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Overview

Project Overview

Existing Algorithm Implementation/Validation

Sparse Reconstruction

Least Angle Regression (LARS) [Efron et al., 2004]
Feature-Sign [Lee et al., 2007]
Non-negative and incremental Cholesky variants

Dictionary Learning

Task-Driven Dictionary Learning (TDDL) [Mairal et al., 2010]

Application/Analysis to New (Publicly Available) Datasets

Hyperspectral Imagery

Urban [US Army Corps of Engineers, 2012]
USGS Hyperspectral Library [Clark et al., 2007]
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Sparse Reconstruction

Topic: Sparse Reconstruction
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Sparse Reconstruction

Penalized Least Squares

Recall the Lasso: given Φ = [φ1, . . . ,φp] ∈ Rm×p, t ∈ R+, solve:

min
α
||x−Φα||22 s.t. ||α||1 ≤ t

which has an equivalent unconstrained formulation:

min
α
||x−Φα||22 + λ||α||1

for some scalar λ ≥ 0. The L1 penalty improves upon OLS by introducing
parsimony (feature selection) and regularization (improved generality).

Many ways to solve this problem, e.g.

1 Directly, via convex optimization (can be expensive)

2 Iterative techniques

Forward selection (“matching pursuit”), forward stagewise, others.
Least Angle Regression (LARS) [Efron et al., 2004]
Feature-Sign [Lee et al., 2007]
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Sparse Reconstruction LARS

LARS Properties
Full details in [Efron et al., 2004]

Why is it good?

Less aggressive than some greedy techniques; less likely to
eliminate useful predictors when predictors are correlated.

More efficient than Forward Selection, which can take thousands
of tiny steps towards a final model.

Some Properties

(Theorem 1) Assuming covariates added/removed one at a time
from active set, complete LARS solution path yields all Lasso
solutions.

(Sec. 3.1) With a change to the covariate selection rule, LARS
can be modified to solve the Positive Lasso problem.

(Sec. 7) The cost of LARS is comprable to that of a least squares
fit on m variables. The LARS sequence incrementally generates a
Cholesky factorization of ΦTΦ in a very specific order.
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Sparse Reconstruction LARS

LARS Relationship to OLS

(2.22) Successive LARS estimates µ̂k always approach but never reach
the OLS estimate x̄k (except maybe on the final iteration).

φ1

φ2

x

φ2

µ̂2 x̄2

µ̂2 approaches OLS solution x̄2
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Sparse Reconstruction LARS

LARS Implementation/Validation
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Diabetes Validation Test: Coefficients

n = 10,m = 442; Matches Figure 1 in [Efron et al., 2004]
Also validated by comparing orthogonal designs with theoretical result.
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Sparse Reconstruction Feature-Sign

Feature-Sign Properties
Full details in [Lee et al., 2007]

Why is it good?

Very efficient; reported performance gains over LARS.

Can be initialized with arbitrary starting coefficents.

Simple to implement.

One half of a two-part algorithm for matrix factorization.

Some Properties

Tries to search for, or “guess”, signs of coefficients. Knowing signs
reduces LASSO to an unconstrained quadratic program (QP) with
closed form solution.

Iteratively refines these sign guesses; involves an intermediate line
search.

Objective function strictly decreases.
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Sparse Reconstruction Feature-Sign

Feature-Sign Implementation/Validation

Implemented nonnegative extension. Performance hit (at least w/
my implementation) as the unconstrained QP becomes a
constrained QP. Solved using Matlab’s quadprog().

Validated by comparing results with LARS
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Dictionary Learning

Topic: Dictionary Learning
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Dictionary Learning

Dictionary Learning for Sparse Reconstruction

Following the notation/development of [Mairal et al., 2010].

Given: training data set of signals X = [x1, . . . ,xn] in Rm×n

Goal: design a dictionary Φ in Rm×p (possible for p > m, i.e. an
overcomplete dictionary) by minimizing the empirical cost function

gn(D) ,
1

n

n∑
i=1

`u(xi,D)

where `u, the unsupervised loss function, is small when Φ is “good” at
representing xi sparsely. In [Mairal et al., 2010], the authors use the
elastic-net formulation:

`u(x,D) , min
α∈Rp

1

2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22 (1)
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Dictionary Learning

Dictionary Learning for Sparse Reconstruction

To prevent artificially improving `u by arbitrarily scaling D, one
typically constrains the set of permissible dictionaries:

D , {D ∈ Rm×p s.t. ∀j ∈ {1, . . . , p}, ||dj ||2 ≤ 1}
Optimizing the empirical cost gn can be very expensive when the
training set is large (as is often the case in dictionary learning
problems). However, in reality, one usually wants to minimize the
expected loss:

g(D) , Ex [`u(x,D)] = lim
n→∞

gn(D) a.s.

(where expectation is taken with respect to the unknown
distribution of data objects p(x)) In these cases, online stochastic
techniques have been shown to work well [Mairal et al., 2009].
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Dictionary Learning

Classification and Sparse Reconstruction

Consider the classification task:

Given: a fixed dictionary D, an observation x ∈ X ⊆ Rm and a
sparse representation of the observation x ≈ α?(x,D)

Goal: identify the associated label y ∈ Y, where Y is a finite set of
labels (would be a subset of Rq for regression)

Assume D is fixed and α?(x,D) will be used as the features for
predicting y. The classification problem is to learn the model
parameters W by solving:

min
W∈W

f(W) +
ν

2
||W||2F

where
f(W) , Ey,x [`s(y,W,α?(x,D))]

and `s is a convex loss function (e.g. logistic) adapted to the
supervised learning problem.
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Dictionary Learning

Task Driven Dictionary Learning for Classification

Now, we wish to jointly learn D,W:

min
D∈D,W∈W

f(D,W) +
ν

2
||W||2F (2)

where
f(D,W) , Ey,x [`s(y,W,α?(x,D))]

Example:

Binary classification: Y = {−1,+1}
Linear model: w ∈ Rp
Prediction: sign(wTα?(x,D))

Logistic loss: `s = log
(

1 + e−yw
Tα?

)
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0−1 loss

logistic

min
D∈D,w∈Rp

Ey,x
[
log
(

1 + e−yw
Tα?(x,D)

)]
+
ν

2
||w||22 (3)
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Dictionary Learning

Solving the Problem

Stochastic gradient descent is often used to minimize functions whose
gradients are expectations. The authors of [Mairal et al., 2010] show
that, under suitable conditions, equation (2) is differentiable on
D ×W, and that,

∇Wf(D,W) = Ey,x [∇W`s(y,w,α
?)]

∇Df(D,W) = Ey,x
[
−Dβ?α?T + (x−Dα?)β?T

]
where β? ∈ Rp is defined by the properties:

β?ΛC = 0 and β?Λ = (DT
ΛDΛ + λ2I)−1∇αΛ`s(y,W,α?)

and Λ are the indices of the nonzero coefficients of α?(x,D).
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Dictionary Learning

Algorithm: SGD for task-driven dictionary learning
[Mairal et al., 2010]

Input: p(y,x) (a way to draw samples i.i.d. from p), λ1, λ2, ν ∈ R
(regularization parameters), D ∈ D0 (initial dictionary), W0 ∈ W
(initial model), T (num. iterations), t0, ρ ∈ R (learning rate
parameters)

1 for t = 1 to T do

2 Draw (yt,xt) from p(y,x) (mini-batch of size 200)

3 Compute α? via sparse coding (LARS, Feature-Sign)

4 Determine active set Λ and β?

5 Update learning rate ρt

6 Take projected gradient descent step

7 end
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Dictionary Learning

TDDL Implementation/Validation

Matched experimental results on the USPS [Hastie et al., 2009] data
set with those reported in [Mairal et al., 2010]

Digit ρ λ # in D0 Runtime (h) Accuracy

0 10 .150 5 8.2 .926
1 10 .225 7 7.1 .990
2 10 .225 7 6.8 .972
3 10 .225 7 7.4 .968
4 10 .225 4 7.6 .971
5 10 .225 4 7.2 .972
6 10 .225 2 7.5 .969
7 10 .175 5 7.9 .983
8 10 .200 3 8.5 .951
9 10 .200 3 8.1 .969

mean .967
reported .964
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Hyperspectral Imaging

Topic: Hyperspectral Imaging
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Hyperspectral Imaging

Spectral Unmixing

Material heterogeneity and environmental interference mean that one
never measures “pure” pixels/spectra. Instead, “spectral unmixing” is
often used to determine the material present at some pixel x ∈ Rm,

x =

n∑
k=1

φkαk + ε

where {φk} is a spectral library, {ak} are scalar mixture coefficients
and ε is noise. Recent results suggest sparse coding may apply to the
spectral unmixing problem; also to infer HSI-resolution data from lower
resolution measurements [Charles et al., 2011].
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Hyperspectral Imaging

Mixture Element Detection

Original plan: analysis on single pixel classification problems for
objects in scene comprised of ≥ 1 pixel

Problem very easy in some cases (baseline algorithms have no
difficulty)
In the opinion of one HSI expert, a more relevant problem today is
sub-pixel detection

Modified plan: “mixture element detection” problem

Select a single spectral signature as the target
Generate mixtures of s spectral “ingredients”; some containing
target signature, some without
Binary classification problem: identify mixtures containing target
signatures

Used TDDL + nonnegative Feature-Sign solver; various baselines
for comparison

Mike Pekala (UMD) AMSC664 May 1, 2012 20 / 31



Hyperspectral Imaging

Urban
[US Army Corps of Engineers, 2012]

Urban scene in Texas

307× 307 pixels

210 spectral bands (162 valid)

wavelengths: 412-2390 nm

radiance data

no “standard” ground truth

freely available
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Hyperspectral Imaging

Manual Ground Truth
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Hyperspectral Imaging

Mixture Element Detection, 1-vs-all Classification

Classification Accuracy
LR kNN1 kNN3 LR-SC kNN1-SC kNN3-SC TD-10

M1 84.0 83.2 82.0 86.8 77.0 78.4 82.4
M2 82.6 79.2 76.6 75.8 72.8 77.4 81.2
M3 76.8 74.6 75.0 74.0 75.2 69.0 81.4
M4 86.4 87.8 82.6 84.0 77.6 78.6 88.2

Parameter Value

# Target Mixtures 500
# Clutter Mixtures 500
% Training 50
# Ingredients 3
Min. % Target 5
Max. % Target 25
Noise Variance 0
TDDL Iterations 10000

Not clear any one approach
significantly better

Only 4 total ingredients in library,
signatures fairly distinct
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Hyperspectral Imaging

USGS Spectral Library
[Clark et al., 2007]

Freely available library of 1365 different spectra (minerals,
mixtures, coatings, volatiles, man-made, vegetation)
Focus on a subset of 44 spectra from the vegetation category
(∼ 0.3− 2.5µm, ∼ 1200 valid wavelengths)
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Hyperspectral Imaging

Mixture Element Detection, 1-vs-all Classification

Classification Accuracy
LR kNN1 kNN3 LR-SC kNN1-SC kNN3-SC TD-50 TD-300

M1 60.2 63.4 65.8 67.7 57.4 61.6 70.2 70.2
M2 49.2 61.6 63.2 56.4 52.8 60.0 59.4 60.8
M3 52.8 56.2 54.0 56.4 52.2 50.4 54.6 55.0
M4 57.8 62.4 61.8 60.6 54.0 56.6 63.6 70.8
M5 55.0 67.6 68.6 66.6 59.6 63.2 64.2 73.34
M6 52.2 59.0 62.6 61.0 54.2 57.6 62.8 65.2*
M7 44.8 56.4 59.6 60.2 56.8 58.4 63.4 64.2*
M8 64.8 80.8 81.4 66.6 64.0 65.2 82.2 81.2

Parameter Value

# Target Mixtures 500
# Clutter Mixtures 500
% Training 50
# Ingredients 5
Min. % Target 5
Max. % Target 25
Noise Variance 0.001
TDDL Iterations 1000

More challenging mixture model

LR suffers from noise; SC helps

TDDL relatively strong performer

kNN3 pretty good, especially when
given enough data

(* := TD-200)
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Software

Processing

Platform Load Sharing Facility (LSF) scheduler on 20 compute
nodes (Intel Xeon X5650, 12 threads)

Software includes scripts for various tasks (kfold CV, train/test)

$ lsload

HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

cn17 ok 0.0 0.0 0.0 0% 0.0 0 40576 8824M 2000M 22G

maul ok 0.0 0.2 0.1 0% 0.0 7 15 19G 26G 20G

cn00 ok 12.0 12.2 11.8 99% 0.0 0 10528 8824M 2000M 22G

cn08 ok 12.0 12.5 12.0 99% 0.0 0 3e+05 8824M 2000M 22G

cn12 ok 12.0 12.2 11.7 99% 0.0 0 3e+05 8824M 2000M 22G

cn07 ok 12.0 12.3 11.8 99% 0.0 0 3e+05 8824M 2000M 22G

cn19 ok 12.0 12.2 11.7 98% 0.0 0 9040 8832M 2000M 22G

cn15 ok 12.0 12.0 11.8 98% 0.0 0 3e+05 8824M 2000M 22G

cn13 ok 12.0 12.4 11.7 99% 0.0 0 7264 8824M 2000M 22G

cn04 ok 12.0 11.6 11.6 98% 0.0 0 9016 8824M 2000M 22G

cn02 ok 12.0 12.3 11.9 99% 0.0 0 47712 8824M 2000M 22G

cn03 ok 12.1 12.4 12.1 99% 0.0 0 29312 8832M 2000M 22G

cn05 ok 12.1 12.4 11.7 99% 0.0 0 7504 8824M 2000M 22G

cn09 ok 12.2 12.1 11.8 98% 0.0 0 20240 8824M 2000M 22G

cn11 ok 12.2 12.1 11.9 98% 0.0 0 9032 8824M 2000M 22G

cn14 ok 12.2 11.9 11.6 99% 0.0 0 3e+05 8824M 2000M 22G

cn16 ok 12.3 11.6 11.7 99% 0.0 0 3e+05 8824M 2000M 22G

cn01 ok 12.3 11.9 11.8 98% 0.0 1 71 8824M 2000M 22G

cn10 ok 12.3 12.1 11.8 99% 0.0 0 30672 8824M 2000M 22G

cn18 ok 12.3 12.8 11.9 99% 0.0 0 78 8832M 2000M 22G

cn06 ok 12.6 11.5 11.5 99% 0.0 0 3e+05 8824M 2000M 22G
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Software

Deliverables

Software/Data Sets

Solvers (LARS, F-S, TDDL): ∼2000 lines of Matlab

Diabetes data set downloaded from LARS author’s website;
removed header (provided)
Test matrices constructed on-the-fly by unit tests (provided)
Limited doxygen documentation (requires doxygen and “Using
Doxygen with Matlab” from Matlab Central to regenerate)

Analysis experiments: ∼1500 lines of Matlab, ∼140 lines bash

URLs to HSI data sets provided in references

USGS Viewer: ∼500 lines of Matlab

Presentations (9/22/2011, 12/6/2011, 3/15/2012, 5/1/2012)

Final report and software tarball to be delivered by May 11
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Software

Doxygen
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Summary

Summary

Project Goals Met

Implemented algorithms from three papers

(LARS, Feature-Sign, TDDL)

Validated using data sets with existing/known results

(diabetes, orthogonal designs, USPS)

Conducted new experiments with hyperspectral data sets

(Urban, USGS)

Thanks!!

Dr.’s Levy, Balan, Ide, Wang, Banerjee for guidance and help
throughout the course!

AMSC663/4 for great questions and enduring four presentations
on this topic ¨̂
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Summary
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Summary
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