
AMSC 663 Project Proposal: Upgrade to the

GSP Gyrokinetic Code

George Wilkie (gwilkie@umd.edu)
Supervisor: William Dorland (bdorland@umd.edu)

October 11, 2011

Abstract

Simulations of turbulent plasma in a strong magnetic field can take ad-
vantage of the gyrokinetic approximation, the result of which is a closed
set of equations that can be solved numerically. An existing code, GSP,
uses a novel and highly efficient solution method. In this project, we will
seek to change the velocity-space representation in GSP. This transfor-
mation will simplify the inclusion of a new collision operator and make
the algorithm more suitable for simulations of turbulence in Tokamak
plasmas, while retaining the efficiency and accuracy of the original code.

1 Background

Plasma physics concerns the collective dynamics of collections of many charged
particles interacting self-consistently with their respective electromagnetic fields.
In a uniform magnetic field, the motion of a charged particle (we are usually
referring to ions unless otherwise specified) in the plane perpendicular to the
magnetic field is a circle whose radius (the gyroradius ρ) depends on its velocity
in that plane:

ρ =
v⊥
Ω

(Ω is the gyrofrequency). If this radius is much smaller than the characteristic
size of the plasma, we can use that ratio as an expansion parameter. Gyrokinet-
ics specifically is the regime in which turbulent fluctuations can be of a size on
the order of this gyroradius. This is in contrast to drift-kinetic theory (and by
extension, MHD), where the gyroradius needs to be much smaller than the size
of the fluctuations. In order to get a closed theory in gyrokinetics, we demand

that the drift velocity be small compared to the thermal velocity vt ≡
√

2kBT
m .

Such drifts come about when there is curvature or a gradient in the magnetic
field or if there exists another force field (such as the electric field).

We can summarize the gyrokinetic assumptions thusly:

ρ

L
∼ vE

vt
∼ ω

Ω
∼ ν

Ω
∼ ε� 1
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Here, vE = cE
B0

is the E × B drift speed, ω is the frequency of turbulent fluc-
tuations, and ν is the characteristic collision frequency. These assumptions are
well justified in a wide range of plasmas found in magnetic fusion confinement
devices and in astrophysical plasmas.

The gyrokinetic equation results from expanding the distribution function
in the small parameter ε:

f(r,v, t) = F0 + δf + . . .

Where δf ∼ εF0 represents the fluctuations in the distribution function. If we
transform coordinates to the center of the gyromotion R, we can write

δf = F0 exp

(
−qφ
kBT

)
+ h(R, v‖, v⊥)

The latter function h in the coordinates of the gyrocenter position is what we
will be solving for.

2 Approach

The form of the gyrokinetic equation (in unconventional notation) is:

∂h

∂t
+ A[h] · ∇Rh+D‖[h]

∂h

∂v‖
+D⊥[h]

∂h

∂v⊥
= S[h]

Where the coefficients A, D‖, and D⊥ are functions of the local potential χ,
which in turn depends on integrals of h in velocity space. This is due to the
fact that the fields are calculated from the density and flux of charges, for which
the velocity dependence in h must be integrated out. The right hand side S[f ]
includes, among other terms, the collision operator, which is also in general an
integral over h. Such nonlinearities make the gyrokinetic equation very difficult
to solve even numerically.

The approach we will be taking is a δf particle-in-cell (δf -PIC) algorithm
(see [Aydemir, 1994]) that models the gyroaveraged fluctuations from equilib-
rium as a collection of Lagrangian markers. These are, in a sense, twice removed
from the physical particles that make up the plasma, and is more accurately
thought of as a Monte-Carlo representation of 〈δf〉. Each marker has a position

and a velocity, and a weight wi ≡ 〈δf〉
F0

. The latter is the function δf ’s value
as represented by a particle of its position and velocity. The particles follow
characteristic trajectories defined by:

∂R

∂t
= A

∂v‖

∂t
= D‖

∂v⊥
∂t

= D⊥
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In many solutions of the gyrokinetic equation, it is assumed that the equi-
librium distribution F0 and the background field B0 is uniform and stationary.
This simplifies the analysis because the equation that results is:

∂h

∂t
+ v‖

∂h

∂z
+

c

B0
ẑ · (∇R 〈χ〉 × ∇Rh) = 〈C[h]〉+

q

T
F0
∂ 〈χ〉
∂t

Note that there are no terms like ∂h
∂v⊥

. This simplifies the characteristics so that
all markers have the same gyroradius. This is the approach of the current GSP
code (see [Broemstrup, 2008]).

3 Implementation

Our implementation seeks to generalize the GSP algorithm to handle conditions
where there are gradients in the equilibrium distribution function and field. If
we follow the same analysis as before, the resulting gyrokinetic equation does
have terms like ∂h

∂v⊥
. If this were allowed, the integration of h over velocity

space (as required to compute the fields) would be significantly slowed down
since the particles’ velocities are mixed and would require random-access. This
is a weakness of the current GSP code since this mixing of particles in velocity
space also occurs as a result of collisions. We seek to improve this situation
by transforming velocity coordinates. Instead of v⊥ and v‖, we will instead
represent velocity space with:

µ =
mv2

⊥
2B0

and

E =
1

2
m
(
v2
⊥ + v2

‖

)
the magnetic moment and kinetic energy, respectively. This is a particularly wise
choice because both E and µ are constants of motion, so that dµ

dt = dE
dt = 0. Now

the “velocity” derivatives do not appear in the gyrokinetic equation whether
there are gradients or not.

Let us now discuss the collision operator. It consists of two terms: C[h] =
Cξ[h] + CE [h], each of which discribes the diffusion through the velocity polar
angle ξ and through energy E respectively. The latter process is relatively very
slow and will not be part of our overall analysis. This is justified by considering
the dynamics of two-body interactions: when there is a large disparity in masses
(such as between an electron and an ion), the transfer of energy ∆E = 2me

Mi
is

very small. Furthermore, when the colliding partners’ masses are identical, they
exchange momenta and the collision can be represented by a different scattering
angle of particles with the same energy. Therefore, in plasmas with only one
ion species dE

dt = 0 is a good approximation.
The collision operator is expected to be diffusive in velocity space, serving to

smooth out fine structure in h. However, in evaluating the collision operator, an
interpolation in velocity space onto a polar grid is required. This results in an
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artificial diffusion that does not follow the proper physics that the true collision
operator does. The fact that the interpolation is two-dimensional exacerbates
this effect. Therefore, by choosing our velocity grid to be polar to begin with,
this interpolation is only one dimensional.

We conclude that successfully making this change of velocity coordinates
in GSP will result in a code that is more accurate (by minimizing artificial
diffusion) and more efficient (by minimizing random access) when generalized
to systems with background gradients.

The algorithm implemented in GSP is illustrated here:

1. Initialization

• Place particles as sampled from the equilibrium distribution function

• Integrate to obtain initial potential χ

2. Simulation

• For each particle i:

– R
n+ 1

2
i = Rn

i + ∆t
2 vni

– 〈χ〉n+ 1
2 calculated on a grid in Fourier space, using R

n+ 1
2

j

– S
n+ 1

2
i [h] (RHS of GK equation) calculated from 〈χ〉n+ 1

2 and
wnj (∀j)

– wn+1
i = wni + ∆tS

n+ 1
2

i [h]

– v
n+ 1

2
i calculated from 〈χ〉n+ 1

2

– Rn+1
i = Rn

i + ∆tv
n+ 1

2
i

– 〈χ〉n+1
calculated on a grid in Fourier space, using Rn+1

j

– vn+1
i calculated from 〈χ〉n+1

3. Repeat Step 2 as needed

4. Obtain moments of 〈δf〉 such as density, temperature, and flux

A crucial step of the algorithm is where the fields are computed. In the
current implemention of GSP, this is done in Fourier space with:

φ ∝
∫
J0

(
k⊥v⊥

Ω

)
〈δf〉R v⊥dv⊥dv‖

The Bessel function J0 comes from the calculation of the gyroaverage in Fourier
space. Translating this integral into a suitable, equally efficient method to
calculate the potential when using the transformed velocity coordinates E and
µ represents the most significant challenge of this project. Failure to do so is
a risk and would will result in a code that does not retain the efficiency of the
original GSP. Considering the complexity of the code, it is also possible that the
student fails to sufficiently grasp the algorithm to make and debug the needed
changes.
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4 Databases

• GSP Source code:

http://gyrokinetics.svn.sourceforge.net/viewvc/gyrokinetics/gsp/

• Article with analytic result:

– Ricci, et al, “Gyrokinetic linear theory of the entropy mode in a Z
pinch.” Physics of Plasmas, 13: 062102

• Article with computational benchmark:

– Dimits, et al, “Comparisons and physics basis of tokamak transport
models and turbulence simulations.” Physics of Plasmas, 7: 969

5 Validation

To ensure we have built a code that gives physical results, we will compare
results obtained from both the old version of GSP and the update. Both should
agree remarkably well in regimes in which the original GSP is accurate since a
coordinate change shall not change the physics being simulated.

A standard computational benchmark for gyrokinetics is given in [Dimits et
al, 2000]. We will use this reference to compare results obtained from GSP.

Furthermore, an analytical condition necessary for stability in a gyrokinetic
plasma has been obtained in Appendix B of [Ricci et al, 2006]. Comparing
this to the conditions at which the code predicts an unstable plasma would
provide a good test of the physical fidelity of the code. Application of this test
would require a translation in position coordinates as well, which is beyond the
immediate scope of this project, although it is hoped to be accomplished.

6 Testing

Even if we have built a code with robust physics, it is possible that such an
effort may be in vain. This would occur if the “updated” version of GSP is
not an update at all and instead is considerably less efficient than the original
code. Therefore, we shall benchmark the performance of the update against the
original code and ensure that it scales well from a parallelization standpoint.

7 Schedule and Milestones

Phase I: Analytics
September - October 2011

• Understand rigorous derivation of the gyrokinetic equation
• Become familiar with analytical aspects of the gyrokinetic equation
• Make velocity coordinate change
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• Understand algorithm used by GSP to solve GK equation
• Understand Abel collision operator and how it is to be implemented in

GSP
• Milestone: Derive GK equation in velocity coordinates E and µ.

Phase II: Numerics
October 2011 - January 2012

• Become familiar with GSP code
• Make proposed changes to the code
• Ensure code still runs
• Milestone: GSP Code updated with new velocity coordinates.

Phase III: Testing and Validation
February - April 2012

• Debug updated GSP code
• Validate and test against previous version and known results
• Run test cases, organize results
• Milestone: GSP code in new velocity coordinates validated and tested

Phase IV: Communication
April - May 2012

• Prepare final presentation
• Milestone: Final presentation given

8 Deliverables

• Updated GSP source code
• Sample input files of test cases
• Test case comparison data
• Mid-year progress report
• Final presentation
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