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Abstract

In many applications of solving ill-posed problems there are a number
of regularization methods to choose from as well as a free regularization
parameter. The choice of the method and regularization can add bias if
deblurred images are based on what the researcher expects. The presented
project develops a tool for method choice and parameter selection by using
a set of three statistical diagnostics to validate solutions. We include three
regularization methods; Tikhonov, Truncated SVD, and Total Variation.
The diagnostics are motivated by the idea that the residual after deblur-
ring should be normally distributed if we assume that the added noise is
normally distributed. The project develops a interface where users can
freely choose a method, then find a range of regularization parameters
that produce plausible solutions based on the diagnostics.

1 Background

In medical images such as MRI or CT scans (Figure 1), the images may be
distorted and/or noisy due to the physics of the measurement and the structure
of the material (human) being imaged. These images are expensive to produce
and often are critical in making medical decisions. Image deblurring is an ex-
ample of an ill-posed inverse problem. To find suitable approximate solutions
to ill-posed inverse problems we use our knowledge about the particular prob-
lem to come up with constraints [4]. These constraints are used to determine
the method and parameters to regularize the problem, replacing the ill-posed
problem by one that is well-posed, and thus has an acceptable solution. Finding
and selecting good regularization methods and parameters can be very expen-
sive and subject to bias. Researchers often have invaluable information that is
crucial in finding a good approximate solution, but without validation, there is
risk of seeing what is expected and not the true solution or image (Figure 2).
An effective tool that generates a plausible range of regularization parameters
is needed to create a cost effective methodology and to control for bias when
determining optimal solutions.
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Figure 1: Tomography image of a mastectomy specimen. Stevens G M et al.
Radiology 2003;228:569-575

Figure 2: Left: Blurred Image, Center: Deblurred Image, Right: True Image
which has “train tracks”. Without knowledge of the true image having “train
tracks” one might accept the deblurred to be a good image without realizing
that important information was lost in the process. Images courtesy of Dianne
O’Leary
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The goal of this project is to develop a software package with graphical
user interface (GUI) for method and apply it to deblurring and denoising prob-
lems with Gaussian noise. The software uses an automated parameter selec-
tion tool for initial parameter selection and statistical diagnostics to validate
candidate solutions based on user provided parameter. A number of regular-
ization methods are used in hopes of determining optimal methods for a given
image: Truncated SVD (TSVD) regularization, Tikhonov regularization, and
Total Variation (TV) regularization.

2 Outline
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3 Mathematical Model of Regularization Meth-
ods

An image can be thought of either as a real continuous function or as a collection
of discrete square pixels.

3.1 Continuous Representation

In the continuous case, the model can be represented by

Ku + ν = u0, (1)

where K is the known blurring operator, u is the true image, u0 is the observed
image, and ν arises from a Gaussian white noise process. Equation (1) is an
example of an ill-posed problem. Stability is imposed by adding a regularization
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or penalty term R(u) which incorporates a priori assumptions about the size
and smoothness of the desired solution. Our problem becomes:

min
u

1
2
‖Ku− u0‖2

2 + γR(u), (2)

where γ is a nonnegative parameter.

3.2 Discrete Representation

Consider the problem as a collection of discrete square pixels where we can
write:

Ax + ε = b, (3)

where A is a known m × n matrix with m ≥ n, x is an unknown n × 1 vector
which represents a nh × nv rectangular image where n = nh × nv and v and h
signify the vertical and horizontal directions, ε is an m × 1 vector of error drawn
from a normal distribution with known variance and mean, and b is the m × 1
measured image where m = mh ∗mv. Because A is generally an ill-conditioned
matrix (a property of discretizing the blurring operator), stability is imposed
by adding a regularization term Q(x) with parameter γ. The discrete problem
becomes:

min
x

1
2
‖Ax− b‖2

2 + γQ(x). (4)

4 SVD-Based Regularization Methods

There are two commonly used regularization methods based on the singular
value decomposition (SVD) of A, Tikhonov’s regularization method and Trun-
cated SVD (TSVD). The SVD of A is

A = UΣVT =
n∑

i=1

uiσivT
i (5)

where U = (u1, . . . ,un) is a m × n matrix and V = (v1, . . . ,vn) is a n × n
matrix each with orthonormal columns, and Σ = diag(σ1, . . . , σn) is a matrix
of the non-negative singular values that appear in decreasing order.

4.1 Tikhonov’s Regularization Method

In this method our penalty function is

Q(x) = ‖Lx‖22, (6)

where L is the identity matrix, approximation of the first derivative operator, a
diagonal weighting matrix [5], or another of operator based on the problem and
the desired features.

This method has been implemented using a class in RestoreTool where we as-
sume that L is the indentity matrix. The solution is

xtik = (ATA + γIn)−1ATb. (7)
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When one takes the SVD of A it is easily shown that

xtik =
n∑

i=1

σiuivT
i b

σ2
i + γ

. (8)

4.2 Truncated SVD Method

In Truncated SVD (TSVD) we regularize the problem by truncating A, ignoring
the small singular values which cause A to be ill-conditioned. The regularization
problem becomes

min
x
‖Akx− b‖2

2, (9)

where

Ak =
k∑

i=1

uiσivT
i (10)

and the regularization parameter is k. Again using the SVD of Ak it is easily
shown that the solution is

xTSV D =
n∑

i=1

φi
uivT

i b
σi

(11)

where φi = 1 for i = 1, . . . , k and 0 for i = k + 1, . . . , n.

5 Total Variation Regularization Method

In Total Variation (TV) regularization, our penalty function is the l1 norm of
the gradient (∇) of the solution and thereby retains steep gradients that may
be lost if the l2 norm is used. The penalty function is

R(u) = TV (u) =
∫

Ω

|∇u|dΩ, (12)

and
|∇u| =

√
u2

x + u2
y, (13)

where Ω is the domain (for images we can assume that it is rectangular). The
continuous problem becomes the minimization of

f(u) =
1
2
‖Ku− u0‖2

2 + γ

∫
Ω

|∇u|dΩ. (14)

The first-order condition of optimality (also known as the Euler-Lagrange equa-
tion) for the problem with homogeneous Neumann boundary conditions is

0 = K∗(Ku− u0)− γ∇ · ( ∇u

|∇u|
), (15)

where K∗ is the adjoint operator of K in the l2 inner product space. This
regularization problem is non-linear, and the TV term is not everywhere dif-
ferentiable. There have been many proposed iterative methods to approximate
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the solution, including time marching schemes, Newton’s method, lagged dif-
fusivity fixed point iteration, and primal-dual Newton method [3]. In many of
these methods the difficulty of the TV (u) term not being differentiable at zero
is avoided by adding a small positive constant β > 0 so that (15) becomes

g(u) = K∗(Ku− u0)− γ∇ · ( ∇u√
|∇u|2 + β

) = 0. (16)

For this project I solved the descretized optimization problem with Primal-
Dual Newton Method with Conjugate Gradients (CG) based on the algorithm
found in [3]. See section 9.2 for details about implementation.

5.1 Formulation of Newton’s Method

To solve our optimization problem we use Newton’s method. The first step of
this method is to find a quadratic model that fits the function f(u + δu) where
f(u) is given in (14), and δu is the search direction. The search direction can be
found by minimizing the quadratic model over δu. Newton’s method becomes:

H(u)δu = −g(u), (17)

where

H(u) = (K∗K − γ∇ · ( 1√
|∇u|2 + β

(I − ∇u∇uT

|∇u|2 + β
)∇). (18)

5.2 Linearization Based on Introducing a New Variable

In [3] the authors suggest an improved method to solving the above problem
by introducing a new variable w = ∇u

|∇u| or w = ∇u√
|∇u|2+β

. This technique

is related to primal-dual optimization (details found in section 5.6) and gives
better global convergence behavior than Newton’s method [3].
From (16) we find the equivalent system of equations:

K∗(Ku− u0)− γ∇ · w = 0, (19)

w
√
|∇u|2 + β −∇u = 0. (20)

We now linearize this system to find:[ √
|∇u|2 + β −(I − w∇uT√

|∇u|2+β
)∇

−γ∇· K∗K

] [
δw
δu

]
= −

[
f(w, u)
g(w, u)

]
. (21)

This method is called the primal-dual Newton’s method [3].

5.3 Discretization and Computation of TV Regularization
Method

The discretization of the TV term becomes

Q(x) = γ

n∑
i=1

√
‖DT

i x‖2
2 + β, (22)
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where ∇u is discretized using forward differencing with respect to the pixels in
the horizontal direction and the vertical direction of the image:

DT
i x = [xi+nv − xi, xi+1 − xi]T , (23)

and D = [D1, ...Dm] is n× 2m. The resulting problem is:

min
x

1
2
‖Ax− b‖2

2 + γ

m∑
i=1

√
‖DT

i x‖2 + β. (24)

5.4 Discrete Formulation of Newton’s Method

The discretization of (16) and (18) yields

g(x) = AT (Ax− b) + γDE−1DT x, (25)

where
νi =

√
‖DT

i x‖2 + β, (26)

E = diag(νiI2)i=1,..,m, (27)

I2 is a 2× 2 identity matrix and

H(x) = AT A + γDE−1FDT , (28)

where

F = diag(I2 −
DT

i xxT Di

ν2
i

)i=1,..,m. (29)

5.5 Formulation of Primal-Dual Newton’s Method

Analogous to the discretization in section (5.4), we introduce the 2m× 1 vector
y of dual variables, and the discretization of the Primal-Dual Newton method
becomes [

E −F̄DT

γD AT A

] [
∆y
∆x

]
= −

[
Ey −DT x

γDy + AT (Ax− b)

]
, (30)

where F̄ = diag(I2 − yT
i xT Di

νi
)i=1,...,m. This can be written as:

C∆x = ¯g(x), (31)

∆y = −y + E−1DT x + E−1F̄DT ∆x, (32)

where
C = γDE−1F̄DT + AT A (33)

and
¯g(x) = −(γDE−1DT x + AT (Ax− b)). (34)

Note that C is not symmetric and as suggested by the authors of [3] should be
replaced by symmetrization C̄ = 1

2 (C + CT ) of C.
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5.6 Relationship to the Dual Problem

To understand the relationship of the above formulation to the primal-dual
problem we first rewrite our minimization or primal problem (24) as a min-
max problem by using the the following fact: ‖a‖ = max‖b‖≤1 aTb for any
vector a, as a result of the Cauchy-Schwartz inequality. Ignoring β we find that
‖DT x‖ = max‖yi‖≤1 xTDy. The resulting primal problem is the minimization
with respect to x of:

P(x) =
1
2
‖Ax− b‖2

2 + γ max
‖yi‖≤1

xTDy, (35)

and from the concept of duality we know that the dual problem is simply the
max-min problem [11]. Our dual problem becomes the maximization with re-
spect to y of

N(y) = min
x

1
2
‖Ax− b‖2

2 + γxTDy. (36)

Because the function 1
2‖Ax− b‖2

2+γxTDy is convex in x and concave (actually
linear) and bounded for ‖yi‖ ≤ 1 we know there is a point that satisfies the
saddle-point condition. This implies that there is strong duality so:

min
x

P(x) = max
‖yi‖≤1

N(y). (37)

The authors in [1] suggest considering the primal-dual problem, formulated by
considering the conditions for which the difference between the primal and the
dual objective function (duality gap) is zero, which holds when x and y are
optimal:

1
2
‖Ax− b‖2

2 + γ

m∑
i=1

yT
i Dix =

1
2
‖Ax− b‖2

2 + γ

m∑
i=1

‖DT
i x‖, (38)

where equality holds when yT
i DT

i x = ‖DT
i x‖ for every i where DT

i x 6= 0 and
‖yi‖ ≤ 1. The primal-dual formulation becomes

AT Ax− b + γDy = 0, (39)

‖DT
i x‖yi −DT

i x = 0, (40)

and
‖yi‖ ≤ 1. (41)

We know the solution of the above system yields the optimal x for the primal
problem. Again we will add a small constant β in order to make the above well
defined for all i. Therefore our primal-dual formulation yields the discretization
of (19) - (20).

6 Initial Regularization Parameter Selection Method

Our software generates an initial regularization parameter using generalized
cross-validation (GCV) or the discrepancy principle.
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6.1 Generalized Cross-Validation

The method of generalized cross-validation (GCV) is to minimize the GCV
function

G(γ) =
m∑

k=1

[bk − (Ax̃(k)
γ )k]2, (42)

where the x̃(k)
γ is the estimate when the kth measurement of b is omitted and the

regularization parameter γ. For methods that are linear, the GCV expression
can be greatly simplified [5]:

• GCV for TSVD : G(k) = 1
(m−k)2

∑m
i=k+1(u

T
i b)2 .

• GCV for Tikhonov : G(λ) =

∑m

i=1
(

uT
i

b

σ2
i
+γ2 )2∑m

i=1
( 1

σ2
i
+γ2 )2

.

For methods that are nonlinear like the total variation regularization method,
direct implementation of GCV is generally too costly. There have been attempts
to iteratively solve (42) [8]. This was found not to be a feasible approach for
this project given the responsiveness constraints of the GUI.

6.2 Discrepancy Principle

Given that we know the distribution of the noise ε we see that an initial param-
eter γ can be found by solving:

‖Axγ − b‖2 = νE(‖ε‖2), (43)

where ν = 2 is a safety factor [5] and E denotes the expected value.
Although GCV is often favored when applicable because it does not require

any prior assumptions about the problem, the discrepancy principle provides a
simple method that can be solved using an efficient root finding algorithm.

7 Statistical Based Diagnostics

The use of residual diagnostics for improving regularization parameters was
demonstrated by Bert Rust and Dianne O’Leary [15] as an effective tool to
determine plausible regularized solutions. In this project we will use three di-
agnostics to generate a range of plausible regularization parameters.

7.1 Motivation

Assuming that the errors in the data are independently identically normally
distributed with mean zero and variance one, the discretized linear regression
model is

b = Ax∗ + ε, (44)

where
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ε ∼ N(0, Im). (45)

Now if we have an estimate x̃ of x∗ then the residual vector

r̃ = b−Ax̃ (46)

for a plausible x̃ should be a sample from the distribution from which ε is drawn
since our linear regression model can be written

ε = b−Ax∗. (47)

7.2 Diagnostic 1

The sum of the squares of m are independent and identically distributed (i.i.d.)
standard normal random variables are Chi2 distributed with expected value
m and the variance 2m [16]. Therefore, our first diagnostic is that the resid-
ual norm squared r̃ should be within two standard deviations (within the 95%
condidence interval) of the expected value of ‖ε‖22 or

‖r̃‖2
2 ∈ [m− 2

√
2m,m + 2

√
2m]. (48)

7.3 Diagnostic 2

The graph of the elements of the vector of the residual r̃ should look like samples
from the distribution ε ∼ N(0, 1). Quantitatively this test is based on the
goodness of fit of the normal curve to the histogram of the elements r̃i. One
way to test the goodness of fit is the Chi2 test, where the null hypothesis for
standard normal distributed with significance 0.05 [16] or in other words is our
sample normal distributed with 95% confidence. Another significance test is the
Fisher test which has been shown to be more accurate.

7.4 Diagnostic 3

If we consider the elements of ε and r̃ as time series with index i = 1, . . . ,m
where εi ∼ N(0, 1) forming a white noise series then r should also be a white
noise series. One way to measure this quantitatively is to find the cumulative
periodogram of the residual time-series.

To find the the cumulative periodogram one first finds the spectral density
of the series by taking the Fourier transform

xt =
ao

2
+

n∑
k=1

(ak cos(wkt) + bk sin(wkt)), (49)

where if xt has m observations then n = m−1
2 and the frequency is wk = 2πk

n
for k = 1, . . . , n. The periodogram is defined as

I(wk) =
n

2
(a2

k + b2
k). (50)
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[6] which represents the sum of squares of the coefficients at each frequency wk.
The cumulative periodogram is given by

Ck =

∑k
(j=0) Im(wj)∑n
(j=0) Im(wj)

. (51)

If we look at the spectral density of white noise we would expect the magni-
tude, which is measured by (50), to be equally distributed over every frequency
which implies that the cumulative periodogram is a straight line between 0
and 1. The diagnostic then becomes a test to see if the plot of the cumula-
tive periodogram of the residual plot looks like the cummulative periodogram
of white noise. The 95% confidence interval is giving by plus (upperbound) or
minus (lower bound) 1.36/

√
(n − 1)[6] from the linear line from 0 to 1. This

approximation is said to hold for n− 1 > 30 [6].

8 Software

Below is a description of the pieces that form the Matlab software package for
this project.

8.1 Frontend Software

The idea of having a frontend or Graphical User Interface (GUI) for this project
is to provide an interactive platform for users who may have invaluable infor-
mation about the image (for example, the doctor looking at a CT image). The
GUI allows the user to change the regularization method or parameter to see the
effect and use the statistical diagnostics for validation. The user does not need
to have knowledge about the implementation to effectively use the interface.

8.2 Backend Software

• Regularization method

– Regularization methods Tikhonov and TSVD (see Sections 4.1 - 4.2)

– Total Variation regularization method (see Section 5)

• Method for initial parameter selection

– Generalized Cross-Validation (GCV) for TSVD and Tikhonov (see
Section 6.1)

– Discrepancy Principle for Total Variation (see Section 6.2)

• Validate candidate solutions using statistical diagnostics

– Apply statistical diagnostics (see Section 7).

9 Hardware

The software is designed to run on a modern desktop PC or laptop with no
special hardware requirements.
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10 Implementation

In this section we present details about the implementation of each piece of the
matlab software included.

10.1 Tikhonov and TSVD with GCV for Initial Parameter
Selection

Tikhonov is implemented using the RestoreTools function Tikhonov.m. The
initial parameter is found using GCVfun.m, and Matlab function fminbnd is
used to find the minimum. Note that there was a small mistake in RestoreTools
implementation using fminbnd within Tikhonov.m that I fixed, properly docu-
mented in the function and files.

TSVD is implemented using the RestoreTools function TSVD.m where the
initial parameter is found using GCVforSVD.m.

As with all methods in RestoreTools, Tikhonov and TSVD regularization
method utilizes the psfMatrix class to make the implementation more efficient
by not storing the A explicitly but instead creating a psfMatrix object which
stores the Point Spread Function (PSF), a function that describes how a sin-
gle point is blurred or distorted, and the boundary conditions from which the
blurring matrix can be formed. Note that the PSF function must be separa-
ble. Operations like matrix vector multiplication, SVD, as well as operations on
AT make up the psfMatrix class. This greatly reduces the amount of storage
because the PSF is much smaller than the blurring matrix.

10.2 Total Variation (TV) Regularization Method

The TV regularization method was implemented using the Primal-Dual Newton
Method with Conjugate Gradients (CG)[3].

10.2.1 Pseudo-Code for Primal Dual Newton Method with CG

Algorithm 1 Primal-Dual Newton Method
Initialize: x0, set k = 0
while xk is not “good enough” do

Solve C̄∆xk = −ḡ(x) using CG to find the Newton direction ∆xk.
xk+1 = xk + αk∆xk where αk is determined by a linesearch (cvsrch.m
provided by Dianne O’Leary).
∆y = −y + E−1DT x + E−1F̄DT ∆x.
yk+1 = yk + sk∆xk where sk is determined by sk = .9sup{sd : ‖yi +
sd∆yi‖ < 1, i = 1, . . . ,m}.
Set k = k + 1

end while
“good enough”: ‖g(xk)‖/‖g(x0)‖ < 10−3.
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Algorithm 2 CG
Initialize: r = −ḡ(x)− C̄(x)∆xk, q = r, ρ = ‖r‖, γ = ρ, k = 0.
while ‖r‖/ρ >= tol do

α = ρ
qTC̄(x)q

.
∆x = ∆x + αq.
r = r− αC̄(x)q.
γ̂ = ‖r‖2.
β = γ̂

γ , γ = γ̂.
q = r + βq.
Set k = k + 1.

end while
Tolerance for CG: tol = 0.1 when k = 0 and tol =
min(0.1, 0.9‖g(xk)‖2/‖g(xk−1)‖2) are the suggested conditions in [3].

10.2.2 Discrepancy Principle for Initial Parameter Selection

To find the initial TV parameter γ,

‖Axγ − b‖2 − 2‖ε‖2 = 0 (52)

was solved using Matlab’s root finding function fzero. Since the parameter
selection only has to be a rough estimate, the primal-dual TV method is only
run for 5 iterations and the tolerance for fzero was set to tol = 10−9.

10.3 Efficient Implementation

To achieve efficient implementation, we make the algorithm low storage in order
to work with larger images. We include the option to not store the Hessian
explicitly which is an advantage of using CG. Instead we use a function to form

Hv = H(x)v, (53)

where v is an arbitrary vector. In the implementation, the blurring matrix is
also not stored explicitly. For smaller images (smaller than 32 × 32) a sparse
representation is used. This was chosen because the RestoreTools class psfMa-
trix does not work with smaller images. For larger images psfMatrix is used
which stores the PSF and information regarding the boundary conditions as a
structure and performs the necessary computations without explicitly storing
the matrix.

In addition to low-storage the method should be fast enough to work with
the GUI interface. In order to cut down on the number of function evaluations,
a structure was used to pass information between modular pieces. Additional
modifications were made in the direct implementation to the GUI to make it
work with the slidebar which requires very fast computation. I choose to work
with 16× 16 images because of the short computation time for a large range of
parameters (see Figure ??). In addition I used the solution found through the
discrepancy principle as an initial guess.
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( a )

( b )

( c )

Figure 3: Plot of the residual, histogram of the residual and the cumulative
for three different residuals. (a) Normal distributed residual (b) Normal plus
Poisson, (c) Normal plus features

10.4 Statistical Diagnostics

• Diagnostic 1. This is directly implemented by checking whether ‖r̃‖2
2 falls

within the bounds [m− 2
√

2m,m + 2
√

2m] for each solution.

• Diagnostic 2. This diagnostic is implemented visually using the Matlab
plotting function hist. The null χ2 hypothesis test is implemented using
the Matlab function chi2gof(resid,’cdf ’,@normcdf) assuming 10 bins.

• Diagnostic 3. The cumulative periodogram was found by first using the
Fast Fourier Transform (the Matlab function fft), then taking the square
of each element, and finally finding the cumulative sum. The diagnostic is
measured by finding the number of points that fell outside the 95% interval
over each frequency. The implementation follows the implementation of
checkperiod.m by Dianne O’Leary which follows a Fortran program by
Bert Rust.
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Figure 4: Back: GUI figure generation tool. Front: Resulting GUI.
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Figure 5: Snip-it of a callback function taken from the parameter selection GUI
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Figure 6: Initial parameter selection with Diagnostic 1 and the true image along
with the blurred and deblurred image
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Figure 7: Final implementation of the GUI with the three Diagnostics

18



10.5 Frontend

The GUI interface was implemented using Matlab’s GUI interface toolbox. The
GUI is built by first creating a figure window using a figure editor. Within
the editor the user has a number of components (fields, axes, sliders, dropbox,
input fields, push buttons....) to choose from. User-operated controls, dynamic
and static components can be added. Once the figure has the desired features
Matlab generates the basic code the figure (Figure 4). The components that
are user-operated or dynamic must have a Callback function to designate the
response to the user-generated event. Each component has a tag and a handle
structure (e.g., the slider has a handle for maximum value, minimum value and
current value). Figure 5 is an example of the Callback function for the param-
eter selection tool.

In Figure 7 is the final GUI for this project. In this GUI the user first
chooses a test image and regularization method (left corner) then presses the
“compute” button. For the given method and blurred image, an initial parame-
ter is computed using either GCV or discrepancy principle. In addition the GUI
also displays information about the image (right corner), the blurred image, and
deblurred image for the initial parameter. The user can then adjust the slide bar
and in realtime the new solution (deblurred image) is computed and displayed.
In the right column the user can verify that the parameter selected is plausible
by checking to see if the three diagnostics are satisfied.

11 Results and Testing

I used artificially generated images and PSF functions for development and
initial testing of the software. These data sets were created to any size. For
testing and validation I used the images found in RestoreTools as well as a
variety of PSFs also found in RestoreTools.

11.1 Signal-to-Noise Ratio Effect on Diagnostics

As one may expect, the diagnostics are affected by the Signal-to-Noise Ratio
(SNR) which is defined by

SNR = 10 log10(
‖b‖2

‖ε‖2
). (54)

The range of plausible parameters that meet the diagnostics increases as the
SNR goes to zero, and as the SNR increases the range of plausible solutions
becomes smaller (Figure 8). Note that a user should be careful when they
have very small SNR as the diagnostics used may not be the best measure for
plausible solutions. This test was performed on a 16 × 16 piece of Matlab test
image ’cell.tif’ where the range of SNR was varied from 20 to 75. Ranges plotted
are for Diagnostic 1 and the Tikhonov method although similar relation was
found for the different methods, diagnostics and different test images included
in the GUI.
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Figure 8: For the 16×16 segment of the image “cell.tif” the range (±0.0025) was
found for Diagnostic 1 using Tikhonov regularization. From the plot we can see
that as the Signal-to-Noise Ratio decreases the range of parameters satisfying
the diagnostic increases
.
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Figure 9: The difference in log10 of computational time (seconds) for the TV
regularization method for parameters between γ = 1 and γ = 10−9. For all
image sizes the maximum time was for γ = 1.
.

11.2 Effects of γ on Computation Time

It was found that the computation time of the TV regularization method (de-
pendent on the number of CG iterations) is dependent on the value of γ. Figure
9 shows the range. See Figure 10 for results for different values of γ.

As a result of this fact, I looked into using preconditioners to speed up the
algorithm for large γ. ILU is suggested for the Primal-Dual Newton method
[3]. I did not find the use of ILU to be robust enough to be included in the
GUI as I had to adjust the drop tolerance depending on γ.

11.3 Larger images and varied PSF

Although the GUI is only able to handle very small images, additional tests of
the Primal Dual TV method were done on larger images as well as images with
a variety of PSF. See Figures 11 - 12 comparing the results using Tikhonov and
TSVD to the Primal Dual TV method used.

12 Validation

All the regularization methods have been initially tested on the same set of test
images using the same PSF function and boundary conditions and noise levels.
The code is written to work with any separable PSF (a restriction of psfMatrix ).

21



(a) (b)

Figure 10: (a) True image and Blurred/Noisy image (b)Top: Left to right:
γ = 1, γ = 10−2 Bottom: Left to right: γ = 10−4, γ = 10−6

.
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Figure 11: 129× 129 image of “cell.tiff” with Gaussian blur and zero boundary
conditions with SNR of 60
.
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Figure 12: 256× 256 image of Satellite with PSF provided in RestoreTools with
zero boundary conditions and SNR=9
.
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Residual Diag. 1 Diag. 2 Diag. 3 Fisher
rn ∼ N(0, 1) 51 46 14 48
rn + I(i) 950 999 539 1000
rn + .05 ∗ rp rp ∼ pois(1) 156 1000 149 1000

Table 1: For 1000 runs, number of times the Diagnostics are NOT satisfied.
I(i) = 1 if (i− 1)mod(100) = 0 or (i− 2)mod(100) = 0 and I(i) = 0 otherwise.

For testing purposes a Gaussian PSF with zero boundary conditions was used
unless otherwise noted.

12.1 Validation of Diagnostics

The validation of the diagnostics was done experimentally based on expected
statistical results. Each of the diagnostics were tested first with standard normal
i.i.d. samples to confirm that that each of the diagnostics is satisfied approxi-
mately 95% of the time (see Table 1).

From the table it is seen for 1000 different standard normal i.i.d. samples
the three diagnostics and the Fisher normality test (not described) tell us for
these 1000 samples, 95% satisfy the diagnostics. Then if we perturb the stan-
dard normal samples by periodically adding artifacts or adding small faction
of poisson distributed samples one sees that Diagnostic 2 and the Fisher Test
(which should be equivalent) do a very good job of determining that the sample
is no longer stardard normally distributed which is what we expected given the
pertubation.

12.2 Validation of Total Variation Method

The implementation was programmed modularly so that each piece (Newton
Step, CG, function evaluations, linesearches) can be validated individually.

• CG was validated for small Ax = b test problems where the results could
be verified.

• The minimization function f(x), gradient g(x), and Hessian times a vector
Hv(x,v) were run separately and were validated for a given input x.

Basic results for blurred images without noise are shown in Figure 13. TV
method is seen to have small relative error.

In addition a modular piece of the code was also compared to results found
using an implementation of the Primal-Dual Newton’s method by Curtis Vogel
[14]. To run the comparison I used the “cell.tif” and a Gaussian PSF (Figure
14). Shown are results for a 64× 64 image with SNR = 81 the relative error of
my implementation was 0.9% compared to 1.02% for Vogel (Figure 15). But
when tested for smaller SNR values (more noise) the Vogel algorithm produced
results with much better relative error compared to my implementation, this is
most likely accounted because of differences in internal convergence tolerations.
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Figure 13: Results of Newton-CG for Total Variation regularization for two
images, top is a 16× 16 generated in Matlab and the bottom image is 64× 64
Modified Shepp-Logan generated in Matlab
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Figure 14: Clockwise: 64 × 64 image, PSF, Power Spectrum of PSF, Blurred
and Noise image (SNR = 81)
.
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Figure 15: Results of the TV regularization method for my implementation and
code found in [14].
.
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12.3 Validation of Usefulness of Software

In addition to the demonstration of the GUI done as part of the AMSC 663/664
course I also demonstrated the software outside of class. The GUI was presented
and distributed to Dr. Dianne O’Leary’s undergraduate class on Deblurring
Digital Images (CMSC/AMSC 498D) as a educational too. Guided by this, a
number of students included GUI’s in their final project. The software was also
presented to the AMSC student seminar where I got feedback from two students
on the potential usefulness of the GUI for their current work. Picking appropri-
ate methods and regularization parameters remains a challenge in application.
This software is a proof of concept that such a tool can help address these issues.

13 Project Milestones

• A basic GUI to use existing tools in RestoreTools [5]

• Validated periodogram diagnostics to RestoreTools

• GUI that help determines a range of plausible regions using the peri-
odogram diagnostics

• Outline of Total Variation regularization algorithm and basic implemen-
tation in Matlab

• Deliver mid-year report and presentation

• Total Variation (TV) regularization in RestoreTools framework

• Initial parameter selection tool (discrepancy principle) for Total Variation
regularization method

• Validated TV to with initial parameter selection tool included in the GUI

• Software package finished and optimized

• Deliver final presentation and report
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