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Background

True System Dynamics
Data Assimilation

�

- system state

� - Brownian motion

- deterministic evolution operator



Background

Observations
Data Assimilation

- observation of system at time 

- Gaussian noise

- observation operator
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Background

Data Assimilation
Forecast and Analysis
	
 	
 Evolve a forecasted state forward
	
 	
 	
 	
 somehow

	
 	
 Perform analysis step upon receiving 
	
 	
 	
 	
 observation somehow

�
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Background

Consider joint state of flow (F) and 
drifters (D)

Lagrangian Data Assimilation

� �





Background

Point-Vortex (in complex plane)
Model

- jth vortex location

- kth drifter location

- vorticity of jth vortex

�

�
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Demo
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Background

Observing System Design
Deploying drifters is expensive
Obtaining measurements is difficult

	
 	
 Q: Can we design a system such that 
we optimally place the drifters to 
determine the location of the vortices?
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Approach, Phase I

Fokker-Planck Equation,  Forecast
Lagrangian Data Assimilation

- probability density of 

- covariance matrix from SDE

� �



Approach, Phase I

Bayes’s Theorem,  Analysis
Lagrangian Data Assimilation

- posterior distribution

- likelihood

�

- prior distribution
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Approach, Phase I

Lagrangian Data Assimilation
Extended Kalman Filter (EKF)

	
 	
 Generalization of Kalman filter to 
	
 nonlinear equations

	
 	
 Gaussian assumptions on dynamical 
and observational noise

	
 	
 Represent pdf by mean and covariance 
matrix



Approach, Phase I

Extended Kalman Filter (EKF)
Lagrangian Data Assimilation

- mean state
- covariance matrix
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Extended Kalman Filter (EKF),  Analysis
Lagrangian Data Assimilation

- covariance matrix from observation

- Jacobian of hk
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Extended Kalman Filter (EKF),  Analysis
Lagrangian Data Assimilation

- covariance matrix from observation

- Jacobian of hk
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Approach, Phase I

Lagrangian Data Assimilation
Extended Kalman Filter (EKF)

	
 	
 Weakly assumes nonlinearity

	
 	
 Assumes Gaussianity
	
 	
 	
 	
 NOT valid for nonlinear systems



Approach, Phase I

Lagrangian Data Assimilation
Ensemble Kalman Filter (EnKF)

	
 	
 Approximate pdf by an ensemble of 
particles:

	
 	
 Evolve particles forward using SDE

	
 	
 Perform Kalman-like analysis

Forecast:

Analysis:



Approach, Phase I

Lagrangian Data Assimilation
Ensemble Kalman Filter (EnKF)

	
 	
 Computing (ensemble) moments

�

�



Approach, Phase I

Lagrangian Data Assimilation
Ensemble Kalman Filter (EnKF),  Analysis

	
 	
 Stochastic: Generate ensemble of 
observations and perform Kalman-like 
analysis on combined ensemble

	
 	
 Deterministic: Square root filters



Approach, Phase I

Lagrangian Data Assimilation
Ensemble Kalman Filter (EnKF)

	
 	
 Better captures nonlinearity (in forecast)
	
 	
 	
 	
 (up to ensemble approximation)

	
 	
 Still assumes Gaussianity (in analysis)
	
 	
 	
 	
 NOT valid for nonlinear systems



Approach, Phase I

Lagrangian Data Assimilation
Particle Filter

	
 	
 Approximate pdf by an ensemble of 
	
 weighted particles:

	
 	
 Evolve particles forward using SDE 

	
 	
 Perform full Bayesian update at analysis

Forecast:

Analysis:



- observation of system at time 

- Gaussian noise

- observation operator

�

�

Approach, Phase I

Lagrangian Data Assimilation
Particle Filter,  Analysis



Approach, Phase I

Lagrangian Data Assimilation
Particle Filter,  Analysis

	
 	
 Likelihood of Observation:

� �



Approach, Phase I

Lagrangian Data Assimilation
Particle Filter,  Analysis

	
 	
 Likelihood of Observation:

� �



Approach, Phase I

Lagrangian Data Assimilation
Particle Filter,  Analysis

	
 	
 Weight of particle i at analysis step k:

	
 	
 Bayesian Update:



Approach, Phase I

Lagrangian Data Assimilation
Particle Filter

	
 	
 Better captures nonlinearity (up to 
ensemble approximation)

	
 	
 Does not assume Gaussianity on 
posterior or prior



Approach, Phase I

Lagrangian Data Assimilation
Particle Filter

	
 	
 BUT

	
 	
 Requires a large number of particles

	
 	
 For large, nonlinear systems, requires 
frequent resampling
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Phase II



Approach, Phase II

Stream functions

Consider the trajectories in phase space
	
 	
 Trajectories will lie along the level curves 
	
 	
 of the stream function for steady flows
	
 	
 	
 	
 ‘Streamlines’

	
 	
 Trajectories may not cross streamlines
	
 	
 	
 	
 Uniqueness

Manifold Detection for Observing System Design
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Stream function in corotating frame



Approach, Phase II

Mendoza and Mancho’s Lagrangian 	

	
 Descriptor M

Manifold Detection for Observing System Design

� �
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Approach, Phase II

Mendoza and Mancho’s Lagrangian 	

	
 Descriptor M

Manifold Detection for Observing System Design

C. Mendoza and A.M. Mancho. Hidden geometry of ocean flows. Physical review letters, 
105(3):38501, 2010.



Approach, Phase II

Mendoza and Mancho’s Lagrangian 	

	
 Descriptor M

	
 	
 Improve Phase I by using knowledge of 
	
 	
 	
 	
 dynamics

Manifold Detection for Observing System Design



Implementation

Develop serial code for EKF, EnKF, and 
	
 	
 Particle Filter in MATLAB on MacBook 
	
 	
 Pro

Parallelize the EnKF and particle filters

Parallelize computation of M

Use MATLAB Parallel Computing Toolbox



Databases

Archived numerical solutions to 
	
 	
 point-vortex model

Generate using stochastic 4th-order 
	
 	
 Runge-Kutta method

No databases: completely model 
dependent

Phase I

Phase II



Validation, Phase I

Three stages

Stage 1:
	
 	
 Vortices’ positions known, low noise

Stage 2:
	
 	
 Vortices’ positions unknown, low noise

Stage 3:
	
 	
 Vortices’ positions unknown, realistic noise

Validate filter by varying noise



Validation, Phase I

Validation Metric
Validate filter by varying noise



Validation, Phase I

Compare to published studies with

	
 	
 Nv = 2

	
 	
 Nd = 1

Validate filter by comparison



Validation, Phase II

Compare M to analytically known stream
	
 	
 function

Compare M to finite-time Lyapunov
	
 	
 exponents

Validate M by comparison



Testing, Phase I

Compare EKF, EnKF, and particle filter 
	
 	
 across databases using

Failure statistic



Testing, Phase II

Compare EKF, EnKF, and particle filter, 
	
 	
 including decision of initial drifter 
	
 	
 position

Failure statistic



Project Schedule and Milestones



Project Schedule and Milestones



Deliverables

Database of sample trajectories used for 
	
 	
 validation and testing

Suite of parallelized software for
	
 	
 performing EKF, EnKF, and particle 
	
 	
 filtering for point-vortex model

Software to compute M for point-vortex 
	
 	
 model
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Questions???


