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Abstract

Genetic Algorithms (GAs) have been shown to be very powerful tools for a variety of combinatorial opti-
mization problems. Through this project I have implemented a GA to solve the Minimum Labeling Spanning
Tree (MLST) problem (a combinatorial optimization problem). I extended earlier work in this area both by
improving upon the serial algorithm and by developing a parallel implementation of the GA, which involved
designing and testing various inter-processor communication schemes. The resulting parallel GA was tested
on a database of problems and compared both with the original GA and with other heuristics from the
literature.

1 Background and Introduction

1.1 Problem: The Minimum Labeled Spanning Tree

The Minimum Labeling Spanning Tree (MLST) was first proposed in 1996 by Chang and Leu [4] as a variant
on the Minimum Weight Spanning Tree problem. In it we are given a connected graph G (composed of edges,
E, and vertices, V ). Each edge is given one label (not necessarily unique) from the set L. I denote |E| = e,
|V | = v and |L| = l. One such graph is shown in Figure 1. A sub-graph is generated by using only the
edges from a subset C ⊂ L. The aim of the problem is to find the smallest possible set of labels which will
generate a connected subgraph. More than one global minimum (equally small sets) may exist, although
we are satisfied if we identify one. Real world applications include the design of telecommunication [12] and
computer networks [15].

This problem has been shown to be NP-Complete [4], and we therefore must use a heuristic to obtain
near-optimal results in a reasonable amount of time (guaranteeing that this is the true optimum solution
will take unreasonably long). In this paper, a solution is a set of labels, and we will call a set ’feasible’ if the
sub-graph generated by the set of labels is connected.

1.2 Existing (non-GA) Heuristics

Several heuristics have been proposed to solve the MLST problem. The first heuristic, the Maximum Vertex
Covering Algorithm (MVCA), was proposed by Chang and Leu [4] (with correction by Krumke [10]) and
runs in polynomial time. Other heuristics that have been used include Simulated Annealing, Tabu Search,
Pilot Method, Greedy Randomized Adaptive Search and Variable Neighborhood Search [3,6]. Comparisons
of these methods from the literature [3,6] suggest that the Variable Neighborhood Search (VNS) returns the
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best quality of solution. Both the MVCA and VNS were encoded to give a benchmark (with descriptions
included in Appendix B).

2 Genetic Algorithms - Theory

Genetic algorithms (GAs) are a class of heuristic which have been widely used to solve combinatorial op-
timization problems (see Dorronsoro and Alba [7] for an extensive review). These algorithms apply the
Darwinian notion of natural selection on a set of feasible solutions (with each solution composed of a number
of ‘genes’), iterating through successively ‘stronger’ generations. By modeling many different possible solu-
tions, we hope to be able to investigate a large portion of the solution space, and by carefully choosing the
interactions between these solutions we aim to select the strongest ‘genes’ to include in the next generation.
This process can be broken down into six key steps.

2.1 Key steps in a Genetic Algorithm (GA)

2.1.1 Initialization

The first step in a genetic algorithm is to create an initial generation of feasible (valid) and varied solutions.
At this stage we are not concerned with their ‘fitness’.

2.1.2 Selection

The next step is to choose pairs of individuals (‘parents’) to be bred from the current population. Sim-
pler strategies include iterating through all possible combinations and randomly choosing sets of parents.
Goldberg [9] and Collins et al. [5] compare a variety of more complex strategies, including Linear Rank
Selection, Proportionate Reproduction, Tournament and Genitor’s Selection. These have been devised to
favor breeding ‘better’ pairs, but to nevertheless occasionally breed ‘inferior’ pairs (to maintain the genetic
diversity).

2.1.3 Combination

The combination operator mixes genetic material from the two parents create a feasible offspring solution
(containing some genetic material from each of the parents). Some GAs try to pick the ‘strongest’ genes
from each of the parents [16], while others randomly combine genes to create a feasible offspring [11]. The
first strategy should converge faster, but is also more likely to converge to a point away from the global
minimum.

2.1.4 Mutation

The mutation operator creates new genetic material in the offspring. This is done by modifying the offspring
in a random manner. In the literature this operator is applied very rarely (≈ 1− 5% of the time) as it often
makes the offspring less competitive [7].

2.1.5 Replacement

The final step is replacement. The next generation is created by choosing the strongest individuals from the
set of offspring and parents (‘survival of the fittest’). The algorithm then loops back to Step 2 (Selection),
with evolution now happening on the new, hopefully better, population.
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2.1.6 Termination

A termination condition determines when we leave the evolution loop and return the best individual as a
result. This can either be pre-determined (such as a set number of generations/amount of time) or it can
depend on the state of the population (the population has stagnated/we have an ‘acceptable’ solution).

3 An existing Genetic Algorithm for the MLST

In 2005, Xiong et al. [16] implemented a GA to solve the MLST. Each individual in the population is
represented by a set of labels. A solution is feasible if the sub-graph it generates is connected, and the
strength of a solution is given by the number of labels in the set (with fewer labels corresponding to a
stronger solution). This GA was devised to be simple having only one parameter and requiring no fine-
tuning. I will denote the set of all individuals (the entire population) as P , with size |P | = p constant over
all generations.

3.1 Steps in Xiong’s GA

1 - Initialization: Each individual starts off as an empty set (not feasible). Labels are randomly added
(without duplication) until the individual becomes feasible.
2 - Selection: The jth offspring will be formed by breeding parents enumerated j and (j + k) mod p,
where k is the generation number. This sweeping pattern allows every individual to breed with every other
individual in turn.
3 - Combination: Pseudo-code for the combination algorithm is included in Appendix B, and the method
is shown diagrammatically in Figure 2a. This algorithm considers all labels inherited from both parents,
and favors those labels which appear most frequently in G (under the assumption that more frequent labels
will be more useful to the offspring).
4 - Mutation: Pseudo-code for the mutation operator is likewise included in Appendix B and the technique
is demonstrated in Figure 2b. This works by adding a random label to the offspring’s set of labels, and then
one by one attempting to remove labels from the set (starting with the least frequent label in G), discarding
labels where the resulting solution is feasible. This operator will be applied to all offspring. Note that this
generates viable offspring that do not contain any excess labels (no label can be removed while keeping the
offspring feasible).
5 - Replacement: The jth offspring will replace the jth parent if it is ‘stronger’ than the parent.
6 - Termination: The algorithm stops after p generations.

3.2 Running Time Analysis

Given a set of labels C ⊆ L, viability can be determined by a depth-first search (DFS) in O(e+v) operations.
This will happen a maximum of 2l times in each instance of breeding (l times in combination, l times in
mutation), and there are p2 instances of breeding (p generations with p breeding pairs in each generation).
Finally note that in any connected graph v − 1 ≤ e ≤ v(v − 1)/2, but in most test instances I will use
e = O(v2/2). Therefore the upper bound on the operation count is O(lp2v2).

3.3 A variant on Xiong’s GA

In a later paper, Xiong et al. [17] proposed a more computationally intensive genetic algorithm known as the
Modified Genetic Algorithm (MGA). This was shown to outperform the original GA. The difference between
the GA and the MGA is in the combination operator - essentially the MGA performed the MVCA algorithm,
starting with the union of genes from both parents. An outline of this new combination operator is included
in Appendix B. The MGA is currently the strongest genetic algorithm for the MLST in the literature.
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4 Modifications to the Serial GA

The first part of my project was to attempt to improve the serial Genetic Algorithm proposed by Xiong et
al. [16,17] while keeping the algorithm running in serial. It was observed that the population in the algorithm
often prematurely converges to a non-optimal solution. This may be avoided by increasing the diversity in
the population; accordingly the combination, mutation and replacement operators were modified to cause
and maintain a greater diversity in the population.

4.1 Stochastic Operators

One way in which diversity might be better promoted in the algorithm is to modify the crossover and muta-
tion algorithms to make them more stochastic. Xiong’s algorithm operators always favored the same genes,
those which appear most frequently in the graph. Although it might be possible to perform more complicated
analysis initially to come up with a more effective technique, I hoped to come up with a simple technique
which merely increased diversity and let the selection operator decide when the new operator had worked.

This was done by randomly modifying the list in which genes are added or removed from the graph ev-
ery time the list is used. When iterating through the list (using the same order in the GA) I try skipping the
next gene (label) with a pre-determined probability p. Note that the algorithms must now be modified so
that it can continuously loop over the list until either a valid individual has been created (crossover operator)
or until an attempt has been made to remove each gene (mutation operator). The probability was set to
p = 50% before any tests were run to stay true to the original GA’s goal of remaining competitive without
fine tuning.

4.2 Keep equal offspring

A second method to promote diversity in the population is to modify the selection operator to encourage
greater variation. One simple way of doing this is to replace the parents with the offspring if the offspring
are fitter than or equally fit as the parents (as opposed to only replacing if fitter). It was hoped that this
tactic would lead to less chance of the population getting stuck away from the global minimum.

4.3 Force Mutation

One final method to encourage greater diversity in the population is to modify the mutation operator to
favor retention of the new, randomly selected gene. In the original algorithm the new gene is treated the
same as all the others - this means that if it occurs less frequently in the graph than the inherited labels it
will always be removed first (the inherited labels form a viable solution) and it will never actually have been
tested. To avoid this the mutation operator was modified such that the new gene is marked and I do not
attempt to remove it until I have tried to remove all other genes. This may involve looping several times
through inherited genes if a mutation coin toss is also in use.

5 Designing Parallel Code

The second part of the project was to develop a parallel implementation of the GA. The main reason for such
a parallel algorithm is speed. By using a large number of processors running at or near capacity I expect
better results in less clock time. This would also allow us to run larger problem instances which would take
too long if only run on a single processor.
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5.1 Parallel Architecture

Parallel algorithms can be broadly classified into one of two categories depending how processors communi-
cate with each other.

Under a Master-Slave classification one processor (the ‘master’) is in control of the entire heuristic. This
involves issuing commands to the other processors (the ‘slaves’), receiving/interpreting results and issuing
new sets of commands dependent on all the information received. This centralized configuration is relatively
easy to implement, and has been widely used in combinatorial optimization problems [2,11,14]. However it
does not scale well. When run on large arrays of processors a bottleneck forms around the ‘master’ as it is
unable to process all the information and keep up with demand.

The alternative is to implement a scheme which uses direct communication between the processors.
In such a scheme, information about the state of each processor is sent directly to the other processors, with
each processor modifying its search in light of information received. This architecture has been shown to
scale very well [8], allowing it to return strong results from very large arrays of processors.

5.2 Synchronous vs. Asynchronous code

Parallel algorithms may also be classified according to when the processors communicate with each other.
A comparison of the two techniques to solve a combinatorial optimization problem was carried out by Bar-
bucha [1].

Synchronous code ensures that all processors are working in time with each other. Information is only
shared at certain pre-arranged points in the code, making the inter-processor communication quite straight-
forward. But this is also its weakness: faster processors will be restrained to working at the pace of the
slower processors. This means the entire process will not run at optimal speed.

A better alternative is asynchronous code, in which all processors are allowed to operate at their own
maximal pace. In turn this means that communication between processors may occur at any point in the
algorithm. This is more difficult to design but it should operate at higher speeds.

5.3 Shared memory vs message passing

Communication between processors can be divided into two classes.

Parallel algorithms can be constructed using Message passing to communicate between processors (often,
but not necessarily, governed by the Message Passing Interface (MPI) protocol). Such parallel algorithms
are relatively simple to design, as information can only be passed between processors in certain pre-arranged
formats and at certain pre-arranged times. Moreover, algorithms which use message passing can be run on
any grid with connected processors (there is no need for access to shared memory).

In contrast, parallel algorithms which are to be run on grids with shared memory may communicate
by altering the shared variables. This requires implementing locks (such as mutexes and condition variables)
to ensure multiple processors do not try to simultaneously access shared variables. Communication via
shared memory is much more flexible than message passing, allowing both a wide variety of objects to be
shared and allowing processors to access shared memory at any point in time (assuming it is not temporarily
locked by another processor). This flexibility allows for completely asynchronous code, which will best use
all processor power available at any given moment.

For this project I have designed GA code which uses Pthreads (shared memory) with direct communi-
cation between processors. This code exists in both asynchronous and synchronous forms. The synchronous
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code has some limited coordination between processors so that all processors will start each generation si-
multaneously, but all calculations within each generation are completely asynchronous. The parallel VNS
code is completely asynchronous with no inter-processor communication (beyond initialization of threads).
This means that the each processor performing VNS runs independently of all others, returning its result
when the limit (computational time or iteration count) has been reached.

6 Parallel Genetic Algorithm code for the MLST

Next I considered a parallel implementation of a genetic algorithm. In designing such code I had to consider
both how the computational effort was to be divided amongst processors and how the processors might be
able to communicate with each other to achieve the strongest results.

6.1 Imposing a Population structure

The simplest way to split a genetic algorithm over multiple processors is to divide the total population into
smaller groups which can be allocated to the various processors. Ideally the majority of interaction will
happen between individuals on the same processor, limiting inter-processor communication. Three different
population arrangements are discussed below (for more information see Alba&Dorronsoro [7]). Diagrams
of each arrangement are included in Figure 3, although for this project I primarily concerned myself with
Distributed Genetic Algorithms

6.1.1 Panmictic

A Panmictic GA allows all individuals to breed with all other individuals, like Xiong’s original genetic
algorithm. This type of genetic algorithm does not parallelize well as individuals are as likely to interact with
individuals across the whole population, requiring much inter-processor communication when the population
is split across several processors.

6.1.2 Distributed

Distributed GAs impose an island structure on the population, in which each individual belongs to an island
and is only able to breed with other individuals which belong to that island. Genetic material is carried from
one island to the next only very slowly, through a migration operator. This scheme is the easiest to parallelize,
with subpopulations equally distributed over available processors and inter-processor communication is only
needed for the migration operator. This is the structure I used for my parallel GA.

6.1.3 Cellular Genetic Algorithm

Cellular GAs use a mesh structure on the population. Each individual is located at some node in the mesh
and is only able to breed with other individuals within a local neighborhood on the mesh. The key point
here is that the neighborhood is normally much smaller than the total population. Cellular GAs can be
converted so that they run in parallel so by allocating different parts of the mesh to different processors (so
that the only inter-processor communication required is for those individuals whose neighborhood runs over
multiple parts/processors). In general these GAs require more inter-processor communication and are more
difficult to code than the above Distributed GAs.

6.2 Migration Operators

When working with a Distributed GA it is possible to modify the migration algorithm to achieve more useful
inter-processor communication. I considered three different types of migration operators.
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6.2.1 No Migration

The first migration scheme I shall consider is one in which there is no communication between the sub-
populations. This is the simplest scheme, and will be used as the benchmark to determine how well other
communication schemes have performed.

6.2.2 Local Migration

Another possible migration scheme was proposed by Scharrenbroich [13]. Under this scheme the subpop-
ulations are arranged on a toroidal mesh with a local neighborhood defined around each subpopulation.
Individuals may now only migrate to a subpopulation from its neighboring subpopulations. This concept is
illustrated in Figure 4. In Scharrenbroich’s genetic algorithm migration occurs when a subpopulation has
stagnated (after K generations with no improvement), involving copying each of its neighbor’s best solutions
into its own subpopulation (replacing its worst solutions).

The above migration scheme replaces the weakest individual in each population, reducing diversity espe-
cially for small subpopulations. To avoid this I formulated a variant on Scharrenbroich’s local migration
scheme which does not involve replacing individuals (the ‘Waiting Room’ approach). Under this scheme the
best individuals from each subpopulation are placed in shared memory and updated when a better individual
is found in the respective subpopulation. To create a breeding pair each subpopulation may now pick from
any of its own individuals or those saved in the shared memory.

6.2.3 Global Migration

An alternative migration scheme involves all the subpopulations communicating indirectly with each other
through some shared location in memory, the ‘vault’. I constructed a scheme such that this shared memory
location might be used to record the best vaultpop individuals found on any processor to date. This means
that after every breeding instance the offspring solution is compared to the individuals in the vault, and if
found to be better than any of them (and different from all of them) it replaces the weakest individual in
the vault. There is an additional parameter, vaultbreed, which controls the extent to which individuals in
the vault interact with individuals in the subpopulations. In every breeding instance there is a probability,
given by vaultbreed, that Parent2 will be replaced with a randomly selected individual form the vault. In
this way the strongest individuals found to date are shared amongst all the subpopulations. Note that for
all trials below I chose vaultpop = 20, vaultbreed = 20%

The construction of the vault has benefits beyond a more centralized communication scheme. As the vault
maintains the best individuals separate from the subpopulations, it is now guaranteed that the best solution
found to date will be kept in the vault. This in turn means that each subpopulation no longer needs to keep
stronger individuals. The most successful methods I found to take advantage of this were individual and
population ’re-spawn’. With individual re-spawn there is a probability (set at 20% for all results below) that
an individual will be reinitialized by random after each breeding instance. Under population re-spawn each
subpopulation of individuals will be completely reinitialized at random if no improvement has been achieved
after a set amount of time (set at 5 generations for all results below).

7 Implementation, Hardware

All heuristics will be encoded in C++ with POSIX threads (Pthreads) used for inter-processor communi-
cation. All code was run on the Genome6 cluster at the University of Maryland, consisting of 8 Quad-core
AMD Opteron R© Processors (2.6GHz).

7



8 Databases

The original paper by Xiong et al. [16] outlined a method to randomly generate connected, labeled graphs
with a variable number of vertices, colors and edges. This technique was later used by Cerulli et al. [3] to
generate 135 sets of instances (with 10 graphs per set) with various combinations of the key parameters.
These sets of instances are useful for validation, however the majority of the sets used involve smaller graphs
which are relatively easier to solve. I also found that having only 10 graphs per set did not allow for a
thorough investigation of the efficacy of heuristics, as often all heuristics would report very similar scores
with perhaps one more/fewer label used by a heuristic on one of the instances. Therefore I used the same
technique from Xiong [16] to create my own sets of instances. I generated 5 sets of instances, each with 100
nodes, 0.2 edge density and either 25, 50, 100, 250 or 500 labels.

9 Validation and Testing Technique

9.1 Validation of Serial Code

In order to validate my GA code I have obtained a copy of the original Genetic Algorithm code by Xiong.
By initializing the random number generators in the same way and ensuring that the random number gen-
erators are called in precisely the same order I was able to ensure that exactly the same results are returned
from both sets of computer code. This was done both by running both sets of code on exactly the same
instance, verifying after every generation that the population was the same, and by running on 200 diverse
instances and verifying that both returned the same set of labels (from the best individual in the population).

To validate my VNS code it was run on the same sets of graphs as used in Consoli [6] (where the most
successful version of the VNS for the MLST was first proposed), and results compared. This was found to
be the case (within experimental error due to unknown random number seed).

9.2 Validation of Parallel Code

To validate the parallel code I initially ran the code with no communication between the processors (other
than initializing each subpopulation and reporting back of the best solution) for two separate sets of in-
stances. I then compared the results, verifying that each processor returned a solution in keeping with what
was expected from the serial runs (to within experimental error).

The second step in parallel validation was to ensure that the migration operators and inter-processor commu-
nication were both acting as expected. This was done by flagging certain individuals within the population
(via the inclusion of a unique gene) and watching them be copied between processors (and the vault if appro-
priate) and verifying by hand that all movements were as expected/scheduled. This was found to be the case.

The final step in validating the parallel implementation was to compare the running time for the paral-
lel code with the running time for the serial code. I then modified the code to investigate the delay caused
by synchronizing the processors (so that all processors have start a new generation together), and the delays
due to more intense communication between processors by including a vault. This was done on two of the
sets of instances I generated, those with L = 100 and L = 500, with the time required for each of these runs
in Table 2 in Appendix C. This shows the parallel code ran at an efficiency of about 75% for no communica-
tion/synchronization (delay cause by overhead from initializing, running and closing the multiple threads),
and about 50% for full synchronization/communication (additional delays due to synchronization between
processors and inter-processor communication from vault/individual re-spawn).

8



9.3 Testing the Serial Implementation

The serial heuristics was then run over my test instances (see ‘Databases’ above) to test performance both in
terms of results and computational time. For stopping conditions based off iteration count I used 20 iterations
for the GAs (same as Xiong [16] and 20 iterations of VNS (as this was found to be comparable to 20 GA
generations in computational time for many instances). For stopping conditions based off computational
time I allowed T = 20 ∗ Lms per instance for both GAs and the VNS. Such limits are not relevant to the
MVCA which runs (and finishes) in polynomial time. All algorithms will be run 10 times with different
random number seeds, recording both the average number of labels required per instance and average time
per instance (when stopping conditions is dictated by iteration count).

9.4 Testing the Parallel Implementation

The parallel algorithm will be tested by running over my test instances to test performance. The same
stopping conditions will be used as the serial heuristic, with time being measured across all processors for
the computational time limit stopping condition and all processes being terminated once the time limit has
passed. Generally parallel testing will be done using 32 processors, although I did do some testing with 8
processors for the sake of comparison.

10 Results and Discussion

10.1 Serial Heuristics

Testing The MVCA, the VNS and the various versions of Xiong’s GA and MGA were run as described in
Section 9 with constant iteration count. Results are recorded in Table 1. Three of the changes proposed
in Section 4 led to a significant improvement in the computational results for the standard GA (all except
”Keep Equal”), with at most a small increase in running time in all cases. When all the changes were used
together, greater improvements yet were typically achieved. When the new operators (excluding Stochastic
Crossover) were used on the MGA the results returned were always slightly stronger than when the original
operators were used, with simulations generally taking slightly less time. Over most of the sets of instances
the GA with the new operators appears to perform at a comparable level to the MGA but in much less com-
putational time. For almost all sets of instances the GAs appear preferable over the VNS in both solution
quality and running time.

Figure 5 records serial runs with a stopping condition for constant computational time (and where the
code has been modified to return results every 10 milliseconds). This gives a clearer picture as to how
the algorithms are performing. Xiong’s original GA is converging the fastest, performing the best over
very short periods but apparently stagnating away from the optimal solution. It is then passed by the GA
with stochastic operators, which is initially hindered by the stochastic approach but stagnates later and
significantly outperforms the original GA. Both the original MGA and the MGA with stochastic operators
converge slower than either of the GAs, passing the original GA and approaching a solution quality similar
to (although in all cases definitely worse than) the GA with stochastic operators. For the sets with fewer
labels, the VNS appears to converge slower but to solutions of comparable quality when compared with
the best GAs, but its rate of convergence slows dramatically for sets with more labels (rendering it greatly
inferior to al GAs).

These results appear to support the idea that changing operators in order to obtain greater diversity in
the population will generally give a better and more robust GA.
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10.2 Parallel Heuristics

Table 3 contains data gathered when the distributed algorithms were run again using the migration operators
outlined above in Section 6 for the set of instances with 250 labels (chosen to be relatively difficult to solve),
using either 8 or 32 processors. The One Sided Mann-Whitney U-Test was used to test if the migration
schemes led to a significant change in the performance of the heuristics.

In three of the four test cases the local migration operators did not lead to a significant improvement
over no migration (α = 0.05, the exception being with the waiting room approach with 32 processors). In all
cases, the waiting room approach apparently outperforms the replacement strategy, suggesting the impor-
tance of maintaining diversity within subpopulations. This contrasts with the global migration approach,
which yielded a significant improvement over no migration in all cases tested (α = 0.05). Moreover the
individual re-spawn term always yields stronger results than the plain vault with no migration (although the
vault re-spawn term appears to weaken the vault migration in this case). These results validate the use of
global migration, but also suggest that some gains might be had in using local migration if care is taken.

Figure 6 records the results from the parallel heuristics when run on all of my sets of instances using
32 processors with a time limit stopping condition. For this I only considered the more successful global
migration approach. The results for the GA here broadly agree with those discussed above (and recorded
in Table 6), with the vault and individual re-spawn significantly outperforming the GA with no communi-
cation while the vault with population re-spawn narrowly beats the no communication approach (perhaps
performing weaker than expected). In all cases it can be seen that the MGA and the GA with stochastic
operators (here labelled GA2) are once again the most successful heuristics. These techniques do not appear
to benefit from the vault migration approach - indeed, in many cases the re-spawn tactics cause the heuristics
to converge slower. This means that the solution quality at the end of the allotted time is worse than that
attained when no migration was implemented. This may have changed had the heuristics been run for longer
amounts of time. Finally the VNS algorithm performs at a comparable level to the GAs for the sets with
small numbers of labels, but is comparatively weaker for the sets with more labels.

These results show that the implementation of well-designed migration operators in a parallel algorithm
may greatly help in some cases, although the schemes investigated do not appear to work for all GAs over
all instances (for the time frames chosen).

11 Schedule

• Create my serial GA - Done
Tasks: Modify Xiong’s code, build sets of graphs for testing
Dates: October 2011
Result: Competitive, efficient GA code
Validation: Compare with other heuristics and global minima (when known)

• Convert to a parallel GA - Done
Tasks: Modify above GA, initially to synchronous and later asynchronous parallel code (using direct
communication between processors)
Dates: November-December 2011
Result: Both asynchronous and synchronous versions of efficient, parallel GA code with direct com-
munication
Validation: Compare results and speedup against serial code

• Fine tuning parallel GA - Done
Tasks: Experiment with different population arrangements, migration operators to obtain optimal
parallel GA. Possibly design and implement a Cellular GA for comparison (this part not done)
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Dates: January-February 2012
Result: Competitive versions of earlier GA code
Validation: Compare results and speed with earlier versions of parallel code and other heuristics

• Large-scale testing, presentation - Done
Tasks: Run optimized code on large array of processors (GENOME cluster at UMD), analyze all
results, prepare report and presentation
Dates: March-May 2012
Result: Final results and analysis of the whole GA in the form of a formal report and presentation.

• Extra - Not Done: Time permitting, modify GA code and test on a different combinatorial opti-
mization problem.

12 Deliverables

• Competitive, efficient serial and parallel code for a GA on the MLST problem using direct processor-
processor communication in both asynchronous and synchronous form.

• Results from tests on various different sized arrays of processors and across various problem instances.

• Report(s) and presentation(s).
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Appendix A: Diagrams

Figure 1: An example of a labeled spanning tree [from [16]]. In this case, the (unique) minimum set of colors
which will generate a connected sub-graph is {2, 3}

(a) a (b) a

Figure 2: Breeding operators from Xiong’s GA [16]
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Figure 3: Three different population arrangements - a) panmictic, b) distributed, c) cellular genetic (CGA)
[from [7]]. In each of these a dot represents an individual (solution) which can ‘breed’ with other solutions
within its shaded neighborhood.

Figure 4: The Distributed Genetic Algorithm implemented by Scharrenbroich. Each ‘node’ now repre-
sents a processor, monitoring its own subpopulation, with the arrows representing migration between sub-
populations [13]
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Appendix B: Algorithms

Note: G denotes the graph, composed of vertices V and edges E, each edge having a label belonging to the
set of labels L.

The MVCA algorithm

Let C = ∅, H is the subgraph induced by C (updated whenever C is changed)
while H is not connected do

for i ∈ L− C do
Add i to C
Count the number of connected components in H
Remove i from C

end for
Add the color which resulted in the least number of connected components

end while

The VNS algorithm

S = Generate-Initial-Solution-at-Random
repeat

k = 1, kmax = |S| ∗ 4./3
while k < kmax do

C ′ = Shaking(C, k)
LocalSearch(C ′)
if |C ′| < |C| then

k = 1, C ′ → C, kmax = |C| ∗ 4./3
else

k = k + 1
end if

end while
until terminating-condition

function Shaking(C, k)
for i = 1→ k do

r = random(0, 1)
if r < 0.5 then

Add random label from L− C to C
else

Remove random label from C
end if

end for
return C

end function

function LocalSearch(C)
if C is not feasible then

Apply MVCA to C
end if
Try to remove each label from C such that C remains feasible

end function
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Outline of Xiong’s GA

for Individual in Population do
Generate-Initial-Solution-at-Random

end for

for g = 1→ p do
for i = 1→ p do

S1 = Individual[i]; S2 = Individual[(i+ gen) mod p]
offspring = crossover(S1, S2)
offspring = Mutate(Offspring)
if offspring is better than parent1 then:

Individual[i] = offspring
end if

end for
end for

Crossover Operator from Xiong’s GA

function Crossover(S1, S2)
S = S1 ∪ S2, T = ∅
Sort S in decreasing order of frequency of labels in G.
Add labels of S, from first to last, to T until T is feasible
return T

end function

Mutation Operator from Xiong’s GA

function Mutate(S)
Randomly select c ∈ L− S
S = S ∪ c
Sort S in decreasing order of frequency of labels in G
From last to first, try to remove labels from S such that S remains feasible
return S

end function

Combination operator from Xiong’s MGA

function MGACrossover(S1, S2)
Let S = S1 ∪ S2
Apply MVCA to S
return S

end function
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Appendix C: Results

Key to Tables:
GA- variants of Xiong’s Genetic Algorithm [16] :
SC = Stochastic Crossover, SM = Stochastic Mutation, KE = Keep Equal, FM = Force Mutation, All =
SC+SM+KE+FM.
GA+SM+SC is also referred to by GA Stochastic or GA2
MGA- Xiongs Modified Genetic Algorithm [17] MGA Stochastic = MGA+SM Non-GA algorithms:
MVCA = Maximum Vertex Covering Algorithm from Chang and Leu, 1997 [4]
VNS = Variable Neighbourhood Search from Consoli et al. [6]

Parameters Non-GA Heuristics Original GA + variants MGA + variants
n l d MVCA VNS Original +SC +SM +KE +FM +All Original +All
25 4.000 3.91 3.894 3.882 3.881 3.911 3.883 3.883 3.884 3.882
50 6.090 5.87 5.896 5.831 5.830 5.931 5.802 5.778 5.820 5.785
100 9.440 9.00 8.906 8.710 8.784 8.993 8.753 8.669 8.716 8.714
250 15.500 14.96 14.784 14.535 14.586 14.925 14.640 14.477 14.446 14.434
500 22.170 21.38 20.916 20.606 20.656 21.016 20.804 20.598 20.557 20.546

(a) Average number of labels required

Parameters Non-GA Heuristics Original GA + variants MGA + variants
n l d MVCA VNS Original +SC +SM +KE +FM +All Original +All
25 0.003 0.036 0.171 0.176 0.170 0.157 0.172 0.172 0.384 0.388
50 0.009 0.173 0.256 0.271 0.256 0.242 0.257 0.266 0.681 0.575
100 0.011 0.798 0.400 0.414 0.396 0.377 0.396 0.412 1.325 1.175
250 0.042 5.73 0.673 0.693 0.682 0.647 0.665 0.722 2.939 2.756
500 0.116 24.21 0.992 1.001 1.029 0.962 0.981 1.073 5.354 5.283

(b) Running time(s)

Table 1: Heuristic performance for various serial heuristics
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(a) L=25 (b) L=50

(c) L=100 (d) L=250

(e) L=500

Figure 5: Average heuristic score vs Time for various serial GAs and the serial VNS.
X axis is in cs (0.01s)
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Instance Set L=100 L=500
Time for serial (s) 2.38 5.42

Parallel-No Comm (s) 3.75 8.25
Parallel-Synchronized Iterations (s) 4.35 10.89

Parallel-Synchronized+Vault (s) 4.51 12.03

Table 2: Run times for Parallel Algorithms (Vault had vault size of 20 and vault breeding parameter 0.2)

Class Scheme Average Standard Deviation p < 0.05 p < 0.005
No Communication 14.462 0.031 N/A N/A

Global
Vault alone 14.439 0.028 Y N
Vault + ind 14.390 0.031 Y Y
Vault + pop 14.445 0.033 Y N

Local
Replacement 14.462 0.036 N N

Waiting Room 14.453 0.024 N N

(a) 8 processors

Class Scheme Average Standard Deviation p < 0.05 p < 0.005
No Communication 14.342 0.028 N/A N/A

Global
Vault alone 14.309 0.033 Y N
Vault + ind 14.264 0.030 Y Y
Vault + pop 14.321 0.019 Y N

Local
Replacement 14.331 0.023 N N

Waiting Room 14.321 0.023 Y N

(b) 32 processors

Table 3: Results for different Migration schemes (run over L = 250 set of instances for 20 generations with 10
repetitions. Last columns test for statistic significance over ’No Communication’ using the Mann-Whitney
U test)
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(a) L=25 (b) L=50

(c) L=100 (d) L=250

(e) L=500

Figure 6: Average heuristic score vs Time for various parallel GAs and the parallel VNS, run on 32 processors.
X axis is in cs (0.01s)
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