
UPGRADE OF THE GSP GYROKINETIC CODE 

Abstract: 
Simulations of turbulent plasma in a strong magnetic field can take advantage of the 

gyrokinetic approximation, the result of which is a closed set of equations that can be 

solved numerically. An existing code, GSP, uses a novel and highly efficient solution 

method. In this project, we will seek to change the velocity-space representation in 

GSP.  This transformation will simplify the inclusion of a new collision operator and 

make the algorithm more suitable for simulations of turbulence in Tokamak plasmas, 

while retaining the efficiency and accuracy of the original code. 
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Motivation 

• Contained thermonuclear fusion has been a goal of plasma physics 

for several decades 

 

•  An understanding of turbulent transport in a magnetized plasma is 

critical, and simulations play an important role 
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Basic Physics 

• Charged particles in a uniform magnetic field move in a helix 

 

• Other effects (field gradients, curvature, electric field, etc.) will cause 

the helical motion to “drift”  

 

• In a strong enough magnetic field, these drifts will be very slow 

compared to the circular motion of the charge 
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Basic Physics 

• There is a rigorous theoretical framework for treating a collection of 

many interacting particles statistically 

 

• Physical number of particles:   
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• The gyrokinetic approximation allows 

for closure of the theory based on 

averaging the oscillatory motion, 

treating the charge as a ring 

 

• This reduces the problem to two 

independent components of velocity 

instead of three 
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Form of the Gyrokinetic Equation 

  

 

 

• 6D integro-differential equation 

 

• A, B, C are, in general, functions of R, t, U, V,  

 and the local potential 

 

• S[ f ] includes an integrals of f such as the collision operator and the 

sources for Maxwell’s equations   
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Method of Characteristics 

 

 

 

 

 

• Define trajectories such that:                                            and solve 
 

the integral ODEs                  along these curves 

 

• R is the gyrocenter position, not the oscillating actual position of the 

physical particle 

 

• Number of particles in simulation:  
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Method of Characteristics 

 

 

 

 

• Simplify characteristic curves by choosing constants of motion 

so that: 

 

 

• Appropriate choices are: 

• Energy   E = ½ mv2 + ef 

• Magnetic Moment  m = ½mv┴
2/ B0 
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Algorithm 

 
1. Initialize particles  

• Sample velocities from Maxwellian 

• Uniform random distribution of positions 

• Initialize fields 

2. Solve “ODEs” for each particle 

• Advance particles along characteristic trajectories 

3. Use new df to solve for new potentials in Fourier space 

• Fourier transform back and smooth onto grid 

4. Repeat Steps 2-3 

5. Use solution to calculate evolved fluxes and densities 
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GSP Code 

• Written by: Ingmar Broemstrup 

• Language: FORTRAN 95 

• Platform: Linux desktop or array of processors 

• ~3000 lines of code 

 

• Changes to make: 

• Add diagnostic tools to test accuracy 

• Change velocity coordinates to E, m 

• Allow for gradients in equilibrium magnetic field 

• Introduce collision operator from Abel, et al. (2008) 

• (Change spatial coordinates to toroidal geometry)  
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Predictable Problems 

 

• Insufficient understanding on part of the student to debug changes to 

GSP code by May 

 

• Changes to the code do not result in faster or more accurate modeling  
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Validation and Testing 

 

• Compare to original GSP code 

• Ensure coordinate change alone does not affect result 

 

• Performance benchmarks: 

• General speed compared to original GSP code 

• Verify efficient parallelization scaling 

 

• Compare against analytical result 

 

• Compare results against GS2 or AstroGK 
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Databases 

 

• GSP Code:  

 http://gyrokinetics.svn.sourceforge.net/viewvc/gyrokinetics/gsp/ 

 

• Article with analytic result: 

Ricci, et al, “Gyrokinetic linear theory of the  entropy mode in a Z pinch.” Physics 

of Plasmas, 13: 062102 

 

• Article with computational benchmark: 

• Dimits, et al, “Comparisons and physics basis of tokamak transport 

models and turbulence simulations.” Physics of Plasmas, 7: 969 
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Timeline Milestone 

Phase I September – October Transformed GK equation derived and 

algorithm understood 

Phase II October – January Changes coded and debugged 

Phase III February – April New code validated, tested, and 

benchmarked 

Phase IV April – May Results organized, presentation prepared 

and given 

 

Deliverables: 
• Updated GSP source code and sample input files 

• Results compared to databases 

• Mid-year progress report 

• Final presentation 
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Questions? 
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Maxwell’s Equations 

 

• Poisson’s Equation: 

 

 

 

 

 

• Ampere’s Law: 
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Collision Operator 

• Generally dissipative 

 

• Integral operator 

• Effect of collision depends on relative velocity between colliding particles. 

• Since the collision partner has its own distribution of velocities, we must integrate 

over its distribution 

• The function we need to solve for is inside the integrand 

 

• There are physical forms based on various assumptions, and forms 

that easily computed 

• Boltzmann: Short-duration, binary collision. Applies to cases dominated by 

collisions with neutral atoms, not to a well-ionized plasma. 

• Fokker-Planck/Landau: Small perturbation to velocity, many-body interaction. 

• Krook: Simple, but non-physical 

• Abel, et al.: Computationally efficient, satisfies physical conservation properties 
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Gyroaveraging Fourier Transforms 
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Gyrokinetic motion 
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