UPGRADE OF THE GSP GYROKINETIC CODE

George Wilkie gwilkie@umd.edu September 29, 2011

Supervisor: William Dorland, Dept. of Physics bdorland@umd.edu

Abstract:

Simulations of turbulent plasma in a strong magnetic field can take advantage of the gyrokinetic approximation, the result of which is a closed set of equations that can be solved numerically. An existing code, GSP, uses a novel and highly efficient solution method. In this project, we will seek to change the velocity-space representation in GSP. This transformation will simplify the inclusion of a new collision operator and make the algorithm more suitable for simulations of turbulence in Tokamak plasmas, while retaining the efficiency and accuracy of the original code.

Motivation

- Contained thermonuclear fusion has been a goal of plasma physics for several decades
- An understanding of turbulent transport in a magnetized plasma is critical, and simulations play an important role

Basic Physics

- Charged particles in a uniform magnetic field move in a helix
- Other effects (field gradients, curvature, electric field, etc.) will cause the helical motion to "drift"
- In a strong enough magnetic field, these drifts will be very slow compared to the circular motion of the charge

Basic Physics

- There is a rigorous theoretical framework for treating a collection of many interacting particles statistically
- Physical number of particles: $N \sim 10^{23}$
- The <u>gyrokinetic approximation</u> allows for closure of the theory based on averaging the oscillatory motion, treating the charge as a ring
- This reduces the problem to two independent components of velocity instead of three

Form of the Gyrokinetic Equation

$$\frac{\partial f}{\partial t} + \mathbf{A} \cdot \nabla_{\mathbf{R}} f + B \frac{\partial f}{\partial U} + C \frac{\partial f}{\partial V} = S[f]$$

- 6D integro-differential equation
- A, *B*, *C* are, in general, functions of **R**, *t*, *U*, *V*, and the *local potential* $\chi = \chi[f]$
- S[f] includes an integrals of f such as the collision operator and the sources for Maxwell's equations

Method of Characteristics

$$\frac{\partial f}{\partial t} + \mathbf{A} \cdot \nabla_{\mathbf{R}} f + B \frac{\partial f}{\partial U} + C \frac{\partial f}{\partial V} = S[f]$$

• Define trajectories such that: $\mathbf{A} = \frac{d\mathbf{R}}{dt}, B = \frac{dU}{dt}, C = \frac{dV}{dt}$ and solve the integral *ODEs* $\frac{df}{dt} = S[f]$ along these curves

- R is the gyrocenter position, not the oscillating actual position of the physical particle
- Number of particles in simulation: $N \sim 10^9$

Method of Characteristics

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{d\mathbf{R}}{dt} \cdot \nabla_{\mathbf{R}} f + \frac{dU}{dt} \frac{\partial f}{\partial U} + \frac{dV}{dt} \frac{\partial f}{\partial V} = S[f]$$

- Simplify characteristic curves by choosing <u>constants of motion</u> so that: $\frac{dU}{dt} = \frac{dV}{dt} = 0$
- Appropriate choices are:
 - Energy $E = \frac{1}{2} mv^2 + e\phi$
 - Magnetic Moment $\mu = \frac{1}{2}mv_{\perp}^2/B_0$

Algorithm

- 1. Initialize particles
 - Sample velocities from Maxwellian
 - Uniform random distribution of positions
 - Initialize fields
- 2. Solve "ODEs" for each particle
 - Advance particles along characteristic trajectories
- 3. Use new df to solve for new potentials in Fourier space
 - Fourier transform back and smooth onto grid
- 4. Repeat Steps 2-3
- 5. Use solution to calculate evolved fluxes and densities

Code: GYRO

Authors: Jeff Candy and Ron Waltz

GSP Code

- Written by: Ingmar Broemstrup
- Language: FORTRAN 95
- Platform: Linux desktop or array of processors
- ~3000 lines of code

Changes to make:

- Add diagnostic tools to test accuracy
- Change velocity coordinates to E, μ
- Allow for gradients in equilibrium magnetic field
- Introduce collision operator from Abel, et al. (2008)
- (Change spatial coordinates to toroidal geometry)

Predictable Problems

- Insufficient understanding on part of the student to debug changes to GSP code by May
- Changes to the code do not result in faster or more accurate modeling

Validation and Testing

- Compare to original GSP code
 - Ensure coordinate change alone does not affect result
- Performance benchmarks:
 - General speed compared to original GSP code
 - Verify efficient parallelization scaling
- Compare against analytical result
- Compare results against GS2 or AstroGK

Databases

• GSP Code:

http://gyrokinetics.svn.sourceforge.net/viewvc/gyrokinetics/gsp/

Article with analytic result:

Ricci, et al, "Gyrokinetic linear theory of the entropy mode in a Z pinch." *Physics* of *Plasmas*, **13**: 062102

- Article with computational benchmark:
 - Dimits, et al, "Comparisons and physics basis of tokamak transport models and turbulence simulations." *Physics of Plasmas*, 7: 969

	Timeline	Milestone
Phase I	September – October	Transformed GK equation derived and algorithm understood
Phase II	October – January	Changes coded and debugged
Phase III	February – April	New code validated, tested, and benchmarked
Phase IV	April – May	Results organized, presentation prepared and given

Deliverables:

- Updated GSP source code and sample input files
- Results compared to databases
- Mid-year progress report
- Final presentation

Bibliography

- Howes, et al. "Astrophysical gyrokinetics: basic equations and linear theory." The Astrophysical Journal, 651: 590 (2006)
- Abel, et al. "Linearized model Fokker-Planck collision operators for gyrokinetic simulations. 1. Theory." *Physics of Plasmas*, **15**:122509 (2008)
- Antonsen and Lane, "Kinetic equations for low frequency instabilities in inhomogeneous plasmas." *Physics of Fluids*, **23**:1205 (1980)
- Broemstrup, "Advanced Lagrangian Simulations Algorithms for Magnetized Plasma Turbulence." PhD Thesis, University of Maryland (2008)
- Catto, "Linearized gyro-kinetics." *Plasma Physics*, **20**:719 (1978)
- Frieman and Chen, "Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria." *Physics of Fluids*, **25**:502 (1982)

Questions?

Maxwell's Equations

Poisson's Equation:
$$\nabla^2 \phi = -4\pi (q_i n_i + q_e n_e)$$

 $n_i = \int \delta f_1(\mathbf{r}, \mathbf{v}, t) d^3 \mathbf{v}$
 $n_e = n_0 \frac{e\phi}{T_e}$

Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{J}$$

$$\mathbf{J} = en_i \overline{\mathbf{v}}_i - en_e \overline{\mathbf{v}}_e$$
$$n_i \overline{\mathbf{v}}_i = \int \delta f_1 \mathbf{v} d^3 \mathbf{v}$$

Collision Operator

- Generally dissipative
- Integral operator
 - Effect of collision depends on *relative* velocity between colliding particles.
 - Since the collision partner has its own distribution of velocities, we must integrate over its distribution
 - The function we need to solve for is inside the integrand
- There are physical forms based on various assumptions, and forms that easily computed
 - Boltzmann: Short-duration, binary collision. Applies to cases dominated by collisions with neutral atoms, not to a well-ionized plasma.
 - Fokker-Planck/Landau: Small perturbation to velocity, many-body interaction.
 - Krook: Simple, but non-physical
 - Abel, et al.: Computationally efficient, satisfies physical conservation properties

Gyroaveraging Fourier Transforms

$$\left\langle e^{i\mathbf{k}\cdot\mathbf{r}} \right\rangle_{\mathbf{R}} = \frac{1}{2\pi} \int e^{i\mathbf{k}\cdot(\mathbf{R}+\rho)} d\theta = \frac{1}{2\pi} e^{i\mathbf{k}\cdot\mathbf{R}} \int e^{-i\mathbf{k}\cdot\frac{\mathbf{v}}{\Omega}} d\theta$$
$$= \frac{1}{2\pi} e^{i\mathbf{k}\cdot\mathbf{R}} \int e^{-i\frac{k_{perp}v_{perp}}{\Omega}\cos\theta} d\theta$$
$$= e^{i\mathbf{k}\cdot\mathbf{R}} J_0\left(\frac{k_{perp}v_{perp}}{\Omega}\right)$$

Gyrokinetic motion

