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Problem

The equation to be solved is

−∇ · (k(x , ω)∇u(x , ω)) = f (x) , (1)

where k = ea(x ,ω) is a lognormal random field.

Assume a bounded spatial domain D ⊂ R2.

The boundary conditions are deterministic.

u(x , ω) = g(x) on ∂DD

∂u

∂n
= 0 on ∂Dn .

Models groundwater flow through a porous medium [15].
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Outline

1 Approximate the random field using the Karhunen-Loéve
expansion.

2 Solve the PDE using stochastic Galerkin method.

3 Compare mean and variance of the solution to those obtained
using the Monte-Carlo method.
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Karhunen-Loéve expansion

The expansion is

a(x , ~ξ) = a0(x) +
∞∑
s=1

√
λsas(x)ξs . (2)

a0(x) is the mean of the random field.

The random variables ξs are uncorrelated with E [ξs ] = 0,
Var [ξs ] = 1.

The λs and as(x) are eigenpairs which satisfy

(Cas)(x1) =

∫
D
C (x1, x2)as(x2)dx2 = λsas(x1) , (3)

where C (x1, x2) is the covariance function of the random field.
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Discretization of the eigenvalue problem

The square domain D is discretized intervals of equal size h in
each direction.

The eigenvalues of the covariance operator satisfy

h2CV = ΛV . (4)

where Cij = C (xi , xj).

The approximation of the eigenfunctions are

as(xi ) =
1

h
Vis (5)
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Discretization of the eigenvalue problem

Alternatively, q samples of the random field can be used to
form the sample covariance matrix:

Ĉij =
1

q

q∑
k=1

(a(xi , ωk)− âi )(a(xj , ωk)− âj) (6)

where âi is the sample mean.
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Covariance function

The covariance function for the Gaussian random field with
mean µ and variance σ2 is

Cg ((x1, y1), (x2, y2)) = σ2 exp

(
−|x1 − x2|

bx
+
−|y1 − y2|

by

)
(7)

where bx , by are the correlation lengths.

The eigenvalues and eigenfunctions have analytic expressions
for this covariance function.
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Validation of eigenpairs

Two methods for finding eigenpairs verified by comparing with
analytic expressions for the Gaussian random field.

Figure: Eigenvalues of Gaussian random field with parameters b = 1,
q = 10000 computed using analytic expression and the two covariance
matrices.
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Covariance function

The covariance function for the lognormal random field can be
written as a function of the Gaussian covariance function.

Cl((x1, y1), (x2, y2)) = e2µ+σ2
(eCg ((x1,y1),(x2,y2)) − 1) [9]. (8)

This expression is used to build the covariance matrix and find
the eigenpairs.

The sampling method would allow this model to be used when
structure of the random field is unknown but can be sampled
at various points in space.
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Karhunen-Loéve expansion

The lognormal random field can be approximated two ways:

k(x , ξ) = exp[a0(x) +

mg∑
i=1

√
λiai (x)ξi ] (9)

k̂(x , η) = k0(x) +

ml∑
i=1

√
µiki (x)ηi . (10)

{ξi} are independent Gaussian random variables, so the joint
probability density function, ρ(ξ), is known.

The joint density function of the random variables, ηi , is
needed.

Let m = max(mg ,ml) and the joint density function, ρ̂(η), is
found using a change of variables.
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Probability density function

Define matrices A = [a1|a2|...|am] and K = [k1|k2|...|km]
where the columns are the eigenfunctions evaluated at the
points in the spatial discretization.

Define the mass matrix Bij =
∫
D φi (x)φj(x)dx .

A was normalized so that ATBA = I .

Define the diagonal matrices Λ = diag(λ1, λ2, ..., λm) and
M = diag(µ1, µ2, ..., µm).

Define vectors ξ = [ξ1, ξ2, ..., ξm]T to be the standard normal
random variables in the Gaussian random field and
η = [η1, η2, ..., ηm]T to be the unknown random variables in
the lognormal expansion.
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Probability density function

ΛATB(k(x , ξ)− a0(x)) = ΛATB(k̂(x , η)− a0(x)) . (11)

ξ = g(η) = ΛATB(ln(k0 + KMη)− a0) . (12)

ρ̂(η) = ρ(g(η))|J(η)| describes the density for η such that
k0 + KMη > 0.

|J(η)| is the absolute value of the determinant of the
Jacobian, which we can find since g(η) is differentiable.
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Probability density function

Figure: Probability density function for 1d field m = 1, b = 10.
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Probability density function

Figure: Probability density function for m = 2, b = 10.
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Probability density function

The joint density function can be used to find the marginal
density functions which have mean 0 and variance 1 as
expected.

Samples of k(x , ξ) were generated with m N(0, 1) samples for
each instance.

To find samples of k̂(x , η), accept/reject sampling is used.

Uniform samples over the support of density function are
generated and the probability density function evaluated at
those values.

In addition another uniform sample on (0,1) is generated, if
this value is above the value of the pdf it is kept as a sample
of the distribution.

The sample mean of k(x , ξ) and k̂(x , η) can now be
compared.
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Probability density function

Figure: Compare E [k̂(x , η)] and E [k(x , ξ)] using Monte-Carlo method.
Lognormal samples found using accept/reject technique.
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Deterministic diffusion equation

For the Monte-Carlo method the deterministic diffusion
equation needs to be solved.

−∇ · (k(x)∇u(x)) = f (x) . (13)

Let D be square and discretize with bilinear elements on
quadrilaterals of size h by h.

Let φj(x) denote the basis functions.
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Deterministic diffusion equation

Find u(x) ∈ H1
E (D) = {u ∈ H1(D) : u = g(x) on ∂Dd} such that∫

D
k(x)∇u(x) · ∇v(x)dx =

∫
D
f (x)v(x)dx (14)

is satisfied for all v(x) ∈ H1
0 (D).
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Deterministic diffusion equation

The finite element solution is

uh(x) =
n∑

j=1

ujφj(x) +

n+nd∑
j=n+1

ujφj(x) . (15)

where n is the number of elements on the interior and nd is
the number of elements on the boundary.

To find the coefficients uj , solve Au = b where

Aij =

∫
D
k(x)∇φj(x) · ∇φi (x) dx (16)

bi =

∫
D
φi (x)f (x) dx −

n+nd∑
j=n+1

uj

∫
D
k(x)∇φj(x) · ∇φi (x) dx

(17)
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Deterministic diffusion equation

Implemented with Matlab package Incompressible Flow &
Iterative Solver Software(IFISS) [10].

D = [0, 1]× [0, 1].

f (x) = 1, g(x) = 0, k(x) = 1, h = 0.0625, nd = 64, n = 225

Analytic solution [1]:

u(x , y) =
16

π4

∞∑
l=0

∞∑
k=0

sin((2k + 1)πx) sin((2l + 1)πy)

(2k + 1)(2l + 1)((2k + 1)2 + (2l + 1)2)

(18)

||uh(x)− u(x)||2
||u(x)||2

= 3.31× 10−3 (19)
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Deterministic diffusion equation

Figure: Deterministic solution, k(x) = 1
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Monte Carlo Method

Use the deterministic solver for each of q finite element
problems, denoting the solution uih(x) for i = 1, ..., q.

The sample mean of the solution is

E q[uh] =
1

q

q∑
i=1

uih(x) . (20)

Var q[uh] =
1

q − 1

q∑
i=1

(uih(x)2 − Eq[uh]2) (21)

The error in the mean is
E [u]− Eq[uh] = E [u]− E [uh] + E [uh]− Eq[uh].
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Monte Carlo Method

Using the KL expansion from the Gaussian random field

k(x , ~ξ) = exp[a0(x) +

mg∑
s=1

√
λsas(x)ξs ] (22)

where ξs are independent and N(0, 1) [13].

Sample the mg standard normal random variables q times to
produce samples ki (x) for i = 1, ..., q.

Running method with σ = 0 differs from the deterministic
solution ∼ 10−15.
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Monte Carlo Method

Figure: Monte Carlo solution: E [k(x , ξ)] = 1, f (x) = 1, m = 5,
g(x) = 0.

(a) σ = 0.001, q = 100 (b) σ = 0.5, q = 100000
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Stochastic weak formulation

Write the solution as combination of basis functions which
can be used to estimate statistical properties of the solution.

The stochastic basis functions are analagous to the spatial
basis functions used in the deterministic method.

Using the KL expansion, the probability space, Ω, is
approximated by Γ, where Γ is the support of the joint density
function of the random variables in the expansion.

The weak formulation of the problem is to find
u ∈ H1(D)⊗ L2(Γ) such that the following holds for all
v ∈ H1

0 (D)⊗ L2(Γ)∫
Γ

∫
D
k̂(x , η)∇u · ∇v ρ̂(η) dx dη =

∫
Γ

∫
D
fv ρ̂ (η)dx dη (23)
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Chaos polynomials

The spatial discretization uses the same bilinear elements as
the deterministic problem (φi (x)).

The stochastic discretization uses chaos polynomials

ψj(η) = ψj1(η1)ψj2(η2)...ψjm(ηm) . (24)

The chaos polynomials are chosen to be orthonormal so that
E [ψi(η)ψj(η)] = δij.
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Chaos polynomials

The number of basis polynomials is chosen by setting an
upper bound (N) on the degree of the polynomials.

deg(ψj) = deg(ψj1) + ...+ deg(ψjm) ≤ N ∀j (25)

The polynomials can be reindexed j = 1, ..., nη where

nη =

(
N + m

m

)
. (26)
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Stochastic Galerkin method

The solution is written as a combination of products of the
two basis functions.

uh(x , η) =
nx∑
i=1

nη∑
j=1

uijφi (x)ψj(η) (27)

v(x , η) = φ(x)ψ(η) (28)

The problem is to find the coefficients uij which satisfy

nx∑
i=1

nη∑
j=1

∫
Γ

∫
D
uij k̂(x , η)∇φi (x) · ∇φk(x)ψj(η)ψl(η)ρ̂(η)dxdη

=

∫
Γ

∫
D
f (x)φk(x)ψl(η)ρ̂(η)dxdη (29)

for each k = 1, ..., nx and l = 1, ..., nη.
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Stochastic Galerkin method

Define µ0 = 1 and η0 = 1, so the KL expansion can be written

k̂(x , η) =
m∑
s=0

√
µsks(x)ηs . (30)

The solution u can be found by solving Âu = b where

Â =
m∑

p=0

Gp ⊗ Ap (31)

[Ap]ik =

∫
D

√
µpkp(x)∇φi (x) · ∇φk(x)dx (32)

[Gp]jl =

∫
Γ
ηpψj(η)ψl(η)ρ̂(η)dη (33)

b =

∫
D
f (x)φk(x)dx

∫
Γ
ψl(η)ρ̂(η)dη (34)
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Stochastic Galerkin method

The mean and the variance of the solution are

E [u(x , η)] =
nx∑
i=1

ui1φi (x) (35)

Var [u(x , η)] =
nx∑
i=1

nx∑
k=1

nη∑
j=2

uijukjφi (x)φk(x) (36)
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Orthogonal polynomials

Introduce the assumption ρ̂(η) = ρ̂1(η1)ρ̂2(η2)...ρ̂m(ηm).

The integral for [Gp]jl becomes

[Gp]jl =

∫
Γ1

ψj(η1)ψj(η1)ψl(η1)ρ̂1(η1)dη1... (37)∫
Γp

ηpψj(ηp)ψl(ηp)ρ̂p(ηp)dηp...∫
Γm

ψj(ηm)ψl(ηm)ρ̂m(ηm)dηm

For each of the random variables the ith component of the
orthogonal polynomials ψj(ηi ) is constructed using the
three-term recurrence relation, where the coefficients are
found using the Stieljtes procedure.
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Orthogonal polynomials

The k + 1 degree polynomial is:

ψk+1(ηi ) = (ηi − αk)ψk(ηi )− βkψk−1(ηi ) (38)

for k = 0, 1, ..., where ψ−1(ηi ) = 0 and ψ0(ηi ) = 1.

The recurrence coefficients are

αk =

∫
ηiψk(ηi )ψk(ηi )ρi (ηi )dηi∫
ψk(ηi )ψk(ηi )ρi (ηi )dηi

(39)

for k = 0, 1, 2, ... and

βk =

∫
ψk(ηi )ψk(ηi )ρi (ηi )dηi∫

ψk−1(ηi )ψk−1(ηi )ρi (ηi )dηi
(40)

for k = 1, 2, ....
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Stieljtes procedure

Let [a, b] be the support of ρi (ηi ) and discretize with R points.

The coefficients are:

αk,R =

∑R
t=1 ηitwtψk,R(ηit )ψk,R(ηit )ρi (ηit )∑R
t=1 wtψk,R(ηit )ψk,R(ηit )ρ(ηit )

(41)

βk,R =

∑R
t=1 wtψk,R(ηit )ψk,R(ηit )ρi (ηit )∑R

t=1 wtψk−1,R(ηit )ψk−1,R(ηit )ρ(ηit )
(42)
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Stieljtes procedure

The weights and nodes are found using a Fejer quadrature
where the nodes are related to the roots of the Chebyshev
polynomials.

ηv =
1

2
(b − a) cos

(
2v − 1

2M

)
+

1

2
(a + b) (43)

wv =
1

M

1− 2

bM/2c∑
n=1

cos(2n( 2v−1
2M ))

4n2 − 1

 (44)

for v = 1, ...,M.
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Stieljtes procedure

The procedure was implemented for Matlab by Gautschi [4]
where the interval is broken up into component intervals.

This procedure was called to construct the polynomials for
each of the m marginal density functions.
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Results, m = 1

Figure: Stochastic Galerkin solution: E [k(x , η)] = 1, f (x) = 1, m = 1,
σ = 0.1, bx = by = 10.

(a) Mean (b) Variance
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Results, m = 1

Validation of the stochastic Galerkin method is acheived by
comparing with the Monte-Carlo solution.

With standard deviation, σ = 0.1, and correlation lengths,
bx = by = 10 the first eigenvalue includes 93.22% of the
variance.

||E [u]MC − E [u]SG ||2
||E [u]MC ||2

= 4.61× 10−4

||sdMC − sdSG ||2
||sdMC ||2

= 9.00× 10−3

Given the small standard deviation, the solution is not so
different from the deterministic result.
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Results, m = 2

Figure: Stochastic Galerkin solution: E [k(x , η)] = 1, f (x) = 1, m = 2,
σ = 0.5, bx = by = 10.

(a) Mean (b) Variance
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Results, m = 2

Assume ρ̂(η) = ρ1(η1)ρ2(η2).

σ = 0.5 and bx = by = 10, which incorporates 94.67% of the
variance in the first two eigenvalues.

||E [u]MC − E [u]SG ||2
||E [u]MC ||2

= 3.95× 10−3

||sdMC − sdSG ||2
||sdMC ||2

= 1.32× 10−1
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Results, m = 2

The Monte-Carlo method with q = 100, 000 takes
approximately 3.5 hours.

The stochastic Galerkin method took approximately 0.5 hours.

Unlike the Monte-Carlo method, the SG method scales as a
function of the number of random variables.

The majority of the time spent on the stochastic Galerkin
method is in computing the two marginal density functions
needed.
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Deliverables

Code to compute the moments of the solution using the
Monte-Carlo method

Verified using σ = 0 and comparing with deterministic solution.

Code to compute the moments of the solution using a KL
expansion and stochastic Galerkin method.

Implemented for expansions of up to two random variables and
standard deviation up to σ = 0.5 and verified using the
Monte-Carlo results.

Comparison of the results for varying number of terms in the
KL expansion.

Comparison of computational cost for the two methods



Introduction Karhunen-Loéve expansion Monte-Carlo method Stochastic Galerkin method Results

Conclusion

The stochastic Galerkin method for performs faster than
Monte-Carlo methods for m = 1 and m = 2.

A different quadrature routine to compute the marginal
density functions could improve computation time.

The assumption about separability of the density function does
not hold for standard deviations much higher than σ = 0.5.

Having the joint density function illustrates using the direct
expansion of the lognormal random field can be used to solve
this problem.

The stochastic collocation method does not require
orthogonal polynomials, so no assumption of separability
would be needed.
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