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Abstract

@ Goal: to efficiently solve a steady state diffusion equation with
a random coefficient.

@ Monte-Carlo methods are time intensive.

@ Using principal components analysis (also known as the
Karhunen-Loéve expansion) allows the random coefficient to
be approximated with a finite sum of random variables.

@ This expansion combined with a stochastic finite element
method should reduce computation time.
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Problem

The equation to be solved is
-V - (e(x,w)Vu) = f(x), (1)

where the diffusion coefficient is a random field.

o ¢ takes the form ¢ = e?*%) to ensure that it is positive for all
x. This guarantees existence and uniqueness of the solution of
Equation (1).

@ Assume a bounded spatial domain D C R2.

@ The boundary conditions are deterministic.
u(x,w) = g(x) on dDp

ou
%—Oon(‘)Dn.
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Problem

@ The solution is a function of the sample space from which
quantities such as the moments or cumulative distribution
functions can be found.

@ Applications include modeling groundwater flow through a
porous medium.

References
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Background

@ In general, the structure of the diffusion coefficient is
unknown.

@ Previous work has been done where the log of the diffusion
coefficient, a(x,w), is written as an infinite series expansion of
random variables [1],[4].

@ The random field can then be approximated by a finite
number of terms in this expansion.

@ This project will instead look at the series expansion of
c(x,w).
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Approach

@ Determine the covariance at each pair of points on the spatial
domain.

Clx,y) = /Q(C(X,w) — 1(x))(c(y,w) — ply))dP(w)

Gy = 5 3 (clxn) = )<y ) — )
k=1

@ The mean, p(x) is defined as

u(x):/Qc(x,w)dP(w)

@ Under the assumption that the random field is stationary, the
mean and variance are constant at each point on the domain.
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Approach

@ Find the eigenpairs of

Ce(x) = /D Cx.y)ely)dy = Ac(x)

@ An expansion for the random field in terms of uncorrelated
random variables is given as

c(xw) = u(x) + 3 VAses(x)Es(w) -
s=1

@ Keeping the first M terms provides an approximation for the
random field.
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Weak formulation
Find u € HY(D) x L?(Q) such that
a(u,v) = I(v), Vv e H}(D) x L*(Q) .

a(u, v) = /Q /D c(x,w)Vu(x,w) - V(x, w)dx dP(w)

// v(x,w)dx dP(w)
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Stochastic collocation method

o The physical space, H'(D), and probability space, L%(Q), are
discretized separately.

@ Because the random field is represented as a finite expansion
of random variables, consider L2(T).

@ A number of points, known as collocation points are selected
from .

@ The deterministic finite element method is used to discretize
H(D) and to find the solution at each collocation point.

@ Lagrange interpolation is used to find an approximation of u

for points not in the set of collocation points.
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Stochastic Galerkin method

@ The stochastic Galerkin method is similar to stochastic
collocation, except the discretization is found for the entire
space.

@ The stochastic discretization comes from polynomials of the
random variables, where increasing the degree of the
polynomials improves the approximation.

@ This produces a larger matrix that is to be solved using a
Galerkin finite element method.

@ However, certain aspects of the structure of this matrix
and/or its sparsity can be used to reduce this computation
time— see [2],[4].
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Issues

How best to discretize the problem in space?

How do we find a probability density function for ns(w)
and/or sample it?
Which approach to use? Galerkin vs. Collocation method

Will preconditioning be used? — for more about this see [2].

How many terms to keep in the series? Does this compare to
the results when a(x,w) was expanded?
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Implementation

@ Computer: Desktop with 1.9 GB RAM
o Language: Matlab R2008b

@ Some previous code may be used for the Galerkin method and
preconditioning.
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Validation

@ One way to solve this problem is using Monte Carlo
simulations.

@ For each sample of ¢(x,w), the resulting pde can be solved
using a deterministic finite element method.

@ The moments from the Monte Carlo method will be compared
to the results of the stochastic finite element method.
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Milestones

Stage 1: October-Late November
o Clearly define the problem (what assumptions will be made?)
@ Build the covariance matrix
@ Compute the eigennodes
@ Write code which generates Monte-Carlo solutions
Stage 2: Late November-December
@ Run the Monte-Carlo simulations

@ Begin construction of the principal components analysis
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Milestones

Stage 3: December- late February
@ Complete construction of PCA
o Write solution method
Stage 4: March - April
@ Run numerical method
@ Analyze accuracy and validity of the method

@ Draw conclusions
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Deliverables

@ Code that calculates the moments of the solution to equation
(1) using a Monte-Carlo method

@ Code that calculates the moments of the solution to equation
(1) using a KL expansion and stochastic evaluation technique

@ Comparison of the results for a varying number of terms in
the KL expansion

@ Comparison of computational cost between the two methods
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