
Solving the steady-state diffusion equation with

uncertainty

Final Paper

Virginia Forstall
vhfors@gmail.com

Advisor: Howard Elman
elman@cs.umd.edu

Department of Computer Science

May 14, 2012

Abstract

The goal of this project is to explore computational methods de-
signed to solve the steady-state diffusion equation with a random co-
efficient. Although such equations can be solved using Monte-Carlo
methods, the lengthy computation time can be constraining. Using a
Karhunen-Loève expansion allows the random coefficient to be approx-
imated with a finite sum of random variables. Using a linear expansion
for a lognormal random field produces a sparse stochastic Galerkin sys-
tem which provides a potentially faster way to compute moments of
solution than the Monte-Carlo method.

1

Contents

1 Introduction 3

2 Algorithm 4
2.1 Karhunen-Loève expansion 4

2.1.1 Gaussian random field 4
2.1.2 Lognormal random field 6

2.2 Solution method . 7
2.2.1 Deterministic diffusion equation 7
2.2.2 Monte-Carlo method 8
2.2.3 Stochastic Galerkin method 8

3 Implementation 10
3.1 Spatial discretization . 11

3.1.1 Discretization of the eigenvalue problem 11
3.2 Deterministic diffusion equation 13
3.3 Probability density function 13
3.4 Monte-Carlo method . 14
3.5 Stochastic Galerkin method 14

4 Results 16
4.1 Solution of the eigenvalue problem 16
4.2 Deterministic diffusion equation 17
4.3 Monte-Carlo method . 17
4.4 Probability distribution . 19
4.5 Stochastic Galerkin Method 21

5 Conclusion 25

6 References 26

2

1 Introduction

The goal of this project is to explore computational algorithms for solving
the steady-state diffusion equation when the diffusion coefficient is a random
field. Formally,

−∇ · (k(x, ω)∇u(x, ω)) = f(x) on D × Ω (1)

u(x, ω) = g(x) on ∂Dd (2)

∂u

∂n
= 0 on ∂Dn. (3)

Assume the spatial domain D ⊂ R2 is bounded. The source term f(x) and
Dirichlet boundary condition g(x) are deterministic. The diffusion coeffi-
cient, k(x, ω), is a random field. In the case of this project the random
field is assumed to be lognormal. This means k(x, ω) = exp(a(x, ω)) where
a(x, ω) is a Gaussian random field. This construction ensures k(x, ω) is pos-
itive for all x and thus guarantees existence and uniqueness of the solution,
u(x, ω) [2].

One application of this equation is modeling groundwater flow through
a porous medium [17]. To model groundwater flow, the permeability of the
medium is needed at every location in the spatial domain. However, knowing
this at every point is infeasible. Instead, the permeability can be treated as
a random variable at each point in the domain. Since the permeability at
one point is related to the points around it, the random variables will be
correlated. Thus the model of a random field is reasonable.

The solution, u(x, ω), is a function of the sample space, so it is necessary
to characterize what is meant by solving this equation. The focus of this
project is calculating the moments of the solution. Another meaningful
result would be the cumulative distribution function of the solution.

Previous work has been done where log(k(x, ω)) = a(x, ω) was written
as an infinite series expansion of random variables [13]. This expansion,
known as the Karhunen-Loève expansion, can be truncated to provide an
approximation of this field. This expansion, however, is a nonlinear function
of random variables which leads to non-sparse matrices in the stochastic
Galerkin method. The Karhunen-Loève expansion of k(x, ω) is a linear
function of random variables.

In section 2 the algorithm is outlined. The Karhunen-Loève expansion,
the Monte-Carlo method, and stochastic Galerkin method are discussed.
The discretization and implementation of the methods is discussed in Section
3. Section 4 discusses the validation of the implementation and presents the
results.

3

2 Algorithm

The algorithm consists of two key parts. The first is to numerically ap-
proximate the random field using a Karhunen-Loève expansion. The second
part of the algorithm is a method for approximating the solution of the par-
tial differential equation. The Monte-Carlo method and stochastic Galerkin
methods are presented.

2.1 Karhunen-Loève expansion

The mean of the random field, a(x, ω), defined as

a0(x) =

∫
Ω
a(x, ω)dP (ω) (4)

and its an associated covariance function is

C(x1, x2) =

∫
Ω

(a(x1, ω)− a0(x1))(a(x2, ω)− a0(x2))dP (ω) . (5)

A random field can be written as an infinite series of random variables
known as the Karhunen-Loève expansion. The expansion,

a(x, ~ξ) = a0(x) +
∞∑
s=1

√
λsas(x)ξs (6)

is written in terms of the eigenvalues, λs, and eigenfunctions, as(x), of the
covariance operator associated with this field. The random variables, ξs, are
uncorrelated with E [ξs] = 0, Var [ξs] = 1 [15].

The eigenpairs with respect to the covariance operator satisfy,

(Ca)(x1) =

∫
D
C(x1, x2)a(x2)dx2 = λa(x1) , (7)

where C(x1, x2) is the covariance function defined in equation 5 [6].

2.1.1 Gaussian random field

A Gaussian random field, a(x, ω), is defined as a random field such that
any a(x1, ω), a(x2, ω), ..., a(xn, ω) follow a multivariate normal distribution
[7]. Thus, the Gaussian random field can be characterized completely by its

4

mean and covariance function. In this paper we consider the exponential
covariance function. In one spatial dimension this covariance function is

Cg(x1, x2) = σ2 exp

(
−|x1 − x2|

b

)
(8)

where σ2 is the variance of the random field and b is the correlation length.
Note that large values of b indicate that the random variables at points close
in space are highly correlated. For this covariance function, the analytic
expressions for the eigenvalues and eigenfunctions can be found by solving
equation 7 analytically as shown in Reference [6]. The eigenvalues for a
one-dimensional domain, D = [−l, l], are

λn = σ2 2b

ω2
n + b2

(9)

λ∗n = σ2 2b

ω∗2n + b2
(10)

where ωn and ω∗n solve the following:

b− ω tan(ωl) = 0 (11)

ω∗ + b tan(ω∗l) = 0 . (12)

The eigenfunctions are

fn(x) = cos(ωnx)√
l+

sin(2ωnl)
2ωn

(13)

f∗n(x) = sin(ω∗
nx)√

l− sin(2ω∗nl)
2ω∗n

. (14)

Solving equations 11 and 12 with Newton’s method gives the numerical
values for the eigenvalues of the random field.

The Gaussian field outlined above is one-dimensional. The two-dimensional
covariance function is

Cg((x1, y1), (x2, y2)) = σ2 exp

(
−|x1 − x2|

bx
+
−|y1 − y2|

by

)
(15)

where bx and by are the correlation lengths in the x and y directions. This
function is separable into an x-component and y-component. Thus the eigen-
values for the two-dimensional problem can be determined using the one-
dimensional eigenvalues and eigenfunctions.

5

A nice feature of the Gaussian random field is that in the KL expansion

a(x, ~ξ) = a0(x) +
∞∑
n=1

√
λnan(x)ξn (16)

has random variables that are independent Gaussian random variables (ξn ∼
N(0, 1)).

Thus one way to approximate the lognormal field, k(x, ω), is

k(x, ξ) = exp[a0(x) +

mg∑
i=1

√
λiai(x)ξi] (17)

where mg is chosen to be the number of terms such that∑mg
i=1 λi∑∞
i=1 λi

≥ 0.95 . (18)

2.1.2 Lognormal random field

The mean, variance, and covariance function for a lognormal random vari-
able, Y , are

E [Y] = eσ
2/2 (19)

Var [Y] = e2µ+σ2
(eσ

2 − 1) (20)

Cl((x1, y1), (x2, y2)) = e2µ+σ2
(eCg((x1,y1),(x2,y2)) − 1) , (21)

where ln(Y) is a normal random variable with mean µ, standard deviation
σ and covariance function, Cg(x1, x2) [10].

Thus, another way to represent the lognormal random field is to take
the KL expansion directly,

k̂(x, η) = k0(x) +
∞∑
i=1

√
µiki(x)ηi . (22)

Here the eigenvalues µi and eigenfunctions ki(x) are the eigenpairs of the
covariance operator formed using the covariance function defined in equa-
tion 21.

An approximation of the field can be found by keeping the largest ml

eigenvalues satisfying equation 18. The computation of the eigenpairs is
discussed in Section 3.1.1. The advantage of this approach is that this
expansion is linear. However, the distribution of ηi are unknown in this
case, a point that is addressed further in Section 3.3.

6

2.2 Solution method

Two methods are considered for solving the steady-state diffusion equation:
the Monte Carlo method and the stochastic Galerkin method. First, we
present the solution method for the deterministic diffusion equation.

2.2.1 Deterministic diffusion equation

Consider the diffusion equation with a deterministic coefficient:

−∇ · (k(x)∇u(x)) = f(x) on D (23)

u(x) = g(x) on ∂Dd (24)

∂u

∂n
= 0 on ∂Dn. (25)

Since D ⊂ R2, x = (x1, x2). Define

L2(D) = {v(x) : |
∫
D
v(x)2dx <∞} . (26)

H1(D) = {v(x) : |v, ∂v
∂x1

,
∂v

∂x2
∈ L2(D)} . (27)

Define the following subspaces of H1(D):

H1
E0

(D) = {u ∈ H1(D) : u = 0 on ∂Dd} (28)

H1
E(D) = {u ∈ H1(D) : u = g(x) on ∂Dd} . (29)

The weak formulation of equation 23 is to find u ∈ H1
E(D) such that∫

D
k(x)∇u(x) · ∇v(x)dx =

∫
D
f(x)v(x)dx (30)

is satisfied for all v(x) ∈ H1
E0

(D).
Assume that φj(x) are the basis functions associated with the discretiza-

tion of D with interval size h by h. The finite element solution is

uh(x) =

n∑
j=1

ujφj(x) +

n+nd∑
j=n+1

ujφj(x) , (31)

where n is the number of elements on the interior and nd. To find the
coefficients uj , solve Au = b where

Aij =

∫
D
k(x)∇φj(x) · ∇φi(x) dx (32)

7

bi =

∫
D
φi(x)f(x) dx−

n+nd∑
j=n+1

uj

∫
D
k(x)∇φj(x) · φi(x) dx (33)

2.2.2 Monte-Carlo method

We now return to the stochastic problem introduce in section 1. The Monte-
Carlo method, based on sampling, allows us to compute statistical quantities
such as the sample mean and sample variance of the solution. However, the
convergence of the sample mean and sample variance is slow. To implement
for this model, samples of the random field k(i)(x) are needed. For each
of these samples, the deterministic diffusion equation is solved. Denote the

solution u
(i)
h (x) for i = 1, ..., q samples, and the sample mean and variance

of the solution can be computed:

E q[uh(x)] =
1

q

q∑
i=1

u
(i)
h (x) . (34)

Var q[uh(x)] =
1

q − 1

q∑
i=1

(uih(x)2 − E q[uh(x)]2) (35)

The error in the mean is E [u]−E q[uh] = E [u]−E [uh] + E [uh]−E q[uh].
Thus the error can be written as the sum of the error in the spatial discretiza-
tion E [u]−E [uh] and the stochastic error E [uh]−E q[uh]. The first difference
will approach 0 as the size of the spatial discretization h approaches 0. The
second difference approaches 0 as q →∞, because of the convergence of the
Monte-Carlo method [7].

2.2.3 Stochastic Galerkin method

An alternative to the Monte-Carlo solution is to formulate a problem similar
to the deterministic problem from which statistical properties of the solution
can be estimated. The Karhuen-Loève expansion approximates the random
coefficient k(x, ω) with k̂(m)(x, η) from equation 22. Denote the probability
density function of η = [η1, ..., ηm] as ρ̂(η). This approach approximates Ω
by Γ where Γ is defined as the support of ρ̂(η). See Section 3.3 for more
details on ρ̂(η).

The stochastic weak formulation of the problem is to find u(x, η) ∈
H1
E(D)× L2(Γ) such that∫

Γ

∫
D
k̂(x, η)∇u · ∇vρ̂(η) dx dη =

∫
Γ

∫
D
fvρ̂ (η)dx dη (36)

8

∀v(x, η) ∈ H1
E0

(D) × L2(Γ). The computation is done by discretizing in
space, as described in Section 2.2.1.

The stochastic space, Γ, is discretized using the chaos polynomials de-
noted ψj(η). These are products of polynomials in each of the variables
ηi.

ψj(η) = ψj1(η1)ψj2(η2)...ψjm(ηm) . (37)

Polynomials are chosen to satisfy the orthogonality condition

E [ψi(η)ψj(η)] = δij . (38)

Just as the interval size h determines the accuracy of the spatial approxima-
tion, the accuracy of the chaos polynomial basis is determined by the upper
bound (N) on the degree of polynomials,

deg(ψj) = deg(ψj1) + ...+ deg(ψjm) ≤ N ∀j . (39)

The number of polynomials which satisfy this condition is

nη =

(
N +m

m

)
. (40)

For simplicity the polynomials are reindexed so that ψl(η) for l = 1, ..., nη.
Having a basis in each of the spaces, the solution can be written as a

combination of products of the basis functions,

uh(x, η) =

nx∑
i=1

nη∑
j=1

uijφi(x)ψj(η) . (41)

Since the test functions are in H1
E0

(D)×L2(Γ), it is enough to require that
the governing equation holds for all v(x, η) = φk(x)ψl(η).

Therefore, the discrete problem is to find the coefficients uij which satisfy

nx∑
i=1

nη∑
j=1

∫
Γ

∫
D
uij k̂(x, η)∇φi(x) · ∇φk(x)ψj(η)ψl(η)ρ̂(η) dx dη

=

∫
Γ

∫
D
f(x)φk(x)ψl(η)ρ̂(η) dx dη (42)

for each k = 1, ..., nx and l = 1, ..., nη where nx is the number of points in
the spatial discretization and nη is defined above.

9

For ease of notation let us define µ0 = 1 and η0 = 1, so the KL expansion
can be written

k̂(x, η) =

m∑
s=0

√
µsks(x)ηs . (43)

The solution vector u can be found by solving Âu = b where

Â =
m∑
p=0

Gp ⊗Ap (44)

[Ap]ik =

∫
D

√
µpkp(x)∇φi(x) · ∇φk(x)dx (45)

[Gp]jl =

∫
Γ
ηpψj(η)ψl(η)ρ̂(η)dη (46)

b =

∫
D
fφk(x)dx

∫
Γ
ψlρ̂(η)dη . (47)

Note that each Ap is nx×nx and each Gp is nη×nη. The moments of the
solution can then be computed using the uij . The mean and the variance of
the solution are

E [uh(x, η)] =

nx∑
i=1

ui1φi(x) (48)

Var [uh(x, η)] = E [(uh(x, η))2]− (E [uh(x, η)])2 (49)

If the KL expansion of the Gaussian random field, k(x, ξ), defined in
equation 17, the coefficient is

k(x, ξ) =

nξ∑
j=1

αjψj(ξ) (50)

where αj are defined to match equation 17. This approach would require the
sum in equation 44 to be from p = 1, ..., nη. Thus, using a linear expansion
produces many fewer terms in the sum and ultimately more sparse Galerkin
system.

3 Implementation

All algorithms were implemented using Matlab and run on a Dell desktop
computer with 1.9 GB RAM and Intel Core 2 Duo E4600 processor. The
code incorporates functions from E. Ullman as part of the SFemLib, the
Matlab package IFISS [12], and OPQ [5].

10

3.1 Spatial discretization

3.1.1 Discretization of the eigenvalue problem

When the spatial domain D is discretized, eigenpairs of the operator can be
approximated using the covariance matrix. Let C be the covariance matrix
such that

Cij = C(xi, xj) , (51)

where C(xi, xj) is the covariance function defined in equation 5.

Following the discussion of [6], the relationship between the eigenvalues
and eigenfunctions of the operator in equation 7 and the eigenvalues and
eigenvectors of the covariance matrix in equation 51 is derived.

The eigenfunctions, an(x), can be written as a linear combination of the
spatial basis functions

an(x) =
∑
j

snj φj(x) . (52)

Requiring that error terms are normal to the space, gives rise to a discrete
approximation to the eigenvalue problem in equation 7. The Galerkin system
is

GV = ΛBV (53)

where

Gij =

∫
D

∫
D
C(x1, x2)φi(x2)dx2φj(x1)dx1 (54)

Vij = vji (55)

Λij = δijλi (56)

Bij =

∫
D
φj(x1)φi(x1)dx1 . (57)

B is known as the mass matrix. The eigenvalues (the diagonal entries of
Λ) and the eigenvectors (the columns of V) provide the information needed
to determine the KL expansion. The eigenfunctions should be normalized so
that

∫
D ai(x)aj(x)dx = δij and is chosen so that A, the matrix with columns

ai(x), satisfies ATBA = I.
Consider a one-dimensional domain with uniform intervals. Let D =

[a, b] and h be the width of the uniform intervals. The usual hat functions
serve as a basis. If we approximate the integrals on the discrete domain
using the Riemann midpoint rule,

Gij = h2C(xi, xj) = h2Cij (58)

11

Bij = hδij . (59)

The eigenvalue problem becomes

hCV = ΛV . (60)

The eigenvector approximating the eigenfunction is as(xj) =
Vjs√
h

where

vs(x) are the columns of V .
Extending this problem to a two-dimensional domain with uniform in-

tervals of size hx and hy. This spatial discretization yields

Gij = h2
xh

2
yCij (61)

Bij = hxhyδij , (62)

and the eigenvalue problem becomes

hxhyCV = ΛV . (63)

The eigenfunctions will be as(xj) = Vis√
hxhy

.

There are two methods we consider for determining the covariance ma-
trix C. The first is used when an analytic expression for the covariance
function is known; the other method takes samples of the random field to
generate the sample covariance matrix.

Method 1: Evaluate the covariance function
When the covariance function is known, the matrix in equation 61 is

formed by evaluating the covariance function at each pair of points. Al-
though this is inexpensive to compute, the covariance function is not always
known. So a method using samples of the random field would be useful.

Method 2: Form the sample covariance matrix
If the covariance function C(x1, x2) is unknown for a random field but

the random field a(x, ξ) can be sampled, the eigenvalues and eigenvectors
can be found by constructing the sample covariance matrix. This is defined
as

Ĉij =
1

n

n∑
k=1

(a(xi, ωk)− âi)(a(xj , ωk)− âj) (64)

âi =
1

n

n∑
k=1

a(xi, ωk) (65)

12

where n is the number of samples and â(x) is the sample mean. This matrix
Ĉ is known as the sample covariance matrix.

To save computation time, it is not necessary to compute Ĉ. Define a
matrix

Fik = a(xi, ωk)− âi . (66)

Then the sample covariance matrix can be written as

Ĉ =
1

n
FF T . (67)

Therefore, the eigenvalues of Ĉ can be computed by taking the singular
value decomposition, F = UΣV T . The eigenvalues of Ĉ are 1

nΣ2 and the
eigenvectors are the columns of U . The SVD approach is preferred when
there are a large number of samples n taken for two reasons. First, the
matrix multiplication is not needed which will save computation time. Sec-
ond, using the entire covariance matrix can introduce imaginary components
to the eigenvalues (with magnitude on the order of machine error). Using
the singular value decomposition ensures that the computed eigenvalues are
numerically real.

3.2 Deterministic diffusion equation

The Monte-Carlo method requires the solution of the deterministic diffusion
problem. This is found using the Matlab package Incompressible Flow &
Iterative Solver Software (IFISS) [12]. The domain is D = [0, 1]×[0, 1] which
is discretized with bilinear elements on quadrilaterals of size h by h.

3.3 Probability density function

Consider the approximation of a lognormal field as an exponential of a Gaus-
sian random field in equation 17 and the alternate approximation in equa-
tion 22. Recall that in the KL expansion of the Gaussian random field,
{ξi} are independent N(0, 1) variables. Thus their joint pdf, ρ(ξ), is known.
However, as discussed in Section 2.2.3, using a linear expansion with the
stochastic Galerkin method would produce more sparse matrices. The KL
expansion of the lognormal field, equation 22, has random variables ηi which
are unknown. However, an approximation to the joint density function ρ̂(η)
can be derived from the relationship between the two expansions and a
change of variables.

Let m = max(mg,ml). Define matrices A = [a1|a2|...|am] and K =
[k1|k2|...|km] where the columns are the nodal coefficients of the discrete

13

eigenfunctions. Let Λ = diag(λ1, λ2, ..., λm) and M = diag(µ1, µ2, ..., µm)
be diagonal matrices with the eigenvalues in the Gaussian and lognormal
expansions, respectively.

Let the vector ξ = [ξ1, ξ2, ..., ξm]T denote the standard normal random
variables in the Gaussian random field and let η = [η1, η2, ..., ηm]T denote
the unknown random variables in the lognormal expansion. Equating the
two expansion yields

ΛATB(k(x, ξ)− a0(x)) = ΛATB(k̂(x, η)− a0(x)) . (68)

Thus, the vector ξ can be written as a function of η,

ξ = g(η) = ΛATB(ln(k0 +KMη)− a0) . (69)

Therefore, the joint probability of the density is

ρ̂(η) = ρ(g(η))|J(η)| (70)

where |J(η)| is the absolute value of the determinant of the Jacobian of
g, which can be computed since g(η) is differentiable. The support of this
distribution is all η such that k0 +KMη > 0.

3.4 Monte-Carlo method

Use k(x, ξ) as defined in equation 17. The random variables {ξs} sampled
using mg N(0, 1) samples to produce a sample of the coefficient ki(x) for
i = 1, ..., q. For each of these samples, the deterministic diffusion equation is

solved. The software package IFISS is used to find the solution u
(i)
h (x) [12].

3.5 Stochastic Galerkin method

The spatial discretization uses the same bilinear quadrilateral elements as in
the deterministic problem (φi(x)). These are used to compute the matrices
defined in equation 45.

Constructing the Galerkin matrix requires the introduction of an as-
sumption. We will assume that the random variables, η1, ..., ηm, are inde-
pendent and the joint density function can be written ρ̂(η) = ρ1(η1)ρ2(η2)...ρm(ηm).
With this assumption the stochastic Galerkin matrices in equation 46 consist
of p separable integrals. Therefore the one dimensional orthogonal polyno-
mials can be constructed. Treat the ith marginal density function as a
weight function, the recurrence coefficient for the orthogonal polynomials
in that variable ψj(ηi) can be computed using the Stieljtes procedure [4].

14

Below is an outline of the procedure which is implemented to construct the
polynomials for each of the m random variables.

For the Stieljtes procedure, the p + 1 degree polynomial is constructed
using the following:

ψp+1(ηi) = (ηi − αp)ψp(ηi)− βpψp−1(ηi) (71)

for p = 0, 1, ..., where ψ−1(ηi) = 0 and ψ0(ηi) = 1. The recurrence coeffi-
cients are

αp =

∫
ηiψpψpρi(ηi)dηi∫
ψpψpρi(ηi)dηi

(72)

for p = 0, 1, 2, ... and

βp =

∫
ψpψpρi(ηi)dηi∫

ψp−1ψp−1ρi(ηi)dηi
(73)

for p = 1, 2,
If the moments of the ρi(ηi) can be computed easily, the modified Cheby-

shev procedure can be used to determine these coefficients. However, the
number of moments needed for each component of η makes this procedure
computationally untractable. Using the multi-component discretization pro-
cedure outlined in Gautschi [4] discretizes the measure (marginal density
functions) on the finite support of ρi(ηi), [a, b]. The number of points in the
discretization is chosen to satisfy some tolerance. It is an iterative method,
which takes some number of points R and uses Steiljtes procedure to find
the recurrence coefficients and build the polynomials as follows

αp,R =

∑R
t=1 ηitwtψp,R(ηit)ψp,R(ηit)ρ(ηit)∑R
t=1wtψp,R(ηit)ψp,R(ηit)ρ(ηit)

(74)

βp,R =

∑R
t=1wtψp,R(ηit)ψp,R(ηit)ρ(ηit)∑R

t=1wtψp−1,R(ηit)ψp−1,R(ηit)ρ(ηit)
(75)

The weights and nodes are found using a Fejer quadrature where the nodes
are related to the roots of the chebyshev polynomials.

ηit =
1

2
(b− a) cos

(
2t− 1

2R

)
+

1

2
(a+ b) (76)

wt =
1

R

1− 2

bR/2c∑
n=1

cos(2n(2t−1
2R))

4n2 − 1

 (77)

15

Figure 1: Eigenvalues of Gaussian random field with parameters b = 1,
computed using analytic expression and the two covariance matrices. The
sample covariance matrix contains q = 10000 samples.

for t = 1, ..., R.
The stopping condition given Rs is defined by

β(s)
p − β(s−1)

p ≤ εβ(s)
p (78)

where ε is the tolerance for convergence. If this condition is not satisfied R
is increased to a given Rcap.

This procedure was implemented for Matlab by Gautschi [5] where the
interval is broken up into component intervals to decrease the time required
for convergence.

This procedure was called to construct the polynomials for each of the
component marginal density functions. Then the Galerkin system is con-
structed by multiplying each of the component integrals.

4 Results

4.1 Solution of the eigenvalue problem

To verify the eigenpairs for the Gaussian random field, the eigenvalues com-
puted using the covariance function and the sampling covariance matrix

16

were compared to the analytic expressions. Figure 1 shows the agreement
of these eigenvalues.

Since analytic expressions for the eigenpairs of lognormal field are not
known, the eigenvalues and eigenvectors were computed using the two meth-
ods discussed in Section 3. The sampling covariance matrix uses samples
k(xi, ξj) defined in equation 17. A comparison of these two methods indi-
cates convergence for the sampling method is obtained. (See Figure 4.1).

The procedure for determining the eigenvalues from the sample covari-
ance matrix has been verified. At the beginning of the project, this was the
method that would be used to find the eigenvalues of the lognormal ran-
dom field k(x, η). However, through the course of this project, the analytic
expression for the covariance function from [10] was discovered. Using the
analytic construction of the covariance matrix is faster and more accurate,
so it is used in the remainder of the project. The validation of the sam-
pling method illustrates the way in which this model could be used in an
application where the covariance function is not known.

4.2 Deterministic diffusion equation

To obtain an idea of the error in the solution due to the spatial discretiza-
tion, consider the finite element solution to the diffusion equation with a
deterministic coefficient as computed by the solver IFISS on the domain
D = [0, 1] × [0, 1]. For u(~x) = 0 on the boundary, f(~x) = 1, k(~x) = 1,
h = 0.0625, nd = 64, n = 225, IFISS produces the solution shown in Fig-
ure 3. For the given source, coefficient, and boundary conditions there is a
known analytic series solution [1]:

u(x1, x2) =
16

π4

∞∑
l=0

∞∑
k=0

sin((2k + 1)πx1) sin((2l + 1)πx2)

(2k + 1)(2l + 1)((2k + 1)2 + (2l + 1)2)
. (79)

Thus the error due to the spatial discretization is

||uh(~x)− u(~x)||2
||u(~x)||2

= 3.31× 10−3 (80)

The same spatial discretization with this value of h will be used for the
stochastic problem.

4.3 Monte-Carlo method

The Monte-Carlo method was validated by checking that the sample mean
of the solution converges to the deterministic solution with coefficient E [k],

17

(a) n=1000

(b) n=10000

Figure 2: Eigenvalues of k(x, ξ), a lognormal random field. The eigenvalues
obtained using the sample covariance matrix, converge to the analytic co-
variance matrix results as the number of samples is increased. Figures use
correlation length b = 1.

18

Figure 3: Deterministic solution, k(~x) = 1

when the variance is small. Running the code with variance is 0 and E [k] = 1
produces an error ||E [uh]− E q[uh]|| on the order of machine epsilon. Once
the variance is large enough, the mean solution is affected. Figure 4 contains
two examples of the Monte-Carlo solution with a nonzero variance. Not
surprisingly, fewer samples q are required for convergence for problems with
a smaller variance.

4.4 Probability distribution

Several steps were taken to verify the probability distribution discussed in
Section 3.3. For computational ease the distribution was checked using one
dimension of space. A high correlation length was chosen, b = 10. With this
correlation, enough of the variance is captured in the first eigenvalue. 97.7%
of variance of the Gaussian random field is captured with the two term
expansion and 95.9% for the first eigenvalue of the lognormal expansion.
Thus the density function ρ̂(η1) will be a good approximation of the joint
density. Figure 5 shows this density. Note the sharp cutoff just below
zero. This occurs where the k0 +KMη is zero and thus extra resolution is
needed in this area. First, Matlab’s quadrature routine was used to check
that this function integrates to 1. The mean was approximately 0 and the
variance was approximately 1, agreeing with the characteristics of η1 in the
KL expansion.

Using the probability density function ρ̂(η1, η2) for the same correlation
length more variance can be incorporated in the expansion. Shown in Fig-
ure 6 this probability density also integrates to 1.

19

Figure 4: Monte Carlo solution: E[k(x, ξ)] = 1, f(x) = 1, m = 5, g(x) = 0.

(a) σ = 0.001, q = 100 (b) σ = 0.5, q = 100000

Figure 5: Probability density function for m = 1, b = 10.

20

Figure 6: Probability density function for m = 2, b = 10.

The probability density function was also validated by comparing the
sample means of k(x, ξ) and k̂(x, η). The sample mean of k(x, ξ) is simple
to compute, because it depends on independent normal random variables.
To generate samples of k̂(x, η), samples of this joint density function are
needed. To do this, accept-reject sampling is used. Uniform samples are
taken over the support of the density function. This is the candidate sam-
ple. The joint density function is then evaluated at this point. One other
uniform sample on (0,1) is generated. If the result of the joint density
function evaluation is below this uniform sample, the sample is accepted.
Otherwise, it is rejected. Repeating this procedure many times, samples of
the lognormal density function are obtained and the coefficient k̂(x, η) can
be computed. Generating the equivalent number of Gaussian samples, the
sample means can be computed. The sample means are shown to converge
to the same value in Figure 7. Note this sampling technique is computa-
tionally expensive, and a large number of samples (q ∼ 106) are required for
convergence.

4.5 Stochastic Galerkin Method

Having verified the Monte-Carlo method the results from that method can
be used to verify the results of the Stochastic Galerkin solver. All Monte-

21

Figure 7: Compare E[k̂(x, η)] and E[k(x, ξ)] using Monte-Carlo method.
Lognormal samples found using accept/reject technique.

22

Figure 8: Stochastic Galerkin solution: E[k(x, η)] = 1, f(x) = 1, m = 1,
σ2 = 0.1, bx = by = 10.

(a) Mean (b) Variance

||MC|| ||SG|| ||MC − SG|| ||MC−SG||
||MC||

E [u] 6.65× 10−1 6.65× 10−1 3.07× 10−4 4.61× 10−4

σ 6.49× 10−2 6.44× 10−2 5.84× 10−4 9.00× 10−3

Table 1: Results, m = 1, σ = 0.1, bx = by = 10

23

Figure 9: Stochastic Galerkin solution: E[k(x, η)] = 1, f(x) = 1, m = 2,
σ = 0.5, bx = by = 10.

(a) Mean (b) Variance

Carlo solutions presented in this section use m = 5 terms in the expansion
of the Gaussian random field. Recall that in order to separate the integrals
defining the Galerkin matrices in equation 46, an assumption was made that
the joint density function ρ̂(η) can be written as a product of the marginal
density functions. In the case of m = 1 no approximation is needed. To get
as much of the variance captured by the first eigenvalue, a high correlation
length bx = by = 10 and a small standard deviation σ = 0.1 were used. This
enables the KL expansion to incorporate 93.22% of the variance with only
two terms (the mean and one random variable). The stochastic Galerkin
method to compute the mean and the standard deviation of the solution.
The comparison to Monte-Carlo is contained in Table 1.

The Monte-Carlo solution (q = 10, 000) takes 5.5 minutes. The stochas-
tic Galerkin solution requires 3.3 minutes. This standard deviation for this
problem is quite small meaning the solution is not far off from the deter-
ministic solution. To handle a higher standard deviation, more terms in the
KL expansion are needed.

When the expansion is extended to include another random variable,
the assumption of independence is introduced. For a standard deviation,

24

||MC|| ||SG|| ||MC − SG|| ||MC−SG||
||MC||

E [u] 7.43× 10−1 7.41× 10−1 2.94× 10−3 3.95× 10−3

σ 3.81× 10−1 3.31× 10−1 5.05× 10−2 1.32× 10−1

Table 2: Results, m = 2, σ = 0.5, bx = by = 10

σ = 0.5 and bx = by = 10, with two variables 94.67% of the variance is
captured. Table 2 contains these results.

We see from these results, that the approximation has caused an increase
in the error, especially in the standard deviation of the solution. This so-
lution method behaves properly for standard deviations up to σ = 0.5. A
standard deviation higher than this introduces a singularity in the solution,
likely from the break down of the approximation or by the small value of
m. However, the σ = 0.5 solution is far enough from the deterministic
solution that we can be sure the stochastic Galerkin solution is in fact an
approximation to the stochastic problem. The simulations outlined above
use polynomials of maximum degree N = 3. Increasing this degree can help
the expand the range of standard deviations.

As for computation time, Monte-Carlo results (q = 100, 000) for m = 2
is about 3.5 hours, while the stochastic Galerkin method took approxi-
mately 0.5 hours. The majority of the time (79.28%) spent on the stochastic
Galerkin method is in computing the two marginal density functions needed.
Using a more creative quadrature than Matlab’s quad routine could improve
this computation time.

5 Conclusion

The stochastic Galerkin method has been verified and the solution method
in the case of m = 1 and m = 2 is much faster than the Monte-Carlo
method. Because the stochastic Galerkin method scales as the number of
parameters m increases, the m = 3 case will take longer than the Monte-
Carlo solution. One potential improvement to the stochastic Galerkin code is
in the computation of the marginal density functions. Since this is the most
expensive piece of the code, using a less accurate quadrature than Matlab’s
quad routine could provide a significant speedup. It is also possible to solve
the system for several different spatial and stochastic discretization by saving
these marginal density functions ahead of time. Using a linear expansion
produces a sparse stochastic Galerkin matrix so solving the matrix system
is quick.

25

Having this linear expansion and its joint density function illustrates that
the problem can be solved using the direct expansion of the lognormal field.
In fact, the problem with computing marginal densities could potentially be
avoided by using the Stochastic Collocation Method. This method requires
ρ̂(η) but not the orthogonal polynomials. Thus, the collocation method
is an approach with the potential to avoid some of the difficulties of the
stochastic Galerkin method, such as the computational constraint of the
marginal densities and the unfounded assumption of independence of the
random variables.

The deliverables include the code for computing the moments via Monte-
Carlo and stochastic Galerkin methods. The other deliverables, the com-
parison of m values and computational times is included in Section 4.5.

6 References

References

[1] N. Asmar, Partial Differential Equations with Fourier Series and Bound-
ary Value Problems, Pearson Prentice Hall, New Jersey, 2005.

[2] I. Babuška, F. Nobile, and R. Tempone, A stochasic collocation method
for elliptic partial differential equations with random input data, SIAM
Journal Numerical Analysis, 45, (2007), 1005-1034.

[3] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast
Iterative Solvers: with Applications in Incompressible Fluid Dynamics,
Oxford University Press, New York, 2005.

[4] W. Gautshci, Orthogonal Polynomials: Computation and Approxima-
tion, Oxford University Press, New York, 2004.

[5] W. Gautschi, OPQ: A Matlab Suite of Programs for Generating Or-
thogonal Polynomials and Related Quadrature Rules, http://www.cs.
purdue.edu/archives/2002/wxg/codes/OPQ.html.

[6] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Ap-
proach, Dover Publications, Mineola, New York, 2003.

[7] A. Gordon, Solving stochastic elliptic partial differential equations via
stochastic sampling methods , M.S Thesis, University of Manchester,
2008.

26

http://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html
http://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html

[8] C. Moler, Numerical Computing with Matlab, Chapter 10: Eigenval-
ues and Singular Values, 2004, http://www.mathworks.com/moler/

chapters.html.

[9] C.E. Powell and H.C. Elman, Block-diagonal preconditioning for spectral
stochastic finite-element systems, IMA Journal of Numerical Analysis,
29, (2009), 350-375.

[10] J. Rendu, Normal and lognormal estimation, Mathematical Geology,
11, 4, (1979), 407-422.

[11] C. Schwab and R. Todor, Karhunen-Loève approximation of random
fields by generalized fast multipole methods, Journal of Computational
Physics, 217, (2006), 100-122.

[12] D. J. Silvester, H. C. Elman, and A. Ramage, Incompressible Flow
& Iterative Solver Software, http://www.cs.umd.edu/~elman/ifiss/

index.html.

[13] E. Ullmann, H. C. Elman, and O. G. Ernst, Efficient iterative solvers for
stochastic Galerkin discretization of log-transformed random diffusion
problems, SIAM Journal on Scientific Computing, 34, (2012), A659-
A682.

[14] X. Wan and G. Karniadakis, Solving elliptic problems with non-
Gaussian spatially-dependent random coefficients, Computational Meth-
ods in Applied Mechanical Engineering, 198, (2009), 1985-1995.

[15] D. Xiu, Numerical Methods for Stochastic Computations, Princeton
University Press, New Jersey, 2010.

[16] D. Xiu and J. Hesthaven, High-order collocation methods for differential
equations with random inputs, SIAM Journal on Scientific Computing,
27, (2005), 1118-1139.

[17] D. Zhang, Stochastic Methods for Flow in Porous Media. Coping with
Uncertainties, Academic Press, San Diego, CA, 2002.

27

http://www.mathworks.com/moler/chapters.html
http://www.mathworks.com/moler/chapters.html
http://www.cs.umd.edu/~elman/ifiss/index.html
http://www.cs.umd.edu/~elman/ifiss/index.html

	Introduction
	Algorithm
	Karhunen-Loève expansion
	Gaussian random field
	Lognormal random field

	Solution method
	Deterministic diffusion equation
	Monte-Carlo method
	Stochastic Galerkin method

	Implementation
	Spatial discretization
	Discretization of the eigenvalue problem

	Deterministic diffusion equation
	Probability density function
	Monte-Carlo method
	Stochastic Galerkin method

	Results
	Solution of the eigenvalue problem
	Deterministic diffusion equation
	Monte-Carlo method
	Probability distribution
	Stochastic Galerkin Method

	Conclusion
	References

