
Introduction Approach Implementation Testing Schedule References

Solving the steady state diffusion equation with
uncertainty

Virginia Forstall
vhfors@gmail.com

Advisor: Howard Elman
elman@cs.umd.edu

Department of Computer Science

September 27, 2011



Introduction Approach Implementation Testing Schedule References

Abstract

Goal: to efficiently solve a steady state diffusion equation with
a random coefficient.

Monte-Carlo methods are time intensive.

Using principal components analysis (also known as the
Karhunen-Loéve expansion) allows the random coefficient to
be approximated with a finite sum of random variables.

This expansion combined with a stochastic finite element
method should reduce computation time.
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Problem

The equation to be solved is

−∇ · (c(x , ω)∇u) = f (x) , (1)

where the diffusion coefficient is a random field.

c takes the form c = ea(x ,ω) to ensure that it is positive for all
x . This guarantees existence and uniqueness of the solution of
Equation (1).

Assume a bounded spatial domain D ⊂ R2.

The boundary conditions are deterministic.

u(x , ω) = g(x) on ∂DD

∂u

∂n
= 0 on ∂Dn .
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Problem

The solution is a function of the sample space from which
quantities such as the moments or cumulative distribution
functions can be found.

Applications include modeling groundwater flow through a
porous medium.
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Background

In general, the structure of the diffusion coefficient is
unknown.

Previous work has been done where the log of the diffusion
coefficient, a(x , ω), is written as an infinite series expansion of
random variables [1],[4].

The random field can then be approximated by a finite
number of terms in this expansion.

This project will instead look at the series expansion of
c(x , ω).
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Approach

Determine the covariance at each pair of points on the spatial
domain.

C (x , y) =

∫
Ω

(c(x , ω)− µ(x))(c(y , ω)− µ(y))dP(ω)

Cij =
1

n

n∑
k=1

(c(xi , ωk)− µ̂i )(c(xj , ωk)− µ̂j)

The mean, µ(x) is defined as

µ(x) =

∫
Ω
c(x , ω)dP(ω)

Under the assumption that the random field is stationary, the
mean and variance are constant at each point on the domain.
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Approach

Find the eigenpairs of

Cc(x) =

∫
D
C (x , y)c(y)dy = λc(x)

An expansion for the random field in terms of uncorrelated
random variables is given as

c(x , ω) = µ(x) +
∞∑
s=1

√
λscs(x)ξs(ω) .

Keeping the first M terms provides an approximation for the
random field.
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Weak formulation

Find u ∈ H1(D)× L2(Ω) such that

a(u, v) = l(v), ∀v ∈ H1
0 (D)× L2(Ω) .

a(u, v) =

∫
Ω

∫
D
c(x , ω)∇u(x , ω) · ∇v(x , ω)dx dP(ω)

l(v) =

∫
Ω

∫
D
f (x)v(x , ω)dx dP(ω)
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Stochastic collocation method

The physical space, H1(D), and probability space, L2(Ω), are
discretized separately.

Because the random field is represented as a finite expansion
of random variables, consider L2(Γ).

A number of points, known as collocation points are selected
from Γ.

The deterministic finite element method is used to discretize
H1(D) and to find the solution at each collocation point.

Lagrange interpolation is used to find an approximation of u
for points not in the set of collocation points.



Introduction Approach Implementation Testing Schedule References

Stochastic Galerkin method

The stochastic Galerkin method is similar to stochastic
collocation, except the discretization is found for the entire
space.

The stochastic discretization comes from polynomials of the
random variables, where increasing the degree of the
polynomials improves the approximation.

This produces a larger matrix that is to be solved using a
Galerkin finite element method.

However, certain aspects of the structure of this matrix
and/or its sparsity can be used to reduce this computation
time– see [2],[4].
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Issues

How best to discretize the problem in space?

How do we find a probability density function for ηs(ω)
and/or sample it?

Which approach to use? Galerkin vs. Collocation method

Will preconditioning be used? – for more about this see [2].

How many terms to keep in the series? Does this compare to
the results when a(x , ω) was expanded?
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Implementation

Computer: Desktop with 1.9 GB RAM

Language: Matlab R2008b

Some previous code may be used for the Galerkin method and
preconditioning.
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Validation

One way to solve this problem is using Monte Carlo
simulations.

For each sample of c(x , ω), the resulting pde can be solved
using a deterministic finite element method.

The moments from the Monte Carlo method will be compared
to the results of the stochastic finite element method.
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Milestones

Stage 1: October-Late November

Clearly define the problem (what assumptions will be made?)

Build the covariance matrix

Compute the eigennodes

Write code which generates Monte-Carlo solutions

Stage 2: Late November-December

Run the Monte-Carlo simulations

Begin construction of the principal components analysis
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Milestones

Stage 3: December- late February

Complete construction of PCA

Write solution method

Stage 4: March - April

Run numerical method

Analyze accuracy and validity of the method

Draw conclusions



Introduction Approach Implementation Testing Schedule References

Deliverables

Code that calculates the moments of the solution to equation
(1) using a Monte-Carlo method

Code that calculates the moments of the solution to equation
(1) using a KL expansion and stochastic evaluation technique

Comparison of the results for a varying number of terms in
the KL expansion

Comparison of computational cost between the two methods
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