
Mid Year Progress Report on Upgrade to the

GSP Gyrokinetic Code

George Wilkie (gwilkie@umd.edu)
Supervisor: William Dorland (bdorland@umd.edu)

December 18, 2011

Abstract

Simulations of turbulent plasma in a strong magnetic field can take ad-
vantage of the gyrokinetic approximation, the result of which is a closed
set of equations that can be solved numerically. An existing code, GSP,
uses a novel and highly efficient solution method to solve the nonlinear 5D
gyrokinetic equation. In this project, we will seek to change the velocity-
space representation in GSP. This transformation will simplify the inclu-
sion of a new collision operator and make the algorithm more suitable
for simulations of turbulence in Tokamak plasmas, while retaining the
efficiency and accuracy of the original code.

1 Background

Plasma physics concerns the collective dynamics of collections of many charged
particles interacting self-consistently with their respective electromagnetic fields.
In a uniform magnetic field, the motion of a charged particle (we are usually
referring to ions unless otherwise specified) in the plane perpendicular to the
magnetic field is a circle whose radius (the gyroradius ρ) depends on its velocity
in that plane:

ρ =
v⊥
Ω

(Ω ≡ eB
mc is the gyrofrequency). If this radius is much smaller than the char-

acteristic size of the plasma, we can use that ratio as an expansion parameter.
Gyrokinetics specifically is the regime in which turbulent fluctuations can be of
a size on the order of this gyroradius. This is in contrast to drift-kinetic theory
(and by extension, MHD), where the gyroradius needs to be much smaller than
the size of the fluctuations. In order to get a closed theory in gyrokinetics,
we demand that the drift velocity be small compared to the thermal velocity

vt ≡
√

2kBT
m . Such drifts come about when there is curvature or a gradient in

the magnetic field or if there exists another force field (such as the electric field).

1



We can summarize the gyrokinetic assumptions thusly:

ρ

L
∼ vE

vt
∼ ω

Ω
∼ ν

Ω
∼ ε� 1

Here, vE = cE
B0

is the E × B drift speed, ω is the frequency of turbulent fluc-
tuations, and ν is the characteristic collision frequency. These assumptions are
well justified in a wide range of plasmas found in magnetic fusion confinement
devices and in astrophysical plasmas.

The gyrokinetic equation results from expanding the distribution function
in the small parameter ε:

f(r,v, t) = F0 + δf + . . .

Where δf ∼ εF0 represents the fluctuations in the distribution function. If we
transform coordinates to the center of the gyromotion R, we can write

δf = −qφ
T
F0 + h(R, v‖, v⊥)

where φ is the electrostatic potential. The latter function h represents the part
of δf that does not depend on the phase of the gyration. Note that this is not
true for the first term because φ is a function of position, so it varies as the
gyrophase changes. The background distribution function F0 is given, usually
a Maxwellian velocity distribution with temperature T and number density n,
which of which can take gradients.

2 Approach

GSP is a Particle-In-Cell algorithm to solve the gyrokinetic equation coupled
with Maxwell’s equations for the fields generated by the particles’ configuration.
The gyrokinetic equation is:

∂h

∂t
+ v‖ẑ ·

∂h

∂z
− c

B0
(ẑ× 〈E〉) · ∇h = 〈C [h]〉+

c

B0
(ẑ× 〈E〉) · ∇F0 +

q

T
F0
∂ 〈φ〉
∂t

Where ẑ is directed along the equilibrium magnetic field B0, F0 is the equi-
librium distribution function, and E is the electric field (with electrostatic po-
tential φ). The angle brackets 〈〉 signify the operation of gyroaveraging at
constant R - the gyrocenter coordinate. So that we don’t have to keep track
of the time derivative of φ, we recast the gyrokinetic equation in terms of

g ≡ 〈δf〉R ≡ −
q〈φ〉
T F0 + h:

∂g

∂t
+ v‖ẑ ·

∂g

∂z
− c

B0
(ẑ× 〈E〉) · ∇g = 〈C [g]〉+ c

B0
(ẑ× 〈E〉R) · ∇F0 + v‖ 〈Ez〉F0

The distribution function g = g
(
R, v‖, v⊥

)
is the gyroaverage of δf : the small

perturbation to the full distribution function f = F0 + δf + . . ., of which h

2



is a part. We can obtain useful information about the flow (number density
and temperature perturbations) by taking integrals over velocity space of this
distribution. For example, the fluctuation in number density is:

δni(r) =

∫
d3vδf(r,v)

The gyrokinetic equation is solved by following Lagrangian markers (dis-
trubted according to a monte carlo scheme, see [Aydemir, 1994]) along char-
acteristic curves in 5D phase space. The characteristics for a uniform B0 are
defined by:

dR

dt
= v‖ẑ +

c

B0
ẑ×∇〈φ〉

dv‖

dt
= 0

dv⊥
dt

= 0

So each marker is assigned a v‖-v⊥ pair and its trajectory in R-space is advanced
along its characteristic curve according to the drift velocity above. Then, the
distribution function represented by each particle is updated along character-
istics. We use the function w ≡ g

F0
to represent this distribution function in

GSP (the function F0 is known, so this is just a change of representation). The
equation along characteristics is:

ẇ =
1

F0

dg

dt
=

1

F0
〈C [g]〉+

c

B0
(ẑ× 〈E〉) · ∇F0

F0
+ v‖ 〈Ez〉

In order to calculate each the markers’ drift velocities and the updated ”weights”
w, the gyroaveraged electric field 〈E〉 ≡ −∇〈φ〉 and collision operator C [g] must
be known. These calculations are described in more detail in later sections.

To summarize, each marker in GSP has the following values associated with
each of them:

• Gyrocenter position, R: Evolves in time along characteristics defined
above.

• Velocity Coordinates, v‖ and v⊥ Fixed for a given particle. Together
with position, it defines the part of phase space of which the marker is
representative.

• Distribution Weight, w ≡ g
F0

: Evolves in time according to the equation
along characteristics given above. It’s the representation of the distrubion
function being solved for.

The algorithm implemented in GSP is illustrated below. The time-marching
scheme is a predictor-corrector method where the locations of the particles are
used to calculate the fields on a grid, which in turn affect the evolution of the
particles and their ”weight functions” wi.

3



1. Initialization

• Place particles as sampled from the equilibrium distribution function

2. Simulation

• For each particle i:

– 〈φ〉n calculated on a grid in Fourier space, using all the Rn
j

– R
n+ 1

2
i = Rn

i + ∆t
2

(
dR
dt

)n
i

– Contribution from collision operator 〈C[g]〉 calculated for a half
timestep

– w
n+ 1

2
i = wni + ∆t

2 ẇi

– 〈φ〉n+ 1
2 calculated on a grid in Fourier space, using all the R

n+ 1
2

j

– Rn+1
i = Rn

i + ∆t
(
dR
dt

)n+ 1
2

i

– Contribution from collision operator 〈C[g]〉 calculated for a full
timestep

– wn+1
i = wni + ∆tẇi

3. Repeat Step 2 as needed

4. Obtain moments of 〈δf〉 such as density, temperature, and flux

3 Implementation

The above algorithm is valid only when the macroscoping background magnetic
field B0 is uniform. When it’s permitted to vary, each particles’ v‖ and v⊥ will
change. We choose instead to represent velocity space using constants of motion
as our coordinates. Suitable choices are energy E ≡ v2 and magnetic moment

µ ≡ v2⊥
B0

, each of which are constants of motion to the order at which we are

concerned. Therefore, dEdt = dµ
dt = 0, and the markers can each be assigned their

own velocity coordaintes which do not change along characteristics. This project
consists of making the aforementioned coordinate change while attempting to
preserve the efficiency and parallelism of the original code.

The most challenging aspects of the project, both in the sense of computa-
tional intensity and difficulty of understanding are:

• The calculation of 〈φ〉

• The calcualtion of the collision operator 〈C [g]〉

The philosphy and status of each of these aspects will be discussed in the fol-
lowing.

4



Calculating the Fields

We wish to find the gyroaveraged electric field 〈E〉 ≡ −∇〈φ〉. We can calculate φ
using the quasineutrality condition: δni = δne to leading order. These number
density fluctations of the ions and electrons respectively are moments of the
distribution function. The equation for φ (r) ignoring the normalization constant
becomes:

φ ∝
∞∫
−∞

dv‖

∞∫
0

dv⊥v⊥g
(
v‖, v⊥

)
J0

(
k⊥v⊥

Ω

)
Note that the φ being calculated here is not gyro-averaged. This integral is
performed in Fourier space, which simplifies the gyro-averaging operation. For
instance, consider some function A(r):

〈
A(r)eik·r

〉
= A(R)J0

(
k⊥v⊥

Ω

)
eik·R

That is, in Fourier space, the gyro-averaging operation consists of simply mul-
tiplying by a Bessel function. Furthermore, in keeping with Aydemir’s monte
carlo analysis, our perturbed ddistribution g is sampled from the background
distribution F0. So what is saved for each marker is a ”weight” wi(v‖, v⊥), which
was defined above. This weight contains information about g for a marker with
a particular v‖ and v⊥. The many particles in a vicinity when combined give
our best monte carlo estimate for g(R, v‖, v⊥).

Rewriting the integral in terms of w and using the Maxwell distribution for
F0:

φ ∝
∞∫
−∞

dv‖e
−

v2
‖

v2
t

∞∫
0

dv⊥v⊥e
− v2

⊥
v2
t w
(
v‖, v⊥

)
J0

(
k⊥v⊥

Ω

)
Since w is just a sum of delta functions (each of which is represented by a
Lagrangian marker), to perform this integral we simply add each markers’ con-

tribution we−
v2
‖+v2

⊥
T v⊥J0

(
k⊥v⊥

Ω

)
as deposited onto a grid.

After transforming to E-µ coordinates, and using the definition of Ω, this
integral becomes:

φ ∝
∞∫

0

dEe
− E

v2
t

E
B0∫
0

1√
E − µB0

J0

(
mck⊥
e

√
µ

B0

)
w (E , µ)

The challenge of this task is the repeated calculation of J0, which involves a
cos and a sqrt function for each call (using the approximation found in Abro-
mowitz and Stegun). This would be an enormous computational burden. In-
stead, the current incarnation of GSP forces the particles to take only one of
several discrete values of v⊥, as illustrated in the figure below:

5



Therefore, after the markers’ charges have been interpolated onto a grid and
Fourier transformed, our phase space consists of a grid in four dimensions (three
for k and one for v⊥), with v‖ allowed to take any random value for a given k
and v⊥.

Ahead of time, we can populate an array that contains all the discrete values
of J0

(
k⊥v⊥

Ω

)
= J0 (kx, ky, v⊥) that are necessary. The code then just refers to

the correct index of this array as needed when we sum over markers. Since in
this case, B0 is constant, the particles will not drift off of their assigned discrete
value of v⊥.

The method needs revision in the upgraded version when B0, and by conse-
quence v⊥, are allowed to change. Each are arguments to J0, so a more creative
solution is necessary. Note that when the coordinate transformation to µ is

performed, the argument of J0 becomes proportional to k⊥
√

µ
B0

. Then, if the

J0 array is re-mapped so that it is defined instead for discrete values of
√

µ
B0

,

then we can perform the integral similarly (see figure below)

Since this parameter
√

µ
B0

itself changes for a given marker throughout the

simulation, we will have to perform an interpolation onto the nearest discrete
value. This method should have no impact on the accuracy of φ, although there
is an additional variable on which to interpolate (in addition to rx, ry, rz) which
may have an impact on performance. Furthermore, we retain the freedom to
choose whatever grid we like in velocity space (we could, for example discretize
E) should the situation call for it.

The difference that arises is that, while previously the particles were bound
to a particular few values of v⊥, in the update they will be free to wander on

6



this ”grid”, but will need to be interpolated onto the nearest value of the Bessel
function argument µ

B0
instead of permanently residing at that value.

Once φ is calculated through the above integration, it is a simple matter to
find 〈E〉 = −ikJ0

(
k⊥v⊥

Ω

)
φ, which is the ultimate goal. This is reverse-Fourier

transformed back onto r-space and re-interpolated from the grid back onto the
actual positions of the markers.

The changes mentioned here have already been coded. Soon rudimentary
validation will be performed to ensure that the results obtained are consistent
with the original GSP code.

Collision Operator

The collision operator is in general an integro-differential operator on the distri-
bution function that accounts for immediate interactions between the particles.
On one extreme is the Fokker-Planck/Landau operator that is rigorously de-
scribes the physics of a Coulomb interaction, but is computationally expensive.
On the other is the Krook collision operator, which is a simple decay based on a
parameter ν. This operator has no rigorous physical basis, nor does is conserve
bulk physical quantities as desired. As a compromise, several different collision
operators are proposed that are not rigorously derived, but faithfully maintains
various moments of the distribution function. That is: particle number (the ze-
roth moment), momentum (the first moment), and energy (the second moment)
are all conserved, and the Boltzmann H-theorem (a statement of the Second Law
of Thermodynamics) is obeyed. The two relevant operators are:

• Pitch-Angle Scattering: A diffusion operator that maintains a parti-
cle’s energy E , diffusing markers along ”arcs” in velocity space of constants
energy. This requires an integral correction term in order to conserve mo-
mentum.

• Abel: As described in [Abel et al, 2008], this operator (and its discrete
form) have all the important physical properties, including the elusive
H-theorem.

To calculate the collision term in the gyrokinetic equation, we essentially
recreate the function g in 5D phase space, operate on it, then return its value.
Interpolating onto a phase space grid involves ”coarse-graining”, which is a way
to use artificial diffusion to simulate the effect of a collision operator. This
is not the approach we take, so we must be careful with how the function is
returned. That is, even if the collision frequency (the parameter that sets the
strength of collisions) is set to zero, the simple act of scattering and gathering
the function between the particles and the grid will result in unwanted diffusion
(diffision which should not exist if there are no collisions). Therefore, the original
function at a marker position is updated by the same ratio that the functions
values at the neighboring grids are changed.

For this project, the numerical implementation of the collision operator will
be editted so that it is performed in the new coordinates.

7



4 Databases

• GSP Source code:

http://gyrokinetics.svn.sourceforge.net/viewvc/gyrokinetics/gsp/

• Article with analytic result:

– Ricci, et al, “Gyrokinetic linear theory of the entropy mode in a Z
pinch.” Physics of Plasmas, 13: 062102

• Article with computational benchmark:

– Dimits, et al, “Comparisons and physics basis of tokamak transport
models and turbulence simulations.” Physics of Plasmas, 7: 969

5 Validation

To ensure we have built a code that gives physical results, we will compare
results obtained from both the old version of GSP and the update. Both should
agree remarkably well in regimes in which the original GSP is accurate since a
coordinate change shall not change the physics being simulated.

A standard computational benchmark for gyrokinetics is given in [Dimits et
al, 2000]. We will use this reference to compare results obtained from GSP.

Furthermore, an analytical condition necessary for stability in a gyrokinetic
plasma has been obtained in Appendix B of [Ricci et al, 2006]. Comparing
this to the conditions at which the code predicts an unstable plasma would
provide a good test of the physical fidelity of the code. Application of this test
would require a translation in position coordinates as well, which is beyond the
immediate scope of this project, although it is hoped to be accomplished.

6 Testing

Even if we have built a code with robust physics, it is possible that such an
effort may be in vain. This would occur if the “updated” version of GSP is
not an update at all and instead is considerably less efficient than the original
code. Therefore, we shall benchmark the performance of the update against the
original code and ensure that it scales well from a parallelization standpoint.

8



7 Schedule and Milestones

Phase I: Analytics
September - October 2011

X Understand rigorous derivation of the gyrokinetic equation
X Become familiar with analytical aspects of the gyrokinetic equation
X Make velocity coordinate change
X Understand algorithm used by GSP to solve GK equation
X Understand Abel collision operator and how it is to be implemented in

GSP
X Milestone: Derive GK equation in velocity coordinates E and µ.
X Milestone: Develop an efficient method to handle the integration for φ

Phase II: Numerics
November 2011 - January 2012

X Become familiar with GSP code
• Make proposed changes to the code (in progress)
• Ensure code still runs
• Milestone: GSP Code updated with new velocity coordinates.

Phase III: Testing and Validation
February - April 2012

• Debug updated GSP code
• Validate against previous version of code iteratively
• Run test cases, organize results
• Milestone: GSP code in new velocity coordinates validated and tested

Phase IV: Communication
April - May 2012

• Prepare final presentation
• Milestone: Final presentation given

The schedule dates have been retroactively changed to reflect past schedul-
ing realities. Phase II began behind schedule: beginning in November instead of
October as initially planned. Another way the schedule (and indeed my vision
of the project overall) has changed is the significance of handling the integra-
tion necessary to calculate φ as explained in section 3. This has also been
retroactively added this as a Phase I milestone to reflect its importance.

Phase III is expected to begin in earnest in mid-February. Some Phase III
activities, espcially validation against original code, is expected to be performed
well before then.

I feel I have gained sufficient understanding of the algorithm and a promising
method has been chosen to calculate φ efficiently. These were identified as the
largest risks in the intitial proposal, and they have been significantly mitigated.
The worst case scenario anticipated is J0 will need to be calculated “on the
fly ” as needed. This will result in a code that runs and performs the relevant
calculations, but is very inefficient.

9



8 Deliverables

• Updated GSP source code (in progress)
• Sample input files of test cases
• Test case comparison data
X Mid-year progress report
• Final presentation

9 Bibliography

• Abel, et al. “Linearized model Fokker-Planck collision operators for gy-
rokinetic simulations. 1. Theory.” Physics of Plasmas, 15:122509 (2008)

• Antonsen and Lane, “Kinetic equations for low frequency instabilities in
inhomogeneous plasmas.” Physics of Fluids, 23:1205 (1980)

• Aydemir, “A unified Monte Carlo interpretation of particle simulatinos
and applications to non-neutral plasmas.” Physics of Plasmas, 1:822
(1994)

• Barnes, “Trinity: A Unified Treatment of Turbulence, Transport, and
Heating in Magnetized Plasmas.” PhD Thesis, University of Maryland
Department of Physics (2009)

• Broemstrup, “Advanced Lagrangian Simulations Algorithms for Magne-
tized Plasma Turbulence.” PhD Thesis, University of Maryland Depart-
ment of Physics (2008)

• Catto, “Linearized gyro-kinetics.” Plasma Physics, 20:719 (1978)

• Dimits, et al, “Comparisons and physics basis of tokamak transport mod-
els and turbulence simulations.” Physics of Plasmas, 7: 969 (2000)

• Frieman and Chen, “Nonlinear gyrokinetic equations for low-frequency
electromagnetic waves in general plasma equilibria.” Physics of Fluids,
25:502 (1982)

• Howes, et al. “Astrophysical gyrokinetics: basic equations and linear
theory.” The Astrophysical Journal, 651: 590 (2006)

• Ricci, et al, “Gyrokinetic linear theory of the entropy mode in a Z pinch.”
Physics of Plasmas, 13: 062102 (2006)

10


