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Problem

The equation to be solved is

−∇ · (k(x , ω)∇u) = f (x) , (1)

where k = ea(x ,ω).

Assume a bounded spatial domain D ⊂ R2.

The boundary conditions are deterministic.

u(x , ω) = g(x) on ∂DD

∂u

∂n
= 0 on ∂Dn .
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Outline of approach

Algorithm

1 Approximate the random field using the Karhunen-Loéve
expansion.

2 Solve the PDE using either the stochastic collocation method
or stochastic Galerkin method.

Validation

Compare the moments of this solution to the moments
obtained from solving the equation using the Monte-Carlo
method.
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Karhunen-Loéve expansion

The expansion is

a(x , ~ξ) = µ(x) +
∞∑
s=1

√
λs fs(x)ξs . (2)

µ(x) is the mean of the random field.

The random variables ξs are uncorrelated.

The λs and fs(x) are eigenpairs which satisfy

(Cf )(x) =

∫
D
C (x , y)f (y)dy = λf (x) , (3)

where C (x , y) is the covariance function of the random field.
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Covariance matrix

The covariance matrix for a finite set of points xi in the spatial
domain is

C (xi , xj) =

∫
Ω

(a(xi , ω)− µ(xi ))(a(xj , ω)− µ(xj))dP(ω) , (4)

where

µ(x) =

∫
Ω
a(x , ω)dP(ω) . (5)

Denote the approximation to this matrix

Cij = C (xi , xj) . (6)
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Covariance matrix

The eigenpairs of the covariance matrix are related to the
eigenpairs of the random field.

This is found by taking a discrete approximation to the
continuous eigenvalue problem in Equation 3.

For a one-dimensional domain with uniform interval size h,
the discretization of this problem is

hCV = ΛV . (7)

For a uniform two-dimensional domain with interval sizes hx
and hy , the problem to solve is

hxhyCV = ΛV . (8)
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Covariance matrix

When the covariance function for a random field is known, the
covariance matrix is constructed by evaluating the function at
each pair of points.

Otherwise, n samples can be taken at each spatial point to
form the sample covariance matrix,Ĉ .

Ĉij =
1

n

n∑
k=1

(a(xi , ξk)− µ̂i )(a(xj , ξk)− µ̂j) (9)

µ̂i =
1

n

n∑
k=1

a(xi , ξk) . (10)



Background Methods Results Looking ahead References

Covariance matrix

When the covariance function for a random field is known, the
covariance matrix is constructed by evaluating the function at
each pair of points.

Otherwise, n samples can be taken at each spatial point to
form the sample covariance matrix,Ĉ .
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Sample covariance matrix

We are interested in the eigenpairs of Ĉ , but do not need to
construct the entire matrix.

Define a matrix:

Bik = a(xi , ωk)− µ̂i (11)

Then the sample covariance matrix can be written as

Ĉ =
1

n
BBT . (12)
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Ĉ =
1

n
BBT . (12)



Background Methods Results Looking ahead References

Sample covariance matrix

We are interested in the eigenpairs of Ĉ , but do not need to
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Sample covariance matrix

Consider the singular value decomposition of B = UΣV T .

The eigenvalues of Ĉ will be 1
nΣ2.

The eigenvectors of Ĉ will be the columns of U.

Using this approach ensures that small numerical errors will
not produce imaginary eigenvalues.
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Gaussian random field

A Gaussian random field in one dimension has covariance
function

C (x1, x2) = σ2 exp(−|x1 − x2|/b) (13)

σ2 is the (constant) variance of the stationary random field
and b is the correlation length.

Large values of b: random variables at points that are near
each other are highly correlated.
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Gaussian random field

Exact solutions for the eigenvalues and eigenfunctions are
known [9].

λn = σ2 2b

ω2
n + b2

(14)

λ∗n = σ2 2b

ω∗2n + b2
(15)

where ωn and ω∗n solve the following:

b − ω tan(ωa) = 0 (16)

ω∗ + b tan(ω∗a) = 0 . (17)
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Gaussian random field

The random variables in the expansion are ξs ∼ N(0, 1).

a(x , ~ξ) = µ(x) +
∞∑
n=1

√
λnfn(x)ξn (18)

For a two-dimensional Gaussian field

C ((x1, y1), (x2, y2)) = σ2 exp

(
−|x1 − x2|

b1
− −|y1 − y2|

b2

)
(19)
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Verification for 1D Gaussian random field

Three methods were used to find the eigenvalues of a
one-dimensional N(0, 1) Gaussian random field on D = [−1, 1]
with step size h = .02.

1 Solve for the eigenfrequencies using Newton’s method.

2 Build the analytic covariance matrix.

3 Build the sample covariance matrix.

Implemented using Matlab and made use of functions written by E.
Ullman 2007-10.
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Gaussian random field 1D

Figure: Eigenvalues of Gaussian random field with parameters b = 1,
n = 10000 for the three methods. Methods 1 and 2 produce nearly
identical results.
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Gaussian random field 1D

(a) n=100 (b) n=1000 (c) n=10000

Figure: The eigenvalues of the sampling method converge as the number
of samples, n is increased.
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Gaussian random field 1D

(a) b = 0.01, n=100000 (b) b = 0.1, n=1000 (c) b = 3, n=10000

Figure: The effect of correlation length, b, on the eigenvalues
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Gaussian random field

Verified three methods using a two-dimensional domain
D = [0, 1]x [0, 1] as well.

Eigenvectors also agree.
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Lognormal random field

If a(x , ξ) is a Gaussian random variable, k(x , ξ) = exp(a(x , ξ))
is lognormal at every point in the spatial domain.

If X ∼ N(µ, σ) and X = ln(Y ), the lognormal random
variableY has the following results [10]:

E [Y ] = eσ
2/2 (20)

Var [Y ] = e2µ+σ2
(eσ

2 − 1) (21)

LC (x1, x2) = e2µ+σ2
(eC(x1,x2) − 1) . (22)
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Lognormal random field 1D

(a) n=100 (b) n=1000 (c) n=10000

Figure: The eigenvalues obtained using the sample covariance matrix,
converge to the analytic covariance matrix results as the number of
samples is increased. Tests use correlation length b = 1.
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Summary

Confirmed sampling procedure for determining eigenpairs of a
lognormal field.

Ultimately analytic covariance function will be used compute
the eigenpairs used in the KL expansion of k:

k(x , ~η) = µ(x) +
∞∑
s=1

√
λs fs(x)ηs . (23)

What is the distribution of the ηs?
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Schedule

Stage 2: December

Finish construction of the principal components analysis

Write code which generates Monte-Carlo solutions

Stage 3: January- February

Run the Monte-Carlo simulations

Write solution method

Stage 4: March - April

Run numerical method

Analyze accuracy and validity of the method
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