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The equation to be solved is

where k = e3(xw)

=V - (k(x,w)Vu) = f(x),
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The equation to be solved is

=V - (k(x,w)Vu) = f(x),
where k = ea(xw).

@ Assume a bounded spatial domain D C R?.
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Problem

The equation to be solved is
=V - (k(x,w)Vu) = f(x),

where k = (%),
@ Assume a bounded spatial domain D C R?.

@ The boundary conditions are deterministic.
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Problem

The equation to be solved is
=V - (k(x,w)Vu) = f(x),

where k = (%),
@ Assume a bounded spatial domain D C R?.

@ The boundary conditions are deterministic.
u(x,w) = g(x) on dDp

du
%—OonaDn.
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Algorithm

@ Approximate the random field using the Karhunen-Loéve
expansion.
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Outline of approach

Algorithm

© Approximate the random field using the Karhunen-Loéve
expansion.

@ Solve the PDE using either the stochastic collocation method
or stochastic Galerkin method.
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Outline of approach

Algorithm

© Approximate the random field using the Karhunen-Loéve
expansion.

@ Solve the PDE using either the stochastic collocation method
or stochastic Galerkin method.

Validation

@ Compare the moments of this solution to the moments
obtained from solving the equation using the Monte-Carlo
method.



The expansion is

a(x,&) = p(x) + Y VAF(x)és -
s=1
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The expansion is

a(x,&) = p(x) + Y VAF(x)és -
s=1

@ u(x) is the mean of the random field.
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Karhunen-Loéve expansion

The expansion is

a(x,&) = u(x) + Y VA (x)és -
s=1

@ 1(x) is the mean of the random field.

@ The random variables & are uncorrelated.
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Karhunen-Loéve expansion

The expansion is

a(x,&) = u(x) + Y VA (x)és - (2)
s=1

@ 1(x) is the mean of the random field.
@ The random variables & are uncorrelated.

@ The A\ and f;(x) are eigenpairs which satisfy
(€A)0) = [ Clenf(y)dy =37 3)

where C(x, y) is the covariance function of the random field.
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Covariance matrix

The covariance matrix for a finite set of points x; in the spatial
domain is

Clxirx) = /Q (a(xi,w) — 1(x))(a(x,w) — p(x))dP(w) ,  (4)

where

pu(x) = /Qa(x,w)dP(w). (5)
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Covariance matrix

The covariance matrix for a finite set of points x; in the spatial
domain is

Clxirx) = /Q (a(xi,w) — 1(x))(a(x,w) — p(x))dP(w) ,  (4)

where
pu(x) = /Qa(x,w)dP(w). (5)

Denote the approximation to this matrix

Cj = C(xi,x;) - (6)



@ The eigenpairs of the covariance matrix are related to the
eigenpairs of the random field.
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Covariance matrix

@ The eigenpairs of the covariance matrix are related to the
eigenpairs of the random field.

@ This is found by taking a discrete approximation to the
continuous eigenvalue problem in Equation 3.
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Covariance matrix

@ The eigenpairs of the covariance matrix are related to the
eigenpairs of the random field.

@ This is found by taking a discrete approximation to the
continuous eigenvalue problem in Equation 3.

@ For a one-dimensional domain with uniform interval size h,
the discretization of this problem is

hCV = AV . (7)
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Covariance matrix

@ The eigenpairs of the covariance matrix are related to the
eigenpairs of the random field.

@ This is found by taking a discrete approximation to the
continuous eigenvalue problem in Equation 3.

@ For a one-dimensional domain with uniform interval size h,
the discretization of this problem is

hCV = AV . (7)

@ For a uniform two-dimensional domain with interval sizes hy
and hy, the problem to solve is

heh, CV = AV . (8)
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Covariance matrix

@ When the covariance function for a random field is known, the
covariance matrix is constructed by evaluating the function at
each pair of points.
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Covariance matrix

@ When the covariance function for a random field is known, the
covariance matrix is constructed by evaluating the function at
each pair of points.

@ Otherwise, n samples can be taken at each spatial point to
form the sample covariance matrix, C.

Ci = =3 (a0 &) — ) (al, &) — ) (9)

n

a(xi, k) - (10)



construct the entire matrix.

@ We are interested in the eigenpairs of C, but do not need to
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Sample covariance matrix

@ We are interested in the eigenpairs of C, but do not need to
construct the entire matrix.

@ Define a matrix:

Bix = a(xi, wk) — fii (11)
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Sample covariance matrix

@ We are interested in the eigenpairs of C, but do not need to
construct the entire matrix.
@ Define a matrix:

Bix = a(xi, wk) — fii (11)

@ Then the sample covariance matrix can be written as

¢c=lpaT. (12)
n



e Consider the singular value decomposition of B = ULV T.
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Sample covariance matrix

o Consider the singular value decomposition of B = UX V.

@ The eigenvalues of C will be %22.

@ The eigenvectors of C will be the columns of U.
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Sample covariance matrix

o Consider the singular value decomposition of B = UX V.
@ The eigenvalues of C will be %22.

@ The eigenvectors of C will be the columns of U.

@ Using this approach ensures that small numerical errors will

not produce imaginary eigenvalues.



function

@ A Gaussian random field in one dimension has covariance

C(x1, %) = o2 exp(—|x1 — x2|/b)

(13)
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Gaussian random field

@ A Gaussian random field in one dimension has covariance
function
C(x1,x2) = o2 exp(—|x1 — x2|/b) (13)

@ o2 is the (constant) variance of the stationary random field
and b is the correlation length.



Background Methods Results Looking ahead References

Gaussian random field

@ A Gaussian random field in one dimension has covariance
function
C(x1,x2) = o2 exp(—|x1 — x2|/b) (13)

@ o2 is the (constant) variance of the stationary random field
and b is the correlation length.

@ Large values of b: random variables at points that are near
each other are highly correlated.
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Gaussian random field

@ Exact solutions for the eigenvalues and eigenfunctions are

known [9].
2b
_ 2
A = iR (14)
2
No— g2 2b (15)

wi2 + b?
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Gaussian random field

@ Exact solutions for the eigenvalues and eigenfunctions are

known [9].
2b
_ 2
o= e (14)
2b
o= gt 15
n o wi2 + b? (15)

where w, and wj, solve the following:
b —wtan(wa) =0 (16)

w* + btan(w*a) =0. (17)



@ The random variables in the expansion are {& ~ N(0, 1).

a(X>6 = N(X) + Z \/A_nfn(x)gn
n=1

(18)
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Gaussian random field

@ The random variables in the expansion are & ~ N(0, 1).

a(x, &) = u(x) + >V Anfa(x)én (18)
n=1

@ For a two-dimensional Gaussian field

C((Xla}/l), (Xz,yz)) — 0-2 exp <_’X1b1_ XQ‘ B —’ylbz_ y2‘>
(19)
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Verification for 1D Gaussian random field

Three methods were used to find the eigenvalues of a
one-dimensional N(0, 1) Gaussian random field on D = [—1,1]
with step size h = .02.
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Verification for 1D Gaussian random field

Three methods were used to find the eigenvalues of a
one-dimensional N(0, 1) Gaussian random field on D = [—1,1]
with step size h = .02.

@ Solve for the eigenfrequencies using Newton's method.
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Verification for 1D Gaussian random field

Three methods were used to find the eigenvalues of a
one-dimensional N(0, 1) Gaussian random field on D = [—1,1]
with step size h = .02.

@ Solve for the eigenfrequencies using Newton's method.

@ Build the analytic covariance matrix.
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Verification for 1D Gaussian random field

Three methods were used to find the eigenvalues of a
one-dimensional N(0, 1) Gaussian random field on D = [—1,1]
with step size h = .02.

@ Solve for the eigenfrequencies using Newton's method.
@ Build the analytic covariance matrix.

© Build the sample covariance matrix.
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Verification for 1D Gaussian random field

Three methods were used to find the eigenvalues of a
one-dimensional N(0, 1) Gaussian random field on D = [—1,1]
with step size h = .02.

@ Solve for the eigenfrequencies using Newton's method.
@ Build the analytic covariance matrix.

© Build the sample covariance matrix.

Implemented using Matlab and made use of functions written by E.
Ullman 2007-10.
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Gaussian random field 1D

1D Gaussian random field

Figure: Eigenvalues of Gaussian random field with parameters b = 1,
n = 10000 for the three methods. Methods 1 and 2 produce nearly

identical results.
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Gaussian random field 1D

(a) n=100 (b) n=1000 (c) n=10000

Figure: The eigenvalues of the sampling method converge as the number
of samples, n is increased.
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Gaussian random field 1D

N\ 4
N 1)
0 ‘\\\kﬁ :A \
(a) b=0.01, n=100000 (b) b=0.1, n=1000 (c) b =3, n=10000

Figure: The effect of correlation length, b, on the eigenvalues
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Gaussian random field

@ Verified three methods using a two-dimensional domain
D =[0,1]x[0, 1] as well.

@ Eigenvectors also agree.
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Lognormal random field

e If a(x, &) is a Gaussian random variable, k(x, &) = exp(a(x,&))
is lognormal at every point in the spatial domain.
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Lognormal random field

e If a(x, &) is a Gaussian random variable, k(x, &) = exp(a(x,&))
is lognormal at every point in the spatial domain.

o If X ~ N(u,0) and X = In(Y), the lognormal random
variableY" has the following results [10]:

E[Y]=e"/? (20)
Var[Y] = e+9%(e7" — 1) (21)

LC(x1, %) = 217 (eC0a) 1) | (22)
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Lognormal random field 1D

(a) n=100 (b) n=1000 (c) n=10000

Figure: The eigenvalues obtained using the sample covariance matrix,
converge to the analytic covariance matrix results as the number of
samples is increased. Tests use correlation length b = 1.
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lognormal field.

@ Confirmed sampling procedure for determining eigenpairs of a
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Summary

@ Confirmed sampling procedure for determining eigenpairs of a
lognormal field.

@ Ultimately analytic covariance function will be used compute
the eigenpairs used in the KL expansion of k:

Kxo ) = 1) + 32 VAKX (23)
s=1
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Summary

@ Confirmed sampling procedure for determining eigenpairs of a
lognormal field.

@ Ultimately analytic covariance function will be used compute
the eigenpairs used in the KL expansion of k:

Kxo ) = 1) + 32 VAKX (23)
s=1

@ What is the distribution of the 7s?
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Schedule

Stage 2: December
@ Finish construction of the principal components analysis
@ Write code which generates Monte-Carlo solutions
Stage 3: January- February
@ Run the Monte-Carlo simulations
@ Write solution method
Stage 4: March - April
@ Run numerical method

@ Analyze accuracy and validity of the method
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