Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model

Final Presentation

David Darmon, AMSC

Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Project Goals

Phase I: Data Assimilation Implement and validate the extended Kalman, local ensemble transform Kalman, and particle filters for a point-vortex model with N_v vortices and N_d drifters.

Compare the performance of the filters in the two vortex, single drifter case.

Project Goals

Phase II: Observing System Design Implement methods for computing Mendoza and Mancho's *M* function and Finite-Time Lyapunov Exponents for manifold detection.

Use detected manifolds to intelligently place drifters *a priori* in a chaotic 3 vortex, single drifter case.

Background

Data Assimilation True System Dynamics $d\mathbf{x}^{t} = M(\mathbf{x}^{t}, t)dt + d\eta^{t}$

 \mathbf{x}^t – system state η^t – Brownian motion $M(\cdot, \cdot)$ – deterministic evolution operator

Background

Data Assimilation Observations

$$\mathbf{y}_k^o = h(\mathbf{x}^t(t_k)) + \boldsymbol{\epsilon}_k^t$$

 \mathbf{y}_k^o – observation of system at time t_k

$$\boldsymbol{\epsilon}_k^t$$
 – Gaussian noise

 $h(\cdot)$ – observation operator

Background

Data Assimilation Forecast and Analysis Evolve a forecasted state forward somehow

$$\frac{d}{dt}\mathbf{x}^f = f(\mathbf{x}^f, t, \boldsymbol{\eta}^f)$$

Perform analysis step upon receiving observation somehow

$$\mathbf{x}^{a} = g(\mathbf{x}^{f}, \mathbf{y}_{k}^{o}, \boldsymbol{\epsilon}_{k})$$

Background : Phase I

Lagrangian Data Assimilation

Consider joint state of flow (F) and drifters (D): $\mathbf{x}^{t} = \begin{pmatrix} \mathbf{x}_{F}^{t} \\ \mathbf{x}_{D}^{t} \end{pmatrix}$

Q: Can we estimate \mathbf{x}_{F}^{t} and \mathbf{x}_{D}^{t} by observing \mathbf{x}_{D}^{t} only?

Background : Phase II

Observing System Design Deploying drifters is *expensive* Obtaining measurements is *difficult*

Q: Can we design a system such that we optimally place the drifters to determine the location of the vortices?

Computational Simplicity

Extended Kalman Filter

Ensemble Kalman Filter Fidelity to Solution of Fokker-Planck

Equation and Bayes's

Particle Filter

Lagrangian Data Assimilation Extended Kalman Filter (EKF), Forecast

$$\frac{d}{dt}\mathbf{x}^{f} = M(\mathbf{x}^{f}, t)$$
$$\frac{d}{dt}\mathbf{P}^{f} = \mathbf{M}(t)\mathbf{P}^{f} + \mathbf{P}^{f}\mathbf{M}^{T}(t) + \mathbf{Q}$$

Q - covariance matrix from SDE

$$\mathbf{M}(t) = J[M(\mathbf{x}, t)]|_{\mathbf{x}=\mathbf{x}^{f}} \text{- Jacobian matrix}$$
of M

$$\mathbf{M}$$

$$\mathbf{M}$$

$$\mathbf{M}$$

$$\mathbf{M}$$

$$\mathbf{M}$$

$$\mathbf{M}$$

Lagrangian Data Assimilation Extended Kalman Filter (EKF), Analysis

$$\mathbf{x}_{k}^{a} = \mathbf{x}^{f}(t_{k}) + \mathbf{K}_{k}(\mathbf{y}_{k}^{o} - h_{k}(\mathbf{x}^{f}(t_{k})))$$
$$\mathbf{P}_{k}^{a} = (\mathbf{I} - \mathbf{K}_{k}\mathbf{H}_{k})\mathbf{P}^{f}(t_{k})$$
$$\mathbf{K}_{k} = \mathbf{P}^{f}(t_{k})\mathbf{H}_{k}^{T}(\mathbf{H}_{k}\mathbf{P}^{f}(t_{k})\mathbf{H}_{k}^{T} + \mathbf{R}_{k}^{o})^{-1}$$

 \mathbf{R}^{o} - covariance matrix from observation $\mathbf{H}_{k} = J[h(\mathbf{x}, t_{k})]\Big|_{\mathbf{x}=\mathbf{x}^{f}}$ - Jacobian matrix of h_{k}

Lagrangian Data Assimilation Ensemble Kalman Filter (EnKF) Approximate pdf by an ensemble of particles:

 $\{\mathbf{x}_i^f\}_{i=1}^N$

Forecast: Evolve particles forward using ODE

Analysis: Perform Kalman-like analysis

Still assumes Gaussianity (in analysis) **NOT** valid for nonlinear systems

```
Approach, Phase I
```

Lagrangian Data Assimilation Particle Filter Approximate pdf by an ensemble of weighted particles: $\{\mathbf{x}_{i}^{f}(t)\}_{i=1}^{N} \ \{w_{i,k}\}_{i=1}^{N}$

Forecast: Evolve particles forward using SDE

Analysis: Perform full Bayesian update at analysis $w_{i,k} = C w_{i,k-1} p(\mathbf{y}_k^o | \mathbf{x}_i^f(t_k)))$

C - normalization constant

Validation and Testing, Phase I

Lagrangian Data Assimilation Run filters with all states known up to observational noise.

Run filters with only drifter position known. Compute failure statistics.

$$\delta^{a,f}(t) = ||\mathbf{x}^t(t) - \mathbf{x}^{a,f}(t)||_2$$

 $\hat{f}_{\delta_{div},n}(t) =$ fraction of times $\delta(t) > \delta_{div}$ at time t in n trials

Observing system design based on Lagrangian Coherent Structures (LCS)

streamfunction in fixed frame [what we can compute, but not useful]

streamfunction in corotating frame [what we want, but hidden]

Manifold Detection for Observing System Design Mendoza and Mancho's Lagrangian Descriptor M

$$M(\mathbf{x}_{D}^{t}, t^{*}, \tau) = \int_{t^{*}-\tau}^{t^{*}+\tau} \left(\sum_{i=1}^{n} \left(\frac{dx_{D}^{i}(t)}{dt}\right)^{2}\right)^{1/2} dt$$

Manifold Detection for Observing System Design Lyapunov Exponents

- **x**₁ Reference Trajectory
- **x**₂ Perturbed Trajectory
- $\mathbf{y} = \mathbf{x}_2 \mathbf{x}_1$ Tangent Vector

Manifold Detection for Observing System Design Lyapunov Exponents

- **x**₁ Reference Trajectory
- **x**₂ Perturbed Trajectory
- $\mathbf{y} = \mathbf{x}_2 \mathbf{x}_1$ Tangent Vector

$$\lambda = \lim_{t \to \infty} \frac{1}{t} \log \frac{||\mathbf{y}(t)||}{||\mathbf{y}(0)||}$$

Manifold Detection for Observing System Design **Finite-Time** Lyapunov Exponents

- **x**₁ Reference Trajectory
- **x**₂ Perturbed Trajectory
- $\mathbf{y} = \mathbf{x}_2 \mathbf{x}_1$ Tangent Vector

$$\lambda(T) = \frac{1}{T} \log \frac{||\mathbf{y}(T)||}{||\mathbf{y}(0)||}$$

Validation, Phase II

Manifold Detection for Observing System Design

Manifold Detection for Observing System Design

Manifold Detection for Observing System Design

Manifold Detection for Observing System Design

Stable Manifolds Unstable Manifolds

Manifold Detection for Observing System Design

Stable Manifolds Unstable Manifolds

Manifold Detection for Observing System Design Compare three filters (EKF, LETKF, particle)

True system dynamics **deterministic** Guarantees presence of observed manifolds

Observational noise present

Play Movie

FC – fraction completed

FC – fraction completed

N = 8 members

FC – fraction completed

N = 250 particles

Conclusions

As before, EKF fails in the case of large non-linearities.

A priori placement emphasizes avoiding drifters near a vortex.

An artifact of the **point** vortex model.

Project Goals

Data Assimilation

Implement and validate the extended Kalman, local ensemble transform Kalman, and particle filters for a point-vortex model with N_v vortices and N_d drifters.

Compare the performance of the filters in the two vortex, single drifter case.

Observing System Design

Implement methods for computing Mendoza and Mancho's *M* function and Finite-Time Lyapunov Exponents for manifold detection.

Use detected manifolds to intelligently place drifters *a priori* in a chaotic, 3 vortex, single drifter case.

Timeline

Phase I

- Produce database: now through mid-October
- Develop extended Kalman Filter: now through mid-October
- Develop ensemble Kalman Filter: mid-October through mid-November
- Develop particle filter: mid-November through end of January
- –Validation and testing of three filters (serial): Beginning in mid-October, complete by February

Timeline

Phase II

- Complete validation and testing of (serial) manifold detection: mid-March
- Parallelize ensemble methods: beginning of April
- Parallelize manifold detection algorithm: end of April

Deliverables

Database of sample trajectories used for validation and testing

Suite of parallelized software for performing EKF, **LETKF**, and particle filtering for point-vortex model

Software to compute *M* and FTLEs for point-vortex model

References (See Final Report for More)

A.H. Jazwinski. Stochastic processes and filtering theory. Dover Publications, 2007.

- G. Evensen. Data assimilation: the ensemble Kalman filter. Springer Verlag, 2009.
- A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in practice. Springer Verlag, 2001.
- C. Mendoza and A.M. Mancho. Hidden geometry of ocean flows. *Physical review letters*, 105(3):38501, 2010.

Questions???