code

Profs. Ide and Balan and the rest of AMSC 663 for the helpful
questions and guidance.
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Backup

Backup: Normalization and sampling from the p(E )
distribution

p(E ) = A
e−E

√
E − µB

Since
Emax∫
µB

p(E )dE = 1 necessarily, normalize:

1

A
= e−µBErf

(√
Emax − µB

)
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Backup

Backup: Normalization and sampling from the p(E )
distribution

In order to obtain this distribution from a standard [0,1] uniform random
distribution, we need to invert the cumulative distribution:

y = P(x) = A

x∫
µB

dEe−E

√
E − µB

To obtain:

x = µB +
(

Erf−1
[
yErf

(√
Emax − µB

)])2
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Backup

Example of a Bad Distribution

p(E ) = e−E
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Backup

Calculating the Fields

In Fourier space, the gyroaveraging operation is multiplication by a
Bessel function J0

The equation for the potential becomes:

φ̃(k) ∝
∫

d3v 〈〈δf 〉R〉r =

∫
d3vJ0

(
k⊥v⊥

Ω

)
〈δf 〉R
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Backup

Change of Coordinates

When the background field B0 is allowed to change, it makes sense to
solve the gyrokinetic equation in E -µ coordinates so that one does
not need to follow characteristics in velocity space

The integral for the potential in these coordinates becomes:

φ ∝
∑

i

∫ ∫
dEdµ√

E − µB0
J0

(
k⊥

√
µ

B0

)
e−

E/2wiδ(E − Ei )δ(µ− µi )

Particles are interpolated onto nearest µ
B so that after charge

distribution is Fourier-transformed, the Bessel function can be
computed

Problem: Due to this Jacobian, the integration of E and µ cannot be
performed separately
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Backup

Collision Operator

Accounts for interactions between particles

Two parts:

Pitch-angle scattering: Diffusive. Calculated implicitly on a 5D grid
Energy and momentum correction: Integral operators.
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Backup

Collision Operator

C [h] = ν
2

∂

∂ξ

(
1− ξ2

) ∂h

∂ξ
− ν

2 v 2 k2
⊥

Ω2
h + νF0×(

2v⊥J1

(
k⊥v⊥

Ω

)
U⊥[h] + 2v‖J0

(
k⊥v⊥

Ω

)
U‖[h] . . .+ v 2J0

(
k⊥v⊥

Ω

)
Q[h]

)

h = 〈δf 〉R +
q〈φ〉R

T F0

ξ =
v‖
v

ν = Collision Frequency

U⊥, U‖, and Q are moments of the distribution function; very similar
integrals to the φ integral
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Backup

φ Integral Checkout

Polynomial Error (RMS)

L0 2.53× 10−5

L1 2.85× 10−5

L2 6.52× 10−5

L3 1.45× 10−4

L3 1.56× 10−4

Conditions:

Particles per cell: 100

Total particles: ∼ 1.6 M

Number of energy grid arcs: 160

Maxmimum velocity: 6vt

Normalized magnetic field: 0.8B0
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Backup

φ Integral Checkout

Estimation of:
∫

d3vJ0

(
k⊥v⊥

Ω

)
e−

v2
⊥
2 (RMS Error = 2.53× 10−5)
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Backup

φ Integral Checkout

Estimation of:
∫

d3vJ0

(
k⊥v⊥

Ω

)
e−

v2
⊥
2 L4

(
v2
⊥
2

)
(RMS Error = 1.56× 10−4)
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Backup

Backup: Gyroaveraging

Gyroaverage at constant gyrocenter R

〈δf 〉R
The gyroaveraged perturbation of the probability distribution function
The function that the gyrokinetic equation solves for

〈E〉R
The average electric field that a marker with gyrocenter R ”sees”
Determines the characteristic curves of a marker
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Backup

Backup: Gyroaveraging

Gyroaverage at constant position r

〈〈δf 〉R〉r
The charge deposited onto a position r from markers that have
gyrocenter R
Tricky concept
Used in Poisson’s equation for the electrostatic potential
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