UPGRADE OF THE GSP GYROKINETIC CODE MID-YEAR PROGRESS REPORT

George Wilkie
gwilkie@umd.edu
December 6, 2011

Supervisor: William Dorland, Dept. of Physics
bdorland@umd.edu

Abstract:

Simulations of turbulent plasma in a strong magnetic field can take advantage of the gyrokinetic approximation, the result of which is a closed set of equations that can be solved numerically. An existing code, GSP, uses a novel and highly efficient solution method to solve the nonlinear 5D gyrokinetic equation. In this project, we will seek to change the velocity-space representation in GSP. This transformation will simplify the inclusion of a new collision operator and make the algorithm more suitable for simulations of turbulence in Tokamak plasmas, while retaining the efficiency and accuracy of the original code.

Outline

- Overview of Gyrokinetics
- Description of GSP
- Changes to Algorithm

Overview

- GSP is a Particle-In-Cell (PIC) code to solve the Gyrokinetic equation to study the evolution of turbulence in highly magnetized plasma
- Gyrokinetic theory treats the many rapidly circulating charges as charged rings
- These rings drift parallel and perpendicular to the background magnetic field

Overview

- The "particles" in the code are not intended to simulate the physical particles, nor the "gyro-averaged" rings of charge.
- The evolution of many physical charges are described by a statistical distribution function in phase space: $f\left(\mathbf{r}, v_{\|}, v_{\perp}, \theta\right)$

$$
f \approx F_{0}+\delta f+\ldots
$$

- Performing an asymptotic expansion and gyroaveraging the Fokker-Planck equation, we can get a dynamical equation for of : the gyrokinetic equation

The Gyrokinetic Equation

$$
\frac{\partial\langle\delta f\rangle}{\partial t}+v_{\|} \frac{\partial}{\partial z}\langle\delta f\rangle+\mathbf{v}_{D} \cdot \nabla\langle\delta f\rangle=\langle C[\delta f]\rangle-\mathbf{v}_{D} \cdot \nabla F_{0}+v_{\|}\left\langle E_{z}\right\rangle F_{0}
$$

Where:

- $\langle\delta f\rangle=\langle\delta f\rangle\left(\mathbf{R}, v_{\perp}, v_{\|}\right)$is the perturbed distribution function to be solved for
- The given background equilibrium distribution is: $F_{0}=n\left(\frac{m}{2 \pi k T}\right) e^{-\frac{-m)^{2}}{2 k T}}$
- The particle "weight" is $w \equiv \frac{\langle\delta f\rangle}{F_{0}}$
- The (characteristic) drift velocity is: $\mathbf{v}_{D}=\frac{c}{B_{0}}\langle\mathbf{E}\rangle \times \hat{\mathbf{z}}$
- $C[\delta f]$ is the collision operator

Outline

- Overview of Gyrokinetics
- Description of GSP
- Changes to Algorithm

The Gyrokinetic Equation

$$
\frac{\partial\langle\delta f\rangle}{\partial t}+v_{\|} \frac{\partial}{\partial z}\langle\delta f\rangle+\mathbf{v}_{D} \cdot \nabla\langle\delta f\rangle=\langle C[\delta f]\rangle-\mathbf{v}_{D} \cdot \nabla F_{0}+v_{\|}\left\langle E_{z}\right\rangle F_{0}
$$

To solve this equation, we identify characteristic trajectories in phase space so that:

- The left hand side becomes $\frac{d}{d t}\langle\delta f\rangle$
- $v_{\|} \hat{\mathbf{z}}+\mathbf{v}_{D}$ is the characteristic velocity
- Characteristic curves are constant in velocity space only under special conditions:
- Uniform equilibrium magnetic field \mathbf{B}_{0}
- Special choice of velocity coordinates: $\quad \mu \equiv \frac{m v_{\perp}^{2}}{2 B_{0}} \quad \mathcal{E}=\frac{1}{2} m\left(v_{\perp}^{2}+v_{\|}^{2}\right)$

GSP Code

- Step 1: Initialize particles in phase space
- Step 2: Predictor Step:
- Calculate fields at step n
- Calculate marker weights along characteristics for step $n+1 / 2$
- Advance marker positions for half a timestep
- Update weights with collision operator for step $n+1 / 2$
- Step 3: Corrector Step:
- Calculate fields at step $n+1 / 2$
- Calculate marker weights along characteristics for step n+1
- Advance marker positions for a full timestep
- Update weights with collision operator for step $n+1$
- Step 4: Output results
- Repeat Steps 2-4 N_{T} times

Flowchart

Flowchart

Calculate Fields

$$
\mathbf{v}_{D}=\frac{c}{B_{0}}\langle\mathbf{E}\rangle \times \hat{\mathbf{z}}
$$

- Once we know the electrostatic potential, we know the electric field:

$$
\mathbf{E}=-\nabla \phi
$$

- The gyro-averaging operation is simplified in Fourier space:

$$
\langle\widetilde{\mathbf{E}}\rangle=J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right) \widetilde{\mathbf{E}}=-i \mathbf{k} \tilde{\phi} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right)
$$

$$
\text { (} J_{0} \text { is the } 0 \text {-th order Bessel function) } \quad \Omega=\frac{e B_{0}}{m c}
$$

Calculate Fields

- First, deposit charges onto grid in R-space
- Fourier transform grid
- Apply Poisson's equation to calculate the potential:

$$
\tilde{\phi} \propto \int d v_{\|} \int v_{\perp} d v_{\perp}\langle\delta f\rangle_{\mathbf{R}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right)
$$

- Issue:
- J_{0} is expensive to calculate explicitly every time
- Solution:
- Discretize v_{\perp} on a grid in velocity space
- Store J_{0} in a table at the relevant discrete values of v_{\perp} and k_{\perp}

Calculate Fields

- Once potential is calculated, find the gyro-averaged fields in k-space

$$
\langle\widetilde{\mathbf{E}}\rangle_{\mathbf{R}}=-i \mathbf{k} \tilde{\phi} J_{0}\left(\frac{k_{1} v_{\perp}}{\Omega}\right)
$$

- Fourier transform back into grid in R-space
- Interpolate to find fields at marker positions

Flowchart

Update Weights and Advance Markers

- This Monte Carlo scheme [Aydemir, 1994] doesn't model $\langle\delta f\rangle_{\mathbf{R}}$ explicitly, but rather the function:

$$
w=\frac{\langle\delta f\rangle_{\mathbf{R}}}{F_{0}}
$$

- The equation for w along characteristics is:

$$
\dot{w}=\frac{q}{T} v_{\|}\left\langle E_{z}\right\rangle_{\mathbf{R}}-\frac{\nabla F_{0}}{F_{0}} \cdot \mathbf{v}_{D}
$$

- Update marker positions explicitly using $v_{\|} \hat{\mathbf{z}}+\mathbf{v}_{D}$

Flowchart

Collision Operator

- Pitch-angle scattering operator
- Diffusive in velocity space
- Energy is conserved with like-particle interactions, or when there's a large disparity in mass (such as ions and electrons)
- v is a constant parameter
- Collision operator defined in terms of $h \equiv\langle\delta f\rangle+\langle\phi\rangle F_{0}$

$$
C[h]=\frac{v}{2} \frac{\partial}{\partial \xi}\left(1-\xi^{2}\right) \frac{\partial h}{\partial \xi} \quad \xi=\frac{v_{\|}}{v}
$$

Collision Operator

- Godunov splitting: We have already applied the non-collisional part of the derivative:

$$
\langle\delta f\rangle^{n} \rightarrow\langle\delta f\rangle^{*}
$$

- First, convert δf^{*} to h^{*} :

$$
h^{*} \equiv\langle\delta f\rangle^{*}+\langle\phi\rangle F_{0}
$$

- Find the derivatives implicitly

$$
\frac{h^{n+1}-h^{*}}{\Delta t}=C\left[h^{n+1}\right]
$$

- Invert the tri-diagonal matrix to obtain h^{n+1}
- $\langle\delta f\rangle^{n+1}=h^{n+1}-\langle\phi\rangle F$

Collision Operator

- Issues:
- As implemented, the collision operator does not obey the proper conservations laws
- The update will use the operator from [Abel et al, 2008], which conserves particles, momentum, energy, and obeys the Boltzmann H -theorem

Outline

- Overview of Gyrokinetics
- Description of GSP
- Changes to Algorithm

Summary of Changes

Calculate Fields

Update Weights

Advance Markers

Apply Collision
 Operator

Most difficult task. Perform calculation with new velocity-space coordinates. Try to keep repeated "calculation" of J_{0} efficient.

Minor changes if any

Rework - convert pitch-angle operator to new coordinates. Apply Abel operator.

Coding Status

Update Weights
Advance Markers

In progress

No changes needed

Integral for Electrostatic Potential

$$
\tilde{\phi} \propto \int d v_{\|} \int v_{\perp} d v_{\perp}\langle\delta f\rangle_{\mathbf{R}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega}\right)
$$

- We're representing the distribution as:

$$
\begin{aligned}
\langle\delta f\rangle_{\mathbf{R}} & =F_{0} w\left(\mathbf{r}, v_{\|}, v_{\perp}\right) \\
& =F_{0} \sum_{i} w_{i} \delta\left(\mathbf{r}-\mathbf{R}_{i}\right) \delta\left(v_{\|}-v_{\|, i}\right) \delta\left(v_{\perp}-v_{\perp i}\right)
\end{aligned}
$$

so to calculate the integral, we just sum up the values of $J_{0} \cdot w$ for each particle and normalize

- When v_{\perp} is allowed to change, we need another way to looking up J_{0}

Current Velocity Grid

- Particles interpolated onto \mathbf{k} grid
- Particles already have an assigned v_{\perp}

$$
J_{0}=J_{0}\left(k_{x}, k_{y}, v_{\perp}\right)
$$

New Velocity "Grid"

- Particles scattered in 2D velocity- space
- Can move around in velocity space depending on the local magnetic field $B(z)$

$$
\begin{aligned}
J_{0} & =J_{0}\left(k_{x}, k_{y}, v_{\perp}, B\right) \\
& =J_{0}\left(k_{x}, k_{y}, \frac{\mu}{B}\right)
\end{aligned}
$$

	Timeline	Milestone
Phase I	September - October	Transformed GK equation derived and algorithm understood
Phase II	November - January	Changes coded and debugged
Phase III	February - April	New code validated, tested, and benchmarked
Phase IV	April - May	Results organized, presentation prepared and given

Summary

- Upgrade to GSP progressing slightly behind schedule
- Phase I (Gyrokinetics analytics and algorithm understanding) took longer than initially expected
- Currently on Phase II
- Coding still on track to be completed before February

Questions?

Gyrokinetic Derivation Summary

- Start with Fokker-Planck equation
- Gyrokinetic ordering assumptions: $\frac{\omega}{\Omega} \sim \frac{v}{\Omega} \sim \frac{k_{\|}}{k_{\perp}} \sim \frac{v_{D}}{v_{t}} \sim \frac{\delta f}{F_{0}} \sim \varepsilon$
- Order ε^{0} :
- F_{0} independent of gyroangle θ
- Order ε^{1} :
- F_{0} Maxwellian
- $\delta f=-\frac{q \phi}{T} F_{0}+h$ where $\frac{\partial h}{\partial \theta}=0$
- Order ε^{2} :
- The gyrokinetic equation

Gyroaveraging Fourier Transforms

$$
\begin{aligned}
& \left\langle e^{i \mathbf{k} \cdot \mathbf{r}}\right\rangle_{\mathbf{R}}=\frac{1}{2 \pi} \int e^{i \mathbf{k} \cdot(\mathbf{R}+\rho)} d \theta=\frac{1}{2 \pi} e^{i \mathbf{k} \cdot \mathbf{R}} \int e^{-i \mathbf{k} \cdot \frac{v}{\Omega}} d \theta \\
& =\frac{1}{2 \pi} e^{i \mathbf{k} \cdot \mathbf{R}} \int e^{-i \frac{k_{\text {perp }} p_{p e r p}}{\Omega} \cos \theta} d \theta \\
& =e^{i \mathbf{k} \cdot \mathbf{R}} J_{0}\left(\frac{k_{\text {per } p^{v} p_{\text {per }}}^{\Omega}}{\Omega}\right)
\end{aligned}
$$

Maxwell's Equations

-Poisson's Equation: $\quad \nabla^{2} \phi=-4 \pi\left(q_{i} n_{i}+q_{e} n_{e}\right)$

$$
\begin{aligned}
& n_{i}=\int \delta f_{1}(\mathbf{r}, \mathbf{v}, t) d^{3} \mathbf{v} \\
& n_{e}=n_{0} \frac{e \phi}{T_{e}}
\end{aligned}
$$

-Ampere's Law: $\quad \nabla \times \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}+\frac{4 \pi}{c} \mathbf{J}$

$$
\begin{aligned}
& \mathbf{J}=e n_{i} \overline{\mathbf{v}}_{i}-e n_{e} \overline{\mathbf{v}}_{e} \\
& n_{i} \overline{\mathbf{v}}_{i}=\int \delta \delta_{1} \mathbf{v} d^{3} \mathbf{v}
\end{aligned}
$$

Update Weights and Advance Markers

- Now advance markers along characteristic trajectories:

$$
\begin{aligned}
x_{i} & =x_{i}+\Delta t\left(\hat{\mathbf{x}} \cdot \mathbf{v}_{D i}\right) \\
y_{i} & =y_{i}+\Delta t\left(\hat{\mathbf{y}} \cdot \mathbf{v}_{D i}\right) \\
z_{i} & =z_{i}+\Delta t\left(v_{\| i}\right)
\end{aligned}
$$

- The markers' velocity space coordinates do not need updating
- As currently implemented, markers have $v_{\|}$and v_{\perp} assigned, which are constants of motion only in a uniform magnetic field
- This update will change coordaintes to E and μ which remain constants of motion (up to the order required) even when the magnetic field is nonuniform

