
Analyzing Task Driven Dictionary Learning

Algorithms

AMSC 663 Mid-Year Report

Mike Pekala (mike.pekala@gmail.com)

Advisor: Prof. Doron Levy (dlevy@math.umd.edu)
Department of Mathematics, CSCAMM

December 16, 2011

Abstract

The underlying notion of sparse coding is that, in many domains,
data vectors can be concisely represented as a sparse linear combina-
tion of basis elements or dictionary atoms. Recent results suggest that,
for many tasks involving compressible data (e.g. classification, denois-
ing), performance on that task can be improved by explicitly learning
the sparsifying dictionary directly from the data [16, 17]. This is in
contrast with classical approaches, such as wavelets, that use prede-
fined dictionaries known to work well on a broad class of signals. Fur-
thermore, results also suggest that additional performance gains are
possible by jointly optimizing the dictionary for both the data and the
task of interest [13].

In this project, we propose to implement the task-driven dictionary
learning algorithm of [13] with a focus on the binary classification
task. We will verify the correctness of our implementation through a
combination of unit testing and comparison with published results on
open data sets. Finally, we shall apply this algorithm to data sets not
considered by [13].

1 Introduction

Classical techniques for sparse coding leverage the notion that natural sig-
nals can frequently be represented compactly using relatively few elements
from some basis (or, more generally, an overcomplete dictionary D ∈ Rm×p
where p > m). For example, wavelet have a longstanding reputation as an

effective means of compactly representing natural images [15]. Formally,
a data vector x ∈ Rm admits a sparse representation over the dictionary
D = [d1, . . . ,dp] ∈ Rm×p when there exists a good approximation for x
consisting of a linear combination of only a few columns of D. The sparse
approximation problem of finding this representation can be posed:

min
α
||α||0 s.t. ||x−Dα||2 < ε (1)

Recently, state-of-the-art results in many signal processing tasks have
been achieved using dictionaries learned from test data instead of a pre-
defined one, such as wavelets [16, 17, 6]. Intuitively, these performance
gains are possible since the dictionary elements di (also called “atoms”)
can be tailored specifically to the data of interest. Unlike other data-driven
techniques, such as principal component analysis (which, at its core, uses
a singular value decomposition), dictionary learning approaches do not re-
quire the resulting atoms be orthogonal. Removing this restriction allows
even more flexibility to adapt the representation to the data.

Most dictionary learning problems take as input a data set of signals X =
[x1, . . . ,xn] ∈ Rm×n and produce a dictionary D ∈ Rm×p by minimizing the
empirical cost function:

gn(D) ,
1

n

n∑
i=1

`u(xi,D) (2)

where `u, the unsupervised loss function, is small when D is “good” at
representing xi sparsely [13]. One possible measure of the quality of a sparse
approximation is the elastic net criterion [20]:

L(λ1, λ2,α,x,D) =
1

2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22 (3)

where λ1, λ2 ∈ R with λ1, λ2 ≥ 0 are regularization parameters tuned for
the problem at hand. In this case the unsupervised loss becomes:

`u(x,D) , min
α∈Rp

L(λ1, λ2,α,x,D) (4)

When λ2 = 0, minimizing the elastic net criterion corresponds to basis pur-
suit, a convex relaxation of the unconstrained version of the sparse approx-
imation problem (1). Basis pursuit can also be viewed as an unconstrained
version of the Lasso [18].

2

To prevent artificially improving `u by simply scaling D, one typically
constrains the set of permissible dictionaries by restricting the two norm of
each column to be less than or equal to one. This produces a convex set D
of admissible matrices 1:

D , {D ∈ Rm×p s.t. ∀j ∈ {1, . . . , p}, ||dj ||2 ≤ 1}
Note that minimizing the empirical cost gn directly can be very expen-

sive when the training set is large (as is often the case in dictionary learning
problems). However, in practice, one is typically concerned about perfor-
mance on as of yet unseen data. Thus, a more relevant metric of is often
the expected loss:

g(D) , Ex [`u(x,D)] = lim
n→∞

gn(D) a.s.

(where expectation is taken with respect to the unknown distribution of
data objects p(x)). Stochastic online techniques provide efficient ways to
obtain stationary points of this optimization problem [14].

1.1 Task-Driven Dictionary Learning

If the sole objective is to find a sparse representation for data, then the
preceding completes the story. However, quite often sparse approximation
is a preprocessing step for some higher-level task. In classification problems,
for example, overall performance is often highly dependent upon finding
good representations of the observations. In this case, sparse approximation
acts as a data preconditioner or feature selector. Here, the signals xi ∈ Rm
are observations and the goal is to identify the associated labels yi ∈ Y (e.g.
in binary classification the space of labels is Y = {−1,+1}). Given a fixed
dictionary D and the sparsity criterion (3), the sparse approximation:

α?(x,D) = arg min
α∈Rp

L(λ1, λ2,α,x,D) (5)

1Recall that a set C is convex if, for any x, y ∈ C and θ ∈ R with 0 ≤ θ ≤ 1, it is the
case that θx + (1 − θ)y ∈ C. If A,B ∈ D then consider the ith column of any convex
combination of A and B, i.e. (θA+ (1− θ)B)i = θai + (1− θ)bi. The triangle inequality
and positive homogeneity properties of norms along with γ , max(||ai||2, ||bi||2) gives

||θai + (1− θ)bi||2 ≤ θ||ai||2 + (1− θ)||bi||2 ≤ θγ + (1− θ)γ = γ

Therefore, the convex combination is also in D. Other classes of matrices can also be
shown to form convex sets, e.g. symmetric positive definite matrices [12].

3

provides the features for predicting y. The classification problem is then to
learn the model parameters W by solving:

min
W∈W

f(W) +
ν

2
||W||2F

where ν ∈ R with ν ≥ 0 is a regularization parameter and f is a function
measuring the prediction quality:

f(W) , Ey,x [`s(y,W,α?(x,D))]

Here, `s denotes a supervised loss, which is the classification analog of the
unsupervised loss (4). There are many options for supervised loss functions;
typically they are chosen to have properties amenable to optimization. The
authors of [13] utilize the logistic loss function. Assuming the linear classi-
fication model W = w ∈ W = Rp, the prediction and logistic loss functions
are:

m = wTα?(x,D) Prediction (6)

`s = log
(
1 + e−ym

)
Logistic loss (7)

Figure 1 depicts the logistic loss and compares it to the 0-1 loss, a func-
tion which maps correct classifications to a fixed loss of zero and incorrect
classifications to a fixed loss of 1.

Task-driven dictionary learning combines the notion of a supervised task,
such as classification, with the unsupervised dictionary learning problem
described previously [13]. The result is an optimization problem where the
goal is to jointly learn D and W:

min
D∈D,W∈W

f(D,W) +
ν

2
||W||2F (8)

where, for the classification task,

f(D,W) , Ey,x [`s(y,W,α?(x,D))]

In the case of the logistic loss, the overall optimization problem for classifi-
cation task driven dictionary learning becomes:

min
D∈D,w∈Rp

Ey,x
[
log
(

1 + e−yw
Tα?(x,D)

)]
+
ν

2
||w||22 (9)

Section 2 details an approach for solving this optimization problem.

4

−5 −4 −3 −2 −1 0 1 2
0

1

2

3

4

5

6

prediction

lo
s

s

Two loss functions

0−1 loss

logistic

Figure 1: Comparing the 0-1 loss with the logistic loss. The 0-1 loss is not
differentiable everywhere and is neither concave nor convex. The logistic
loss provides a smooth, convex approximation.

2 Approach

This project will develop an implementation of the algorithm defined in [13]
for solving the optimization problem (8). In particular, we will focus on
an implementation for the optimization problem (9) arising from the binary
classification problem using the logistic loss. The authors of [13] provide
additional extensions and formulations beyond classification; however, im-
plementing these extensions is not currently within the scope of this project.

The task driven dictionary learning algorithm is outlined in Algorithm 1.
At a high level, it consists of an outer stochastic gradient descent loop that
incrementally samples the training data set and an inner loop that solves the
sparse approximation problem and updates the dictionary D and classifier
model w.

2.1 Stochastic Gradient Descent

The stochastic gradient descent (SGD) algorithm is often used as a way to
approximate the gradient of a function, such as the empirical cost gn [8].
Instead of a direct calculation, SGD incrementally estimates the gradient
on the basis of a single randomly selected example xt,

wt+1 = wt − ρt∇wQ(xt, wt)

5

Algorithm 1 Task-driven dictionary learning [13]

Require: Inputs: λ1, λ2, ν ∈ R (regularization parameters), D ∈ D (initial
dictionary), W ∈ W (initial model), T (number of iterations), t0, ρ ∈ R
(learning rate parameters)

1: for t = 1 to T do
2: Sample: draw (yt,xt) from p(y,x)
3: Sparse coding: compute α? by using LARS to solve (5)
4: Compute: the active set Λ and β?

Λ← {j ∈ {1, . . . , p} : α?[j] 6= 0}
β?Λ ← (DT

ΛDΛ + λ2I)
−1∇αΛ`s(yt,W,α?)

β?ΛC ← 0

5: Update learning rate: ρt ← min(ρ, ρt0/t)
6: Projected gradient step:

W← ΠW [W − ρt (∇W`s(yt,w,α
?) + νW)]

D← ΠD

[
D− ρt

(
−Dβ?α?T + (x−Dα?)β?T

)]
(where ΠS denotes orthogonal projection onto the set S)

7: end for
8: return D,w

6

where Q is a loss function, w is a weight being optimized and ρt a step size
known as the learning rate. The stochastic process {wt, t = 1, . . .} depends
upon the sequence of randomly selected examples xt and thus optimizes the
empirical cost (which is hoped to be a good proxy for the expected cost).

The authors of [13] show that, under suitable conditions, equation (8) is
differentiable on D ×W, and that

∇Wf(D,W) = Ey,x [∇W`s(yt,w,α
?)]

∇Df(D,W) = Ey,x
[
−Dβ?α?T + (x−Dα?)β?T

]
where β? ∈ Rp is defined by the properties:

β?ΛC = 0 and β?Λ = (DT
ΛDΛ + λ2I)

−1∇αΛ`s(yt,W,α?)

and Λ are the indices of the nonzero coefficients of α?(x,D). These gradients
take the form of expectations, and thus SGD is applicable.

In theory, draws from the distribution of training data p(x, y) should be
made i.i.d. (Algorithm 1, step 2). However, this may be difficult since the
distribution itself is typically unknown. As an approximation, samples are
instead drawn by iterating over random permutations of the training set [7].

2.2 Least Angle Regression (LARS)

The most significant computational step of the inner loop in Algorithm 1 in-
volves solving the sparse coding problem (Algorithm 1, line 3). This problem
is solved efficiently using Least Angle Regression (LARS), a model selection
technique that can be viewed as a less greedy version of Forward Selec-
tion (also known as “forward stepwise regression” or “orthogonal matching
pursuit”) or as a more efficient implementation of the Forward Stagewise
algorithm [11]. At a high level, LARS begins with all coefficients equal
to zero and incrementally adds predictors most correlated with the current
residual. Unlike Forward Selection, which incrementally evolves the solution
along the covariate directions dj , the LARS solution evolves along a path
which is equiangular to all covariates currently in the active set. This par-
ticular method for evolving the solution (depicted graphically in Figure 2)
has a number of desirable properties, including:

• ([11], Theorem 1) With a small modification to the LARS step size
calculation, and assuming covariates are added/removed one at a time
from the active set, the complete LARS solution path yields all Lasso
solutions.

7

x1

x2

y

x1/||x1||2 = u1

Choose initial direction u1

(covariate most correlated with y)

x1

x2

y

γ1u1 = µ̂1

Move along u1

until x2 is equally correlated

x1

x2

y

µ̂1 x2
u2

Identify equiangular vector u2

x1

x2

y

µ̂1 x2

µ̂2 = µ̂1 + γ2u2

Move along equiangular direction u2

Figure 2: The LARS solution µ̂k evolving along equiangular directions in
the case where the number of covariates p = 2.

• ([11], Equation (2.22)) Successive LARS estimates µ̂k always approach
but never reach the OLS estimate ȳk (except maybe on the final iter-
ation).

• ([11], Section 3.1) With a change to the covariate selection rule, LARS
can be modified to solve the Positive Lasso problem:

min
β
||y −Xβ||22 s.t. ||β||1 ≤ t

0 ≤ βj ∀j

This version of the Lasso is useful in domains where the underlying sig-
nal being approximated is a positive linear combination of constituent
signals and it would be desirable for the sparse approximation to have
the same form (e.g. hyperspectral images [9]).

• ([11], Section 7) The cost of LARS is comprable to that of a least
squares fit on m variables. The LARS sequence incrementally gener-
ates a Cholesky factorization of XTX in a very specific order.

8

3 Implementation

The software for this project will be developed in Matlab on a quad core
Mac Pro running OSX. Should performance considerations dictate, com-
putationally intensive parts of the code may be developed in C/C++ and
integrated using Matlab’s MEX interface [2]. Python and/or standard Mat-
lab toolboxes may also be used for data pre/post processing.

In large scale learning problems, computational complexity is always
a potential issue. While stochastic gradient descent has empirically been
shown to be effective on large scale problems and much work has been in-
vested analyzing its asymptotic performance [8], care will be required in
developing the implementation and problem setup to ensure tractability in
practice. An implicit goal of this project is to obtain an improved practical
and theoretical understanding of these issues.

Another possible issue is the selection of parameters and initial condi-
tions for new data sets. Identifying effective parameters is crucial for ef-
fective performance, and can be quite time consuming. In an attempt to
mitigate this risk, the project plan allocates significant time in the second
semester for precisely this issue.

3.1 LARS

We have a validated implementation of the LARS algorithm. The implemen-
tation consists of approximately 560 lines of Matlab (including comments),
and includes the Lasso extension to LARS, the non-negative Lasso variant
(described in Section 2), the ability to choose various termination criteria
(e.g. by specifying a hard constraint on ||β||1, by specifying the parame-
ter λ1 in the regularized least squares Lasso formulation, setting an explicit
number of iterations or a fixed tolerance on the residual) and the ability
to enable/disable an incremental Cholesky decomposition which may prove
useful for large problems. The current API for the LARS algorithm is given
in Appendix A.

4 Databases

4.1 Synthetic Sparse Approximation

For validation purposes, we shall generate a number of simulated signals and
dictionaries for which the optimal solution to the elastic net sparse approx-
imation problem is known. This is true when the matrix D is orthogonal.

9

In this case, the elastic net criterion (3) becomes:

L =
1

2

xTx− xTDα−αTDTx + αTDTD︸ ︷︷ ︸
I

α

+ λ1

∑
i

|αi|+
λ2

2
αTα

The elastic net criterion is convex, and thus we can seek an optimal
value by taking the subgradient with respect to α and setting it equal to
zero. Consider the ith element of this subgradient,

0 = −DTxi + αi + λ1sign(αi) + λ2αi

(1 + λ2)αi = DTxi − λ1sign(αi)

Recall that λ1, λ2 ≥ 0. If DTxi = 0 it must be that αi = 0 (as this gives
αi = c sign(αi) with c < 0). Consider then the case where DTxi 6= 0. Use
DTxi = sign(DTxi)|DTxi| to write,

αi =

(
|DTxi| − λ1

sign(αi)

sign(DTxi)

)
sign(DTxi)(1 + λ2)−1

From this equation we see that sign(DTxi) and sign(αi) cannot differ, as this
would lead to a positive (negative) quantity on the LHS equaling a negative
(positive) quantity on the RHS. If sign(αi) = sign(DTxi), it must be the
case that

(
|DTxi| − λ1

)
≥ 0 by a similar sign consideration. Therefore the

optimal solution for the elastic net can be written,

α =

(
|DTx| − λ1

)
+

sign(DTx)

1 + λ2

where (z)+ denotes the positive part of z. This agrees, with the result
provided (without proof) in [20] (after taking into account that the elastic
net formulation in [20] does not include the factor of 1/2 in equation (3)).

Leveraging the above, we will generate test databases for sparse approx-
imation problems in Matlab.

10

Patient Age Sex BMI BP x5 x6 x7 x8 x9 x10 Response
1 59 2 32.1 101 157 93.2 38 4 4.8598 87 151
2 48 1 21.6 87 183 103.2 70 3 3.8918 69 75
3 72 2 30.5 93 156 93.6 41 4 4.6728 85 141
4 24 1 25.3 84 198 131.4 40 5 4.8903 89 206
...

...
...

...
...

...
...

...
...

...
...

...
442 36 1 19.6 71 250 133.2 97 3 4.5951 92 57

Table 1: Subset of the diabetes data set provided by the authors of [11].
The measurements x5, . . . x10 represent blood serum measurements.

4.2 Diabetes

The authors of the original LARS paper provide a data set which contains 10
baseline variables for 442 diabetes patients along with a quantitative measure
of disease progression after one year [11]. The baseline measurements include
age, sex, body mass index, average blood pressure and six blood serum
measurements. This data set is provided in plain text files with the data
in both unnormalized and normalized forms. In the latter case, the ten
baseline variables are normalized to have mean 0 and Euclidean norm one
while the response variable has been centered (i.e. has mean 0). Table 1
shows a subset of the unnormalized data set.

4.3 MNIST

The MNIST dataset is a collection of images representing handwritten sam-
ples of the digits 0-9 generated by 500 different writers. The images them-
selves are 28×28 greyscale images, and the data set contains 60,000 training
examples and 10,000 test examples. MNIST is a fairly standard data set in
the machine learning community, and is openly available [4].

4.4 USPS

The USPS dataset is another open collection of handwriting images, again
corresponding to digits 0-9. In this case, the images are 16 × 16 greyscale
images with pixel values scaled to either [−1, 1] or [0, 2] depending upon the
data set provider [1, 5]. The training data set contains 7291 images and
the test set contains 2007 images. Note there is a known bias between the
training and test data sets, making the test data set more difficult than the
training set ([19], Appendix B).

11

4.5 Hyperspectral

Since dictionary learning algorithms are particularly amenable to large datasets
of natural signals, we propose to apply our implementation to a hyperspec-
tral imaging data set. Several open datasets exist in the literature; one
promising set is included as part of the MultiSpec data analysis system de-
veloped by Purdue University [3]. A second option is to leverage the AVIRIS
hyperspectral data set, which was also used in [10] (and has the advantage
that baseline classification performance is available).

5 Validation

5.1 LARS

To validate our implementation of the LARS algorithm, we used two ap-
proaches. First, we qualitatively compared results obtained using our im-
plementation on the diabetes data set (see Section 4) with those presented
in [11]. Figure 3 shows the solution obtained using our implementation of
LARS. Qualitatively the two figures are in good agreement, including the
relative trajectories of each coefficient and the qualitative behaviors of each
trajectory (e.g. the “kink” in the trajectory of coefficient 8 when coefficient
7 leaves and then reenters the active set near ||β||1 = 2800). In addition to
a visual comparison, the code includes a unit test that checks each covariate
is added/removed in the expected order and that their relative magnitudes
are in agreement with those reported by [11].

We further validated our implementation using the synthetic sparse ap-
proximation data set detailed in Section 4. In this case, our unit test ran-
domly generates 200 sparse approximation problems using orthogonal design
matrices (half use an identity design matrix and the other half use the Q
from a QR decomposition of a Gaussian matrix). We verified that the the-
oretically expected optimal solution was obtained for both the constrained
and the penalized least squares formulations of the Lasso.

5.2 Task-driven dictionary learning

To validate our implementation of algorithm 1, we shall replicate the hand-
writing classification experimental setup of [13] and compare results from
our implementation on the MNIST and USPS datasets with those in the
paper.

12

0 500 1000 1500 2000 2500 3000 3500
−800

−600

−400

−200

0

200

400

600

800

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

||β ||1

β

Diabetes Validation Test: Coefficients

Figure 3: Estimates of regression coefficients β̂j , j = 1, . . . , 10 for the dia-
betes data set (see Section 4). For each possible choice of constraint on ||β||1
(x axis), the figure shows the corresponding Lasso solution (y axis values for
each individual curve). For example, given the constraint ||β||1 ≤ 500, the
only nonzero coefficients in the Lasso solution are β3 and β9. This result
qualitatively matches the corresponding Figure 1 in [11].

13

6 Testing

For testing we propose to use our implementation of the task-driven dictio-
nary learning algorithm to classify subsets of hyperspectral images described
in Section 4. In this case, classification will be done on a per-pixel basis by
decomposing the original image into a sequence of patches (as opposed to
working with the entire image as a single data vector). This approach is
often used in dictionary learning problems for images, e.g. [13].

Optionally, we will also consider using this algorithm on non-imaging
datasets for comparison. For example, a vaccine data set similar to the dia-
betes data set described in Section 4 is available, and will be used provided
public release issues can be resolved.

7 Schedule, Milestones and Deliverables

The following schedule and milestones will be updated as the project pro-
gresses.

7.1 Schedule

• Phase I: Algorithm development (Sept 23 - Jan 15)

– Phase Ia: Implement LARS (Sept 23 ∼ Oct 24)

– Phase Ib: Validate LARS (Oct 24 ∼ Nov 14)

– Phase Ic: Implement SGD framework (Nov 14 ∼ Dec 15)

– Phase Id: Validate SGD framework (Dec 15 ∼ Jan 15)

• Phase II: Analysis on new data sets (Jan 15 - May 1)

7.2 Milestones

• Phase Ia: Initial Matlab implementation of LARS algorithm available
(Complete)

• Phase Ib: LARS implementation validated using synthetic and diabetes data
(Complete)

• Phase Ib: Code review (December 2, 2011)
(Complete)

• Phase Ib: Mid-year status presentation (December 6, 2011)
(Complete)

• Phase Ic: Initial Matlab implementation of SGD code available
(In progress)

14

• Phase Id: SGD algorithm validated using MNIST and USPS data
(In progress)

• Phase II: Preliminary results on selected dataset (∼ Mar 1)

• Phase II: Final report and presentation (∼ May 1)

7.3 Deliverables

Deliverables for this project include all source code, synthetically generated
test data sets and a written report of results obtained on all data sets.

References

[1] Datasets for ”The Elements of Statistical Learning”. http://

www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html.

[2] Matlab Product Support: MEX-files Guide. http://www.mathworks.

com/support/tech-notes/1600/1605.html.

[3] MultiSpec: A Freeware Multispectral Image Data Analysis System.
https://engineering.purdue.edu/~biehl/MultiSpec/index.html.

[4] The MNIST Database of Handwritten Digits. http://http://yann.

lecun.com/exdb/mnist.

[5] USPS Dataset”. http://www-i6.informatik.rwth-aachen.de/

~keysers/usps.html.

[6] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: Design
of dictionaries for sparse representation. In Proceedings of SPARS05,
pages 9–12, 2005.

[7] L. Bottou. Online learning and stochastic approximations, 1998.

[8] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient De-
scent, page 177187. Springer, 2010.

[9] Adam S. Charles, Bruno A. Olshausen, and Christopher J. Rozell.
Learning sparse codes for hyperspectral imagery. J. Sel. Topics Sig-
nal Processing, 5(5):963–978, 2011.

[10] T. Doster. Nonlinear Dimensionality Reduction for Hyperspectral Im-
age Classification. http://www2.math.umd.edu/~rvbalan/TEACHING/
AMSC663Fall2010/PROJECTS/P2/index.html.

15

[11] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.
Least angle regression. Annals of Statistics, 32:407–499, 2004.

[12] Zico Kolter. Convex optimization overview, 2008.

[13] Julien Mairal, Francis Bach, and Jean Ponce. Task-Driven Dictionary
Learning. Rapport de recherche RR-7400, INRIA, 2010.

[14] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
dictionary learning for sparse coding. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 689–
696, New York, NY, USA, 2009. ACM.

[15] Stéphane Mallat. A Wavelet Tour of Signal Processing. 2009.

[16] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and An-
drew Y. Ng. Self-taught learning: Transfer learning from unlabeled
data. In Proceedings of the Twenty-fourth International Conference on
Machine Learning, 2007.

[17] Ignacio Ramrez, Pablo Sprechmann, and Guillermo Sapiro. Classifica-
tion and clustering via dictionary learning with structured incoherence
and shared features. In CVPR, pages 3501–3508. IEEE, 2010.

[18] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288, 1994.

[19] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic
Learning in a Random World. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 2005.

[20] Hui Zou and Trevor Hastie. Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society, Series B,
67:301–320, 2005.

A LARS Matlab API

LARS An implementation of the Least Angle Regression algorithm [1].

Given measurement vector y \in R^m, dictionary D \in R^{mxn} and

scalar t \in R, solves the problem:

16

min_{betaHat} ||y - D * betaHat ||_2

s.t. ||betaHat||_1 <= t

See sections 2,7 in [1] for algorithm details.

PARAMETERS:

y := the measurement (mx1)

D := the dictionary (mxn)

params := termination criteria (structure)

Relevant fields:

nSteps := the max number of iterations to run

tol := desired accuracy of 2-norm of residual

t := ||betaHat||_1 <= t

lambda1 := penalized least squares coefficient

||y-A*betaHat||_2^2 + lambda1 ||betaHat||_1

doLasso := set to true to implement LASSO (vs LARS)

doLassoNN := true => use Non-Negative LASSO. Implies doLasso.

doQR := true => incremental Cholesky via the QR decomp

errCheck := set to false to disable assertions for speed

VERSIONS:

10/29/2011 (PM) Reproduced plot from [1]

11/30/2011 (PM) Ditched the covariate centering. Now matches

l1_ls() fairly well.

12/01/2011 (PM) LASSO-NN seems more stable finally.

REFERENCES:

[1] Efron et. al. "Least Angle Regression," 2003

[2] Golub, Van Loan "Matrix Computations," 1996

17

