
UPGRADE OF THE GSP GYROKINETIC CODE 
MID-YEAR PROGRESS REPORT 

Abstract: 
Simulations of turbulent plasma in a strong magnetic field can take advantage of the 
gyrokinetic approximation, the result of which is a closed set of equations that can be 
solved numerically. An existing code, GSP, uses a novel and highly efficient solution 
method to solve the nonlinear 5D gyrokinetic equation. In this project, we will seek to 
change the velocity-space representation in GSP.  This transformation will simplify the 
inclusion of a new collision operator and make the algorithm more suitable for 
simulations of turbulence in Tokamak plasmas, while retaining the efficiency and 
accuracy of the original code. 
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Outline 

 

 

• Overview of Gyrokinetics 

 

• Description of GSP 

 

• Changes to Algorithm 
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Overview 

 

• GSP is a Particle-In-Cell (PIC) 

code to solve the Gyrokinetic 

equation to study the evolution of 

turbulence in highly magnetized 

plasma 

 

• Gyrokinetic theory treats the 

many rapidly circulating charges 

as charged rings 

• These rings drift parallel and 

perpendicular to the background 

magnetic field 
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Overview 

• The “particles” in the code are not 

intended to simulate the physical 

particles, nor the “gyro-averaged” rings 

of charge.  

• The evolution of many physical charges 

are described by a statistical distribution 

function in phase space: 

 

 

• Performing an asymptotic expansion and 

gyroaveraging the Fokker-Planck 

equation, we can get a dynamical 

equation for      : the gyrokinetic equation 
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The Gyrokinetic Equation 

Where: 

 

•                                         is the perturbed distribution function to be solved for 

 

• The given background equilibrium distribution is: 

 

• The particle “weight” is  

 

• The (characteristic) drift velocity is: 

 

•             is the collision operator 

 
   (angle brackets signify the gyro-averaging operation at constant R) 
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Outline 

 

 

• Overview of Gyrokinetics 

 

• Description of GSP 

 

• Changes to Algorithm 
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The Gyrokinetic Equation 

To solve this equation, we identify characteristic trajectories in phase 
space so that:   

 

• The left hand side becomes  

 

•               is the characteristic velocity 

 

• Characteristic curves are constant in velocity space only under special 
conditions: 

 

• Uniform equilibrium magnetic field B0 

 

• Special choice of velocity coordinates: 
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GSP Code 

• Step 1: Initialize particles in phase space 

• Step 2: Predictor Step: 

• Calculate fields at step n 

• Calculate marker weights along characteristics for step n+1/2 

• Advance marker positions for half a timestep 

• Update weights with collision operator for step n+1/2 

• Step 3: Corrector Step: 

• Calculate fields at step n+1/2 

• Calculate marker weights along characteristics for step n+1 

• Advance marker positions for a full timestep 

• Update weights with collision operator for step n+1 

• Step 4: Output results 

• Repeat Steps 2-4 NT times 
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Flowchart 
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Update Weights 

Advance Markers 

Calculate Fields 

Apply Collision 

Operator 



Flowchart 
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Update Weights 

Advance Markers 

Calculate Fields 

Apply Collision 

Operator 



Calculate Fields 

• Once we know the electrostatic potential, we know the electric field:  

 

 

 

• The gyro-averaging operation is simplified in Fourier space: 

 

 

 

    (     is the 0-th order Bessel function) 
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Calculate Fields 
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• First, deposit charges onto grid in R-space 

• Fourier transform grid 

• Apply Poisson’s equation to calculate the potential: 

 

 

 

 

• Issue: 

• J0 is expensive to calculate explicitly every time 

 

• Solution: 

• Discretize     on a grid in velocity space 

• Store J0 in a table at the relevant discrete values of     and  
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Calculate Fields 
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• Once potential is calculated, find the gyro-averaged fields in k-space 

 

 

 

 

• Fourier transform back into grid in R-space 

 

• Interpolate to find fields at marker positions 
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Flowchart 
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Update Weights 

Advance Markers 

Calculate Fields 

Apply Collision 

Operator 



Update Weights and Advance Markers 
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• This Monte Carlo scheme [Aydemir,1994] doesn’t model       

explicitly, but rather the function:             

 

 

 

• The equation for w along characteristics is: 

 

 

 

 

• Update marker positions explicitly using 
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Flowchart 
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Update Weights 

Advance Markers 

Calculate Fields 

Apply Collision 

Operator 



Collision Operator 
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• Pitch-angle scattering operator 

• Diffusive in velocity space 

• Energy is conserved with like-particle interactions, or when there’s a large 

disparity in mass (such as ions and electrons) 

• n is a constant parameter 

 

• Collision operator defined in terms of  
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Collision Operator 
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• Godunov splitting: We have already applied the non-collisional part of the 
derivative:  

 

 

 

• First, convert f * to h* : 

 

 

 

• Find the derivatives implicitly  

 

 

 

 

• Invert the tri-diagonal matrix to obtain hn+1  
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Collision Operator 
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• Issues: 

• As implemented, the collision operator does not obey the proper 

conservations laws 

 

 

• The update will use the operator from [Abel et al, 2008], which 

conserves particles, momentum, energy, and obeys the Boltzmann 

H-theorem  
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• Overview of Gyrokinetics 

 

• Description of GSP 

 

• Changes to Algorithm 
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Summary of Changes 
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Rework – convert pitch-angle operator to 

new coordinates. Apply Abel operator. 

Most difficult task. Perform calculation with 

new velocity-space coordinates. Try to keep 

repeated “calculation” of J0 efficient.  

Minor changes if any Update Weights 

Advance Markers 

Calculate Fields 

Apply Collision 

Operator 



Coding Status 

12/6/2011 Status 22 

In progress 

Update Weights 

Advance Markers 

Calculate Fields 

Apply Collision 

Operator 

No changes needed  



Integral for Electrostatic Potential 

12/6/2011 Status 23 

• We’re representing the distribution as: 

 

 

 

 

   

 

 so to calculate the integral, we just sum up the values of             

 for each particle and normalize 

 

 

• When      is allowed to change, we need another way to looking up  
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Current Velocity Grid 
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• Particles interpolated onto k grid 

 

• Particles already have an 

assigned  
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New Velocity “Grid” 
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• Particles scattered in 2D 

velocity- space 

 

• Can move around in velocity 

space depending on the local 

magnetic field 
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Timeline Milestone 

Phase I September – October Transformed GK equation derived and 

algorithm understood 

Phase II November – January Changes coded and debugged 

Phase III February – April New code validated, tested, and 

benchmarked 

Phase IV April – May Results organized, presentation prepared 

and given 
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Summary 
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• Upgrade to GSP progressing slightly behind schedule  

• Phase I (Gyrokinetics analytics and algorithm understanding) took longer 

than initially expected 

• Currently on Phase II 

 

• Coding still on track to be completed before February 

 



Questions? 
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Gyrokinetic Derivation Summary 
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• Start with Fokker-Planck equation 

 

• Gyrokinetic ordering assumptions: 

 

• Order    : 

•     independent of gyroangle  

 

• Order    : 

•      Maxwellian 

•                       where  

 

• Order     : 

• The gyrokinetic equation 
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Gyroaveraging Fourier Transforms 
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Maxwell’s Equations 

 

• Poisson’s Equation: 

 

 

 

 

 

• Ampere’s Law: 
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Update Weights and Advance Markers 
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• Now advance markers along characteristic trajectories: 

 

 

 

 

 

 

• The markers’ velocity space coordinates do not need updating  

• As currently implemented, markers have      and       assigned, which 

are constants of motion only in a uniform magnetic field 

• This update will change coordaintes to E and  which remain constants of 

motion (up to the order required) even when the magnetic field is non-

uniform 
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