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Abstract

The goal of this project is to efficiently solve a steady state dif-
fusion equation with a random coefficient. Although, such equations
can be solved using Monte-Carlo methods, the lengthy computation
time can be constraining. Using a Karhunen-Loéve expansion allows
the random coefficient to be approximated with a finite sum of ran-
dom variables. This expansion combined with a Galerkin method or
stochastic collocation method reduces computation time.

1 Introduction

The problem to solve is the steady state diffusion equation with a random
field as the diffusion coefficient. The formal problem is

=V - (e(z,w)Vu) = f(z) (1)

The boundary conditions are chosen to be deterministic. Specifically let
u(z,w) = g(x) on ODp and % = 0 on 0D,,. The diffusion coefficient,
¢(z,w), is a random field of the form, ¢ = e*®%) where a(z,w) is also
a random field. This assumption ensures c is positive for all x and thus
guarantees existence and uniqueness of the solution,u. Assume the spatial
domain D C R? is bounded.



The solution, u(x,w) is a function of the sample space. It will be the goal
of this project to calculate the moments of this solution. Another meaningful
result would be the cumulative distribution function of the solution.

An application of this include modeling groundwater flow through a
porous medium. To do this the permiability of the medium is needed at
every location in the spatial domain. However, knowing this at every point
is infeasible. Instead, the permeability can be treated as a random variable
at each point in the domain. Since the permeability at one point is related
to the points around it, these points will be correlated and thus modeling
this permeability with a random field makes sense.

In general, little is known about the structure of the diffusion coefficient.
Previous work has been done where log(c(z,w)) = a(z,w) was written as an
infinite series expansion of random variables [4]. This expansion, known as
the Karhunen-Loéve expansion, can be truncated to provide an approxima-
tion of this field. In this project, the approximation will be found by taking
the Karhunen-Loéve expansion of ¢(x,w) instead.

In section 2 the algorithm and implementation are discussed. Section 4
discusses the Monte-Carlo method which will be used to verify the results.
The remaining section lists the schedule for the project including milestones
and deliverables.

2 Approach

The algorithm consists of two important parts. The first is to numerically
approximate the random field. This will be done using a Karhunen-Loéve
expansion. The second part is a stochastic finite element algorithm.

2.1 Approximating the random field

The first step is to discretize the spatial domain D. To perform the principal
component analysis, the covariance at each pair of points on the spatial
domain is needed. The covariance for points z and ¥ is defined as

Clz,y) = /Q(C(fvaw) — (@) (c(y,w) — p(y))dP(w) , (2)

where

() = /Q (@, w)dP(w) . (3)



A random field is wide sense stationary if its first and second moments
are constant at each point on the spatial domain. Since a stationary random
field will be assumed, the mean p(z) = p V.

Since both the spatial domain and the probability space are discretized,
the covariance matrix and mean are

n
Cij = — > _(clwi,wr) — fui)(c(wj, wi) — fij) (4)

k=1
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where n is the number of samples.
Find the eigenpairs of the operator,

Celz) = /D O, y)e(y)dy = Aelz) . (6)

The eigenpairs can then be used to write the random field as an expansion
of uncorrelated random variables, &,

o(z,w) = pa) + Y VAses(@)€s(w) - (7)
s=1

This expression is known as the Karhunen-Loéve expansion. Using the first
M terms of this expansion produces the approximation ¢(™) of the random
field.

2.2 Stochastic finite element method

First the stochastic weak formulation of the problem is needed. The function
space, L?(D) is defined as

L*(D)={v:D — R|/ v(x)?dr < oo} . (8)
D

For a probability space, 2, L?(Q) is the set of random variables which have
finite variance. Considering H'(D) = {v(z,y) : D — R|v,0v/0x,0v/0y €
L?(D)}, define the following subspaces:

HY(D)={u€ HY(D):u=0 on 9D} (9)

Hgl(D) ={uec HY(D) :u=g(z) on 9Dy} . (10)
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The weak formulation is to find u € H}(D) x L*(Q) such that
b(u,v) = 1(v), Yv € H}(D) x L*(Q) (11)

where

b(u,v) = /Q/Dc(x,w)Vu(:n,w) -Vu(z,w)dzx dP(w) (12)
l(v)—/Q/Df(x)v(:c,w)da: dP(w) (13)

2.2.1 Stochastic Collocation method

The random field has been approximated by a finite number of random
varaibles using the KL expansion. Therefore, the solution, u(z,w) can be
written as u(x, 5) where E is a vector of length M of the uncorrelated ran-
dom variables. Thus the probability space becomes L*(T) = {X : [ —
R|E[X?] < oo}. A set of points, Z,, C I, are known as collocation points.
Because of the construction of I', each point is described by a vector of
length M. The number of these points in this set, c,, is a parameter of
the method. It is the maximum degree of the polynomials that form the
basis of the finite basis of L?(T'). A greater number of points increases the
accuracy of the results, but naturally adds computation time. Keeping this
number significantly below the number of realizations in the Monte-Carlo
method yields the savings in computation time. At each one of these points,
we have a single value for the field, ¢. Thus, at each point the stochastic
weak formulation becomes the deterministic weak formulation. That is find
u€ H ; s.t.

/ M (2)Vuy(z) - Vi (z)da = / F@)vi(x)dx Yo, € HY(D).  (14)
D D

Thus there are ¢, problems that can each be solved with the determin-
istic Galerkin method. The last step is to use Lagrange interpolation to
find an approximation of w at points in the sample space that are not in
the set of collocation points. For particular sets of collocation points La-
grange interpolation can be used. Consider the basis of the probability

= —

space, {m1(£), ..., mc, (§)} where m are polynomials which satisfy
Wj(gi) = 5ijfor0 < i,j < Cp (15)

where Z; is a collocation point.



For the Lagrange interpolation

m

— .

() = | | Li(&) (16)

i=1

where ¢
, R
L&) =1 >—= (17)
L 2k — 24
J#k
where z; are the interpolation points, whose choice is related to the choice
of collocation points. The &; are the M random variables used in the KL
expansion.
The final approximation to the solution according to this method is

U,y (7,6) = > up(z)mK(E) . (18)
k=1

2.2.2 Stochastic Galerkin method

The stochastic Galerkin method finds the stochastic discretization using a
basis formed with polynomials of the M random variables kept in the KL
expansion. Increasing the degree of the polynomials improves the approxi-
mation. This produces a larger matrix that can be solved using the deter-
ministic Galerkin finite element method. Even thought the matrix is larger,
computation time can still be managed by taking advantage of structure
and/or sparsity. For examples, see [2],[4].

3 Implementation

Several things have to be addressed in using this algorithm. The first concern
is determining the best way to discretize the spatial domain. When it comes
to the expansion of infinite random variables, it is unclear what these random
variables will look like. This will obviously depend on the structure of the
random field, ¢(z,w). Also, how does the number of terms kept in the series
affect the accuracy of the solution? Decisions about the method for solving
the equation also need to be made, including which of the two methods
outlined above to use and whether or not preconditioning algorithms will be
used.

The code for this algorithm and the Monte-Carlo algorithm will be writ-
ten using Matlab. Both scripts will be run on a desktop computer with Unix
operating system and 1.9 GB RAM.



4 Testing

Validation of the method will be performed using Monte-Carlo simiulations.
The coefficient, ¢(z,w), will be sampled ¢ times. The number of samples ¢
will be greater than ¢, in the stochastic collocation method. These samples
¢; for i =1, .., ¢ each produce a finite element problem and will require many
more solves of the discrete problem. Denote the solution of this problem be
u} (x). The moments of these solutions can then be found. For example, the
mean

Eyluy] = ;zum . (19)
=1

We can write error from the acutal solution as e = Efu] — Ejup] = Eu] —
Elup] + Elup] — Eq[up). The first difference, E[u] — Efup] approaches 0 as
h — 0 assuming that finite basis of the Galerkin method follows the usual
requirements. The second difference, Efup]—E,up] — 0 as ¢ — co. We also
know that Fu] is the solution to the deterministic problem when E|[c] is used
as the diffusion coefficient, thus we can verify these results. This approach
will likely take many iterations. One example, in [1], took between ¢ = 10%
and ¢ = 10% to converge.

5 Validation

Validation of the Monte Carlo code will be by confirming that the Monte-
Carlo solution converges to the solution of the deterministic equation which
uses the mean of the random field ¢(x,w). The validation of the method
of this project will then be obtained by comparing the first and second
moments with those of the Monte-Carlo solutions.

6 Schedule

The proposed schedule for the project is listed below.

Stage 1: October-Late November

e Clearly define the problem (what assumptions will be made?)
e Build the covariance matrix

e Compute the eigennodes



e Write code which generates Monte-Carlo solutions
Stage 2: Late November-December

e Test Monte Carlo code and run simulations

e Begin construction of the principal components analysis
Stage 3: December- late February

e Complete construction of PCA

e Write solution method
Stage 4: March - April

e Run numerical method

e Analyze accuracy and validity of the method

e Draw conclusions

Deliverables include a code that calculates the first and second moments
of the solution to Equation 1 using Monte-Carlo method, a code that calcu-
lates the moments using the KL expansion technique outlined in section 2,
and a comparison of the computational cost of the two methods. Mid year
and end of the year progress reports will also be included.
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