
Automated Parameter Selection Tool for Solution

to Ill-Posed Problems

Mid-Year Report

Brianna Cash (brcash@math.umd.edu)

Advisor: Dianne O’Leary (oleary@cs.umd.edu)

December 19, 2011

Abstract

In many ill-posed problems it can be assumed that the error in the
data is dominated by noise which is independent identically normally dis-
tributed. Given this assumption the residual should also be normally
distributed with similar mean and variance. This idea has been used to
develop three statistical diagnostic tests to constrain the region of plau-
sible solutions. This project aims to develop software that automates
the generation of a range of plausible regularization parameters based on
diagnostic tests.

1 Background

In medical images such as MRI or CT scans (figure 1), the images may be dis-
torted and/or noisy due to the physics of the measurement and the structure of
the material (human) being imaged. These images are expensive to produce and
often are critical in making medical decisions. Image deblurring is an example of
an ill-posed inverse problem. To find suitable approximate solutions to ill-posed
inverse problems we use our knowledge about the particular problem to come up
with constraints [4]. These constraints are used to determine parameters to reg-
ularize the problem, replacing the ill-posed problem by one that is well-posed,
and thus has an acceptable solution. Finding and selecting good regularization
parameters can be very expensive and subject to bias. Researchers often have
invaluable information that is crucial in finding a good approximate solution,
but without validation, there is risk of seeing what is expected and not the true
solution or image (figure 2). An effective automated tool that generates a plau-
sible range of regularization parameters is needed to create both a cost effective
methodology and control for bias when determining optimal solutions.

The goal of this project is to develop a software package with graphical user
interface (GUI) for parameter selection in regularizing ill-posed problems, and
apply it to debluring and denoising problems with Gaussian noise. The soft-
ware will use generalized cross-validation (GCV) for initial parameter selection

1

Figure 1: Stevens G M et al. Radiology 2003;228:569-575

Figure 2: Left: Blurred Image, Center: Deblurred Image, Right: True Image
which has “trian tracks”. Without knowlege of the true image having “train
tracks” one might accept the deblurred to be a good image without realizing
that important information was lost in the process. Images courtesy of Dianne
O’Leary

2

and statistical diagnostics to validate candidate solutions based on user pro-
vided parameters. A number of regularization methods will be used in hopes
of determining optimal methods for a given image. To start, the software will
include Truncated SVD (TSVD) regularization, Tikhonov regularization, and
Total Variation (TV) regularization.

2 Regularization methods for ill-posed problem

Consider the ill-posed and ill-conditioned discrete problem

Ax = b (1)

where A is a known m × n matrix where m ≥ n, b is a known m × 1 vector
(measured image) and x is an unknown n × 1 vector. In general to solve the
inverse problem one would solve Ax = b or the equivalent least square problem

min
x
‖Ax− b‖22 (2)

Because A is ill-conditioned, solving Ax = b directly generally does not give
good results. To make the problem less sensitive one needs to apply a method
which imposes stability to the problem while retaining desired features of the
solution. Regularization methods incorporate a priori assumptions about the
size and smoothness of the desired solution.

min
x
‖Ax− b‖22 + γΩ(x) (3)

Where the second term of the expression above is the regularization term
where Ω(x) is a smoothing function or penalty function and γ is the regulariza-
tion parameter.

2.1 Tikhonov’s Regularization method

In this method our penalty function is

Ω(x) = ‖Lx‖22 (4)

where L is the identity matrix, approximation of the first derivative opera-
tor, a diagonal weighting matrix [5], or any other type of operator based on the
problem and the desired features.

This method has been implemented using a class in RestoreTool where we as-
sume that L is the indentity matrix. It is solved directly where

xtik = (ATA + γIn)−1ATb (5)

When one takes the Singular Value Decomposition (SVD) of A, where

A = UΣVT =
n∑

i=1

uiσivT
i (6)

3

it is easily shown that

xtik =
n∑

i=1

σiuivT
i b

σ2
i + γ

(7)

2.2 Truncated SVD

In Truncated SVD (TSVD) we regularize the problem by truncating A and
therefor ignoring the small singular values which cause A to be ill-conditioned.
The regularization problem becomes

min
x
‖Akx− b‖22 (8)

where

Ak =
k∑

i=1

uiσivT
i (9)

and the regularization parameter is k or the level of truncation. Again when
one takes the SVD of Ak it is easily shown that the solution is

xTSV D =
n∑

i=1

φi
uivT

i b
σi

(10)

where φi = 1 for i = 1..k and 0 for i = k + 1..n.

2.3 Total Variation Regularization method

In Total Variation (TV) regularization we assume that our penalty function
is the l1 norm of the gradient of the solution and thereby help retain steep
gradients that may be present, which may be lost in methods where the l2 norm
is used. The penalty function is

Ω(x) = TV (x) (11)

where

TV (x) =
∫

Ω

√
|∇x|2dΩ (12)

Unlike the previous methods, our regularization problem is non-linear and
the TV term is non-differentiable. There have been many proposed interactive
methods to approximate the solution including time marching schemes, steepest
descent, Newton’s method, lagged diffusivity fixed point iterative method [14],
and primal-dual Newton method [3]. In many of these methods the difficulty
of the TV (x) term not being differentiable at zero is avoided by adding a small
positive constant value so our term becomes

TV (x) =
∫

Ω

√
|∇xλ|2 + βdΩ (13)

For this project I used Newton Method with Conjugate Gradients (CG)
based on the algorithm found in [3]. See section 9.2 for details about implemen-
tation.

4

3 Statistical Based Diagnostics

The use of residual diagnostics for choosing regularization parameters was demon-
strated by Bert Rust and Dianne O’Leary [12] as an effective tool to determine
plausible regularized solutions. In this project we will use the following three
diagnostics to generate a range of plausible regularization parameters.
Assuming that the errors in the data are independently identically normally
distributed with mean zero and variance one, the discretized linear regression
model is

b = Ax∗ + ε (14)

where

ε ∼ N(0, Im) (15)

Now if we have an estimate x̃ of x∗ then the residual vector

r̃ = b−Ax̃ (16)

for a plausible x̃ should be a sample from the distribution from which ε is drawn
since our linear regression model can be written

ε = b−Ax∗ (17)

This characteristic of the residual inspired three diagnostics [7]:

• Diagnostic 1. The residual norm squared should be within two standard
deviations (within the 95% confidence interval) of the expected value of
‖ε‖22 or

‖r̃‖22 ∈ [m− 2
√

2m,m + 2
√

2m]

where the expected value of ‖ε‖22 is m and the variance is 2m. This
diagnostic is based on the Chi2 distribution, where the sum of the squares
of m i.i.d. standard normal random variables are Chi2 distributed. Now
if we have m samples and find the sum of squares of the sample then we
expect that we should be within the 95% confidence interval if we have a
normal sample.

• Diagnostic 2. The graph of the elements of the vector of the residual r̃
should look like samples from the distribution ε ∼ N(0, 1). Quantitatively
this test is based on the goodness of fit of the normal curve to the histogram
of the elements which is r̃i. One way to test the goodness of fit is the
Chi2 test where the null hypothesis that our sample is standard normal
distributed with significance 0.05 or in other words is our sample normal
distributed with 95% confidence. Another significance test is the Fisher
test which has been shown to be more acurate because it is an exact test
compared to the previous test where the distribution of Chi2 has to be
approximated.

• Diagnostic 3. If we consider the elements of ε and r̃ as time series with
index j = 1, ..., n where εj ∼ N(0, 1) forming a white noise series then r
should also be a white noise series. To measure this quantitatively one
needs to find the cumulative periodogram of the residual time-series.

5

To find the the cumulative periodogram one first needs to find the spectral
density of the series by transforming it into its frequency domain by taking
the Fourier transform given by

xt =
ao

2
+

m∑
k=1

(ak cos(wkt) + bk sin(wkt))

where xt has n observations where m = n−1
2 and the frequency wk = 2πk

n .
And the spectral density or periodogram defined as

I(wk) =
n

2
(a2

k + b2
k) (18)

If we look at the spectral density of white noise we would expect the mag-
nitude to be equal distribution over every frequency. And if we take the
cumulative sum over the spectral density over each frequency we would
assume that we would expect a straight line between 0 and 1. The cumu-
lative periodogram is given by

Ck =

∑k
(j=0) In(wj)∑m
(j=0) In(wj)

(19)

To test to see if our residual falls within 95% of the standard normal
distribution we simple plot the cummulative periodogram and find the
95% interval. The 95% confidence interval is giving by plus (upperbound)
or minus (lower bound) 1.36/

√
(m − 1)[6] to the linear line from 0 to 1,

where this relation is said to hold for m− 1 > 30. .

4 Choosing an initial regularization paramter

The method of generalized cross-validation (GCV) is to minimize the GCV
function

G(λ) =
m∑

k=1

[bk − (Ax̃(k)
λ)k]2 (20)

where the x̃(k) is the estimate when the kth measurement of b is omitted.
This method will be used to choose an intial λ for each of the regularization
methods [7].
This can be greatly simplified for the Tikhonov and the TSVD regularization
method. Below are the simplified forms of GCV.

• GCV for TSVD : G(k) = 1
(m−k)2

∑m
i=k+1(u

T
i b)2, which has been imple-

mented in RestoreTool.

• GCV for Tikhonov : G(λ) =

∑m

i=1
(

uT
i

b

σ2
i
+λ2)2∑m

i=1
(1

σ2
i
+λ2)2

, (RestoreTool).

• Parameter selection for TV : As part of the second semester goal, GCV
for TV regularization will be implemented.

6

5 Frontend

The idea of having a frontend or Graphical User Interface (GUI) for this project
is to provide an interactive platform for users who may have invaluable infor-
mation about the image (example. the doctor looking a CT image) to change
the regularization parameters to see the affect and also given the statistical di-
agnostic to validate that they are not losing too much information by under or
over regularizing the image that may look good to the eye (Figure 2). The user
should not need to have knowlegable about the implementation to effectively
use the interface.

6 Software

Below is a discription of the pieces that will form the software package for this
project. The software package will be written with the intent of running jobs in
parallel using Matlab Parallel Computing toolbox.

Frontend Software

• Graphical User Interface (GUI) using Matlab’s GUI toolbox

Backend Software

• Regularization method

– Regularization methods Tikhonov and TSVD from RestoreTool [8]
– Total Variation regularization method (new code as part of this

project)

• Method for initial parameter selection

– Generalized Cross-Validation (GCV) in RestoreTool for regulariza-
tion methods included.

– GCV for Total Variation (new code as part of this project)

• Validate candidate solutions using statistical diagnostics (Section 2.2)

– Apply statistical diagnostics (modify existing code).

• Tikhonov and TSVD for images- already exist (part of RestoreTool [8])

• Generalized cross validation (GCV) for Tikhonov and TSVD regulariza-
tion - already exist (part of RestoreTool [5])

• TV regularization to be added to RestoreTool [8]- to be built by Brianna
Cash in Matlab using RestoreTool

• GCV for TV regularization-to be adapted from RestoreTool[8] GCVforSVD
by Brianna Cash

• Statistical diagnostics - based on checkperiod.m by Dianne O’Leary

• GUI interface- to be built by Brianna Cash using Matlab GUI tool box

• The software package will be written with the intent of running jobs in
parallel using the MATLAB Parallel Computing tool box.

7

7 Hardware

For the initial stages the software will be designed to run on a modern desktop
PC or laptop with no special hardware requirements. For the parallelization
stage I will use available computers on either the computer science or mathnet-
work that have multi-core machines available.

8 Databases

For this project I will use artificial generated images and PSF functions for
development as well as some initial testing of the software. These data sets
will be created to any size that is both menagebale and required. For testing
and validation I will use the five test data sets in RestoreTool which include a
256× 256 image and at least one test PSF.

9 Implementation and Results

All the regularization methods have been initially tested on the same set of test
images using the same PSF function and boundary conditions and noise levels¿
Currently the PSF function is Gaussian with zero boundary conditions but they
are all implemented in a way the it is easily changed as the project progresses.

9.1 Tikhonov and TSVD with GCV for initial parameter
selection

• Tikhonov is implemented using the Matlab functions Tikhonov.m where
the initial parameter is found using GCVfun.m and Matlab function fminbnd
finds the minimum.

– Note that there was a small mistake in RestoreTools implementation
using fminbnd within Tikhonov.m that I fixed, properly documented
in the function and files. I plan to submit this to the authors.

• TSVD is implemented using the Matlab functions TSVD.m where the
initial parameter is found using GCVforSVD.m.

As with all methods in RestoreTool, Tikhonov and TSVD regularization
method utilizes the psfMatrix class to make the implementation more efficient
by not storing the A explicitly but instead creating a psfMatrix object is used
to store the Point Spread Function (PSF), a function that describes how a
single point is blurred or distorted, and the boundary conditions from which the
blurring matrix can be formed. Operations like matrix vector multiplication,
SVD, as well as operations on AT make up the psfMatrix class. This greatly
reduces the amount of storage because typically the PSF is much smaller than
the blurring matrix depending on the amount of distortion/blur.

9.2 Total Variation (TV) Regularization Method

The TV regularization method was implemented using Newton Method with
Conjugate Gradients (CG)[3]. The TV term was first discretized using forward

8

differencing with Neumann Boundary contions, the value of the derivative of
the solution is taken at the boundary [3].
Where the discrete formulation of TV term becomes

min
1
2
‖Ax− b‖22 + λ

n∑
i=1

√
‖DT

i x‖2 + β (21)

where

DT
i x = (xi+1 − xi, xi+nh

− xi) (22)

To implement Newton’s method the first order condition was found to be

g(x) = AT Ax− b + λ

n∑
i=1

DiDT
i x√

‖DT
i x‖2 + β

= 0 (23)

and the Hessian was found to be

H(x) = AT A + λ

n∑
i=1

Di(I − DT
i xxT Di

‖DT
i
x‖2+β

)DT
i x√

‖DT
i x‖2 + β

(24)

9.3 Pseudo-Code for Newton Method with CG

Newton Method:

1. Initialize: x0 an initial approximation to the solution, set k = 0

2. If xk is “good enough”, terminate

3. Solve H(x)pk = −g(x) where p using conjugate gradient (CG) to find
the Newton direction pk

4. Set xk+1 = xk + αkpk where αk is determined by a linesearch.

5. Set k = k + 1

Stopping condition (“good enough”) for Newton Step: ‖g(xk)‖/‖g(x0)‖ < 10−4

CG:

1. Let r = −g(x)−H(x)pk, q = r, ρ = ‖r‖, γ = ρ, k = 0

2. For k = 0, 1, until ρ = ‖r‖/ρ < tol

3. α = rho
qTH(x)q

4. p = p + αq

5. r = r− αH(x)q

6. γ̂ = ‖r‖

7. β = γ̂
γ , γ = γ̂

8. q = r + βq

9

Figure 3: Results on Newton-CG for two images, top is a 16× 16 generated in
Matlab and the bottom image is 32 × 32 Modified Shepp-Logan generated in
Matlab

9. Set k = k + 1

Tolerance for CG: tol = 0.1 when k = 0 and tol = min(0.1, 0.9‖g(xk)‖2/‖g(xk−1)‖2)
are the suggested conditions in [3].

See figure 3 for basic results of the algorithm on two images.

9.4 Efficient Implementation

In order to strive for efficient implementation, there is an attempt to make the
algorithm as low storage in order to work with larger images while balancing
computation time. In the current implementation the Hessian is not stored
explicitly which is an advantage of using CG. Instead we use a function to form

Hv = H(x)v

where v is an arbitrary vector. The blurring matrix is also not stored explicitly.
For smaller images (smaller than 32 × 32) a sparse representation, this was

10

Timing for Low storage Newton vs. Tikhonov regularization (RestoreTool)

Image 1 (red):

Image 2 (blue):

Size of Image

Figure 4: Results on timing the Newton-CG timing for two images compared
to timing of the direct Tikhonov regularization method

chosen because the RestoreTool class psfMatrix does not seem to work with
smaller images. For larger images psfMatrix is used.
In addition to low-storage the method should be fast enough to work with the
GUI interface; see Figure 4 for initial timing results. As part of the second
semester goals efforts will be made to optimize the implementation.

9.5 Statistical Diagnostics

• Diagnostic 1. Is directly implemented where ‖r̃‖22 is checked to see if it falls
within the bounds [m− 2

√
2m,m + 2

√
2m] for each solution (for different

parameters).

• Diagnostic 2. This diagnostic is both implemented visually using the Mat-
lab plotting function hist and the the null hyposthesis with 5% significance
is tested using the Matlab function chi2gof(resid,’cdf ’,@normcdf) where
it assumes there are 10 bins.

11

Figure: Plots of residual, histogram of residual, cumulative periodogram:
(a) Normal distributed, (b) Normal plus Poisson (1), (c) Normal plus features

(a)

(b)

(c)

Figure 5: Plot of the residual, histogram of the residual and the cumulative for
three different residuals

• Diagnostic 3. The cumulative periodogram was found by first using the
Fast Fourier Transform (the Matlab function fft) to approximate the
Fourier transform, then taking the square of each element, and finally find-
ing the cumulative sum. The diagnostic measured by finding the number
of points that fell outside the 95% interval over each frequency. If less
than 5% fell outside then the diagnostic was satisfied. The implemen-
tation follows the implementation of checkperiod.m by Dianne O’Leary
which follows a Fortran program by Bert Rust.

9.6 Frontend

The GUI interface was implemented using Matlabs GUI interface toolbox. The
GUI is built by first creating a figure window using a figure editor. Within the
editor the user has a number components (fields, axes, sliders, dropbox, input
fields, push buttons....) to choice from. You can add user-operated controls,
dynamic and static components. Once the figure has the desired features Matlab
generates the basic code that if run generates the figure you built but it does
not do any computations, i.e. you can move the slider but nothing changes
(Figure 6). The componments that are user-operated or dyanamic must have

12

a Callback function, within this function you can designate the response to the
user-generatated event by coding what the callbacks should perform giving the
user input. Each component has a tag and a handle structure is created to store
all relavent information about the component (i.e. for a the slider has a handle
for max value, min value and current value). Figure 7 has a screen shot of an
example of the Callback function for the parameter selection tool.
In Figure 8 is one of the GUI I am using as part of this project, in this GUI a
user first chooses an test image and regularization method (left corner). Once
they press the push button “compute” for that given method the GCV selected
parameter is computed and the regularization solution is found, the GUI then
displays information about the image (right corner), as well as the blurred image,
deblurred image (regularization solution), and the true image. The user can then
adjust the slide bar (which is initial set to the GCV selected parameter) and
in realtime the new solutions are computed and displayed. In the bottom right
corner the user can see whether the first diagnostic is satisfied and change the
slider till the solution satisfies the diagnostic. In Figure 9 is a screen shoot of
the second GUI that I’m using, it is a lot like the previously described GUI but
it inlcudes all three diagnostics including the visual interpretation of diagnostic
2 and 3.

10 Validation and Testing

10.1 Initial Validation of Total Variation

The implementation was programmed modularly so that each piece (Newton
Step, CG, function evaluations) can be validated individually.

• CG was validated for small Ax = b test problems where the results could
be verified.

• Implementation the minimization function f(x), gradient g(x), and Hes-
sian times a vector Hv(x,v) were verified.

The Newton Method (without CG) was also implemented and results were com-
pared to the low-storage Newton method with CG and linesearch. Binary test
images without noise and verified the results were close to the true image (see
Figure 4).

10.2 Validation of Diagnostics

The validation of the diagnostics was done experimentally based on expected
statistical results. Each of the diagnostics were tested first with stardard normal
independent, identically distribute (i.i.d.) samples to confirm that that each of
the diagnostics is satisfied at least 95% of the time (see table below).

From the table it is seen for 1000 different standard normal i.i.d. sample the
three diagnostics and the Fisher normality test (not described) tell us for these
1000 samples, 95% fall satisfy the diagnostics. Then if we perturb the standard
normal samples by periodically adding artifacts or adding small faction of pois-
son distributed samples ones sees that for the diagnostic 2 and the Fisher Test
(which should be equivalent) do a very good job of determining that the sample

13

Figure 6: The image in the back is of the figure being using using Matlabs
toolbox, the figure in front is the result when matlab creates a GUI from the
figure.

14

Figure 7: Snipit of a callback fucntion taken from the parameter selection GUI

15

Figure 8: GUI for parameter selction with diagnostics 1 and the true image
along with the blurred and deblurred image

16

Figure 9: GUI for parameter selction with all three diagnostics

17

Residual Diag. 1 Diag. 2 Diag. 3 Fisher
rn ∼ N(0, 1) 51 46 14 48
rn + I(i) 950 999 539 1000
rn + .05 ∗ rp rp ∼ pois(1) 156 1000 149 1000

Table 1: For 1000 runs, number of times the Diagnostics are NOT satisfied.
Where I(i) = 1 if (i − 1)mod(100) = 0 or (i − 2)mod(100) = 0 and I(i) = 0
otherwise.

is no longer stardard normally distributed which is what we expected giving the
pertubation.

11 Remaining Schedule

• Jan 15-Feb15 - Implement Total Variation in RestoreTool Framework

• Feb 15-Feb 28 - Validate Total Variation tool

• Mar 1 - Mar 15 - Add Total Variation tool to GUI

• Mar 15-April 30 - Optimize Total Variation using tool using parallel tool-
box in Matlab (if available), if not look at other ways to implement the
software package using other optimization the package as whole available
in matlab.

• May - Prepare final report and presentation

12 Milestones

12.1 Completed Milestones

• A basic GUI to use existing tools in RestoreTool [5] or Regularization Tool
[3]

• Add validated periodogram diagnostics to RestoreTool

• GUI that determines a range of plausible regions using the periodogram
diagnostics

• Outline of Total Variation regularization algorithm and basic implemen-
tation in Matlab.

• Deliver mid-year report and presentation

12.2 Remaining Milestones

• Feb 1 - Total Variation (TV) regularization in RestoreTool Framework

• Feb 15 - Generalized Cross Validation (GCV) for Total Variation tool

• Feb 30 - Add validated TV too with GCV to the GUI

18

• April 1 - Optimize software package finished (using parallel toolbox in
Matlab if available)

• May 1 - Poster for SIAM Conference on Image Science to be presented
May 20-22

• May 15- Deliver final presentation and report

13 References

1. R. Acar and C.R. Vogel. Analysis of Bounded Variation Penalty Methods
for Ill-Posed Problems. Inverse Problems. 10: 1217-1229, 1994.

2. Tony F. Chan and Jianhong Shen. Image Processing and Analysis. SIAM,
Philadelphia, PA, 2005.

3. Tony F. Chan, Gene H. Golub and Pep Mulet. A nonlinear primal-dual
method for total variation-based image restoration. Lecture Notes in Con-
trol and Information Sciences, Vol.219, pp.241-251, 1996.

4. Per Christian Hansen. Regularization Toolbox, http://www2.imm.dtu.dk/ pch/Regutools/regutools.html

5. Per Christian Hansen. Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion. SIAM, Philadelphia, PA, 1998.

6. Wayne A. Fuller. Introduction to Statistical Time Series, Wiley-Interscience,
New York, NY, 1996.

7. C.T. Kelly. Iterative Methods for Linear and Nonlinear Equations. SIAM,
Philadelphia, PA, 1995.

8. James G. Nagy, RestoreTool, http://www.mathcs.emory.edu/ nagy/RestoreTools/

9. James G. Nagy, K. Palmer and L. Perrone. Iterative Methods for Image
Deblurring: A Matlab Object Oriented Approach. Numerical Algorithms.
36: 73-93, 2004.

10. Stephen G. Nash. Linear and Nonlinear Programming. McGraw-Hill,
1996.

11. Dianne P. 0’Leary. Scientific Computing with Case Studies. SIAM, Philadel-
phia, PA, 2009.

12. Bert W. Rust and Dianne P. O’Leary. Residual programs for choos-
ing regularization parameters for ill-posed problems. Inverse Problems,
24:034005 (30 pages), 2008. Invited Paper

13. Bert W. Rust. Parameter selection for constrained solutions to ill-posed
problems. Computing Science and Statistics, 32:333-347, 2000.

14. C. Vogel and M. Oman. Iterative methods for total variation denoising,
SIAM Journal on Scientific Computing, Vol.17, pp.227 238, Jan.1996.

19

