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Abstract

Genetic Algorithms (GAs) have shown themselves to be very powerful tools for a wide variety of combinatorial
optimization problems. Through this project I hope to implement a GA to solve the Minimum Labeling
Spanning Tree (MLST) problem (a combinatorial optimization problem). If time permits, I may attempt to
modify the code to solve another combinatorial optimization problem. Additionally, I will develop a parallel
implementation of the GA, which will involve designing and testing various inter-processor communication
schemes. The eventuating parallel GA will be tested on a database of problems, comparing results and
running time with other serial heuristics proposed in the literature. Finally, the parallel heuristic will be
analyzed to determine how performance scales with the number of processors.

1 Background and Introduction

1.1 Problem: The Minimum Labeled Spanning Tree

The Minimum Labeling Spanning Tree (MLST) was first proposed in 1996 by Chang and Leu [4] as a variant
on the Minimum Weight Spanning Tree problem. In it we are given a connected graph G (composed of edges,
E, and vertices, V). Each edge is given one label (not necessarily unique) from the set L. We denote |E| = e,
|[V| = v and |L| = I. One such graph is shown in Figure 1. A sub-graph is generated by only using the
edges from a subset C' C L. The aim of the problem is to find the smallest possible set of labels which will
generate a connected subgraph. More than one global minimum (equally small sets) may exist, although
we are satisfied if we identify one. Real world applications include the design of telecommunication [12] and
computer networks [15]

This problem has been shown to be NP-Complete [4], and we therefore must use a heuristic to obtain
near-optimal results in a reasonable amount of time (guaranteeing this is the true optimum solution will
take unreasonably long). In this paper a solution is a set of labels, and we will call a set ’feasible’ if the
sub-graph generated by the set of labels is connected.

1.2 Existing (non-GA) Heuristics

Several heuristics have been proposed to solve the MLST problem. Appendix B contains pseudo-code for one
such heuristic, the Maximum Vertex Covering Algorithm (MVCA) by Chang and Leu [4]. Other heuristics
that have been used include Simulated Annealing, Tabu Searches, Pilot Methods, Variable Neighborhood
Searches and a Greedy Randomized Adaptive Search [3,6]. T hope to be able to compare my algorithm with
several of these heuristics.



2 Genetic Algorithms - Theory

Genetic algorithms (GAs) are a class of heuristic which have been widely used to solve combinatorial op-
timization problems (see Dorronsoro and Alba [7] for an extensive review). These algorithms apply the
Darwinian notion of natural selection on a set of feasible solutions (with each solution composed of a number
of ’genes’), iterating through successively ’stronger’ generations. By modeling many different possible solu-
tions, we hope to be able to investigate a large portion of the solution space, and by carefully choosing the
interactions between these solutions we aim to select the strongest 'genes’ to include in the next generation.
This process can be broken down into six key steps.

2.1 Key steps in a Genetic Algorithm (GA)

1 - Initialization: The first step in a genetic algorithm is to create the original generation of feasible (valid)
and varied solutions. At this stage we are not concerned with their 'fitness’.

2 - Selection: The next step is to choose pairs of individuals ('parents’) from the current population which
are to be bred. Simpler strategies include iterating through all possible combinations and randomly choosing
sets of parents. Goldberg [10] and Collins et al. [5] compare a variety of more complex strategies, including
Linear Rank Selection, Proportionate Reproduction, Tournament and Genitor’s Selection. These have been
devised to favor breeding ’better’ pairs, but to nevertheless occasionally breed ’inferior’ pairs (to maintain
the genetic diversity).

3 - Combination: The combination operator mixes genetic material from the two parents create a feasible
‘offspring’ solution (containing some genetic material from each of the parents). Some GAs try to pick the
'strongest’ genes from each of the parents [16], while others randomly combine genes to create a feasible
offspring [11]. The first strategy should converge faster, but is also more likely to get stuck away from the
global minimum.

4 - Mutation: The mutation operator creates new genetic material in the offspring. This is done by
perturbing the offspring in a random manner. In the literature this operator is applied very rarely (= 1—5%
of the time) as it often makes the offspring less competitive [7].

5 - Replacement: The final step is replacement. The next generation is created by choosing the strongest
individuals from the set of offspring and parents (’survival of the fittest’). The algorithm then loops back to
Step 2 (Selection), with evolution now happening on the new, hopefully better, population.

6 - Termination: A termination condition determines when we leave the loop and return the best individual
as a result. This can either be pre-determined (such as a set number of generations/amount of time) or it
can depend on the state of the population (the population has stagnated/we have an ’acceptable’ solution).

2.2 Population Arrangement

Maintaining diversity is crucial in the success of a GA. This can be done by limiting the speed at which
genetic material spreads through the population. One popular way to do this is to implement some structure
on the population so that each individual can only breed with a subset of the entire population. Three
different such populations arrangement are discussed below (for more information see Alba&Dorronsoro [7]).
Diagrams of each arrangement are included in Figure 2.

Panmictic: A Panmictic GA allows all individuals to breed with all other individuals. This allows genetic
material to spread through the population very quickly, leading to reduced diversity in the population.
Literature shows that this type of GA is the least likely to find the global minimum.

Distributed: Distributed GAs impose an island structure on the population - each individual belongs to
an island and is only able to breed with other individuals which belong to that island. Genetic material
is carried form one island to the next only very slowly, through a migration operator. In this case, more
islands and a weaker migration operator (migration occurring more rarely) will lead to more diversity in the
population. This population structuring has been shown to be generally much more successful at finding the
global minimum than a panmictic algorithm.

Cellular Genetic Algorithm Cellular GAs use a mesh structure on the population. Each individual is



located at some node in the mesh and is only able to breed with other individuals within a local neighborhood
on the mesh. The key factor here is the size of the neighborhood compared with the size of the total
population, with a smaller neighborhood impeding the spread of information and allowing more diversity in
the population. These algorithms have been shown to be generally much more successful than panmictic
algorithms and slightly better than distributed algorithms at finding global minima.

3 An existing Genetic Algorithm for the MLST

In 2005, Xiong et al. [16] implemented a genetic algorithm to solve the MLST. Each individual in the
population is represented by a set of labels. A solution is feasible if the sub-graph it generates is connected,
and the strength of a solution is given by the number of labels in the set (with fewer labels corresponding
to a stronger solution). This GA was devised to be simple, with only one parameter and no fine-tuning.
We will denote the set of all individuals (the entire population) as P, with size |P| = p constant over all
generations.

3.1 Steps in Xiong’s GA

1 - Initialisation: Each individual starts off as an empty set (not feasible). Labels are randomly added
(without duplication) until the individual becomes feasible.

2 - Selection: The jth offspring will be formed by breeding parents enumerated j and (j + k) mod p,
where k is the generation number. This sweeping pattern allows every individual to breed with every other
individual in turn

3 - Combination: Pseudo-code for the combination algorithm is included in Appendix B, and the method
is shown diagrammatically in Figure 3. This algorithm considers all labels inherited from both parents, and
favors those labels which appear most frequently in G (under the assumption that more frequent labels will
be more useful to the offspring).

4 - Mutation: Pseudo-code for the mutation operator is likewise included in Appendix B and the technique
is demonstrated in Figure 4. This works by adding a random label to the offsprings set of labels, and one
by one attempting to remove labels from the set (starting with the least frequent label in G), discarding
labels where the resulting solution is feasible. This operator will be applied to all offspring. Note that this
generates viable offspring which do not contain any excess labels (no label can be removed while keeping the
offspring feasible).

5 - Replacement: The jth offspring will replace the jth parent if it is ’stronger’ than the parent.

6 - Termination: The algorithm stops after p generations.

3.2 Running Time Analysis

Given a set of labels C' C L, viability can be determined by a depth-first search (DFS) in O(e+wv) operations.
This will happen a maximum of 2/ in each instance of breeding (I times in combination, { times in mutation),
and there are p? instances of breeding (p generations with p breeding pairs in each generation). Finally note
that in any connected graph v — 1 < e < v(v — 1)/2, but in most test instances we will use e = O(v?/2).
Therefore the upper bound on the operation count is O(Ip?v?).

3.3 A variant on Xiong’s GA

In a later paper, Xiong et al. [17] proposed a more computationally intensive genetic algorithm known
as the Modified Genetic Algorithm (MGA). This was shown to outperform the original GA. The difference
between the GA and the MGA was in the combination operator - essentially the MGA performed the MVCA
algorithm, starting with the union of genes from both parents. An outline of this new combination operator
is included in Appendix B.



4 Extensions to the Serial GA code

The first part of my project will be to work on developing my own serial GA, using Xiong’s GA as a starting
point. This will be done by investigating how GAs have been used in the wider literature to solve combi-
natorial optimization problems, considering how the various selection, combination and mutation operators
have been designed to achieve the best results. Where appropriate I will implement and test the alternative
operators (or any of my own design), keeping those which are most suited to and perform best on the MLST
problem. T will also experiment with population arrangements (discussed above) to achieve the best results.

The purpose for this is two-fold. One reason is obvious; I hope to be able to design competitive code which
achieves strong results without a significant increase in computational effort (as compared with Xiong’s GA).
The second reason is more subtle; by playing with the various operators involved, I hope to be able to achieve
a better understanding of how a variety genetic algorithms work, enabling me to better encode the more
complicated parallel implementation.

5 Designing Parallel code

The second step will be to develop a parallel implementation of the genetic algorithm. The main reason for
such a parallel algorithm is speed; by using a large number of processors running at or near capacity we
expect better results in less time. This would also allow us to run larger problem instances which would take
too long if only run on a single processor.

5.1 Parallel Architecture

Parallel algorithms can be broadly classified into one of two categories depending how processors communi-
cate with each other.

Under a Master-Slave classification one processor (the 'master’) is in control of the entire heuristic. This
involves issuing commands to the other processors (the ’slaves’), receiving/interpreting results and issuing
new sets of commands dependent on all the information received. This centralized configuration is relatively
easy to implement, and has been widely used in combinatorial optimization problems [2,11,14]. However it
does not scale well; when run on large arrays of processors a bottleneck forms around the ’master’ as it is
unable to process all the information and keep up with demand.

The alternative is to implement a scheme which uses direct communication between the processors. In
such a scheme information about the state of each processor is sent directly to the other processors, with
each processor modifying its search in light of information received. This architecture has been shown to
scale very well [8], allowing it to return strong results from very large arrays of processors.

5.2 Synchronous vs. Asynchronous code

Parallel algorithms may also be classified according to when the processors communicate with each other.
A comparison of the two techniques to solve a combinatorial optimization problem was carried out by
Barbucha [1].

Synchronous code ensures that all processors are working in time with each other. Information is only
shared at certain pre-arranged points in the code, making the inter-processor communication quite straight-
forward. But this is also its weakness; faster processors will be restrained to working at the pace of the
slower processors. This in turn means the entire process will not run at optimal speed.

A better alternative is asynchronous code, in which all processors are allowed to operate at their own
maximal pace. In turn this means that communication between processors may occur at any point in the
algorithm. This is much more difficult to design (all processors must always be ready to reply to any requests
from other processors while simultaneously running their own algorithm and deciding when to send out their
own requests), but should operate at higher speeds.



6 Parallel GA code for the MLST

I hope to be able to implement both synchronous and asynchronous version of my GA, using direct com-
munication between processors. The main task in this part of the project, after getting the inter-processor
communication working, will be to investigate different communication strategies between the processors.

One option was put forward by Scharrenbroich [13]. This is essentially a distributed (island) model in
which each island is allocated to its own processor. A mesh arrangement was used to arrange the processors
such that migration only happens between neighboring processors (see Figure 5). By modifying migration
operators (what migrates and how often), termination conditions and the mesh arrangements I hope to be
able to achieve very strong results. A quick search of the literature reveals several other strategies [7-9]
which might also prove useful in optimizing my code.

7 Implementation and Hardware

All heuristics will be encoded in C++, and for the parallel implementations I will use the Message Passing
Interface (MPI). Initially the code will be run on a personal computer, although I hope to be able to gain
access to the Genome cluster at the University of Maryland to try the code on a large array of processors.

8 Validation and Testing

8.1 Databases

Several sets of connected, labelled graphs will be generated for the purposes of testing and comparing the
various heuristic. Each set will have a unique combination of parameters (v, e, ) and will containing many
(= 100) different graphs with the same parameters. Modifying these parameters will allow us to control how
easy or hard each set of graphs is to solve.

8.2 Testing the Serial Implementation

My serial heuristic will then be run over the sets to test performance both in terms of quality of results and
computational time. It will be compared both with heuristics from the literature and with the true global
minimum (if it can be found through an exhaustive search in a reasonable amount of time).

8.3 Testing the Parallel Implementation

The parallel algorithm will be tested in two ways. The first is by comparing it with a serial implementation of
the parallel code (with the one processor playing the role of all the various processors). If encoded correctly
the parallel and serial versions should return exactly the same results. This will then allow us to calculate
the speed-up due to parallelization (how much faster the parallel code runs compared with the serial code),
which should increase proportional to the number of processors involved.

The second way to test the parallel code will be to compare the results from the parallel implementa-
tion with results from various serial heuristics. Both will be run for the same amount of time on the same
number of processors (with the serial heuristics being run independently on each processor with different
random seeds). By allowing the processors to communicate with each other, it is hoped that my parallel
implementation will be able to return better results than any of the serial heuristics.
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Schedule

Create my serial GA

Tasks: Modify Xiong’s code, build sets of graphs for testing

Dates: October 2011

Result: Competitive, efficient GA code

Validation: Compare with other heuristics and global minima (when known)

Convert to a parallel GA

Tasks: Modify above GA, initially to synchronous and later asynchronous parallel code (using direct
communication between processors)

Dates: November-December 2011

Result: Both asynchronous and synchronous versions of efficient, parallel GA code with direct com-
munication

Validation: Compare results and speed-up against serial code

Fine tuning parallel GA

Tasks: Experiment with different population arrangements, migration operators to obtain optimal
parallel GA. Possibly design and implement a Cellular GA for comparison

Dates: January-February 2012

Result: Competitive versions of earlier GA code

Validation: Compare results and speed with earlier versions of parallel code and other heuristics

Large-scale testing, presentation

Tasks: Run optimized code on large array of processors, analyze all results, prepare report and pre-
sentation

Dates: March-May 2012

Result: Final results and analysis of the whole GA in the form of a formal report and presentation.

Extra: Time permitting, modify GA code and test on a different combinatorial optimization problem.

Deliverables

Competitive, efficient parallel code for a GA on the MLST problem using direct processor-processor
communication in both asynchronous and synchronous form.

Results from tests on various different sized arrays of processors and across various problem instances

Final report and presentation analyzing technique and results
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Appendix A: Figures

Figure 1: An example of a labeled spanning tree [from [16]]. In this case, the (unique) minimum set of
colors which will generate a connected sub-graph is {2, 3}
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Figure 2: Three different population arrangements - a) panmictic, b) distributed, c) cellular genetic (CGA)
[from [7]]. In each of these a dot represents an individual (solution) which can ’breed’ with other solutions
within its shaded neighborhood.
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Figure 3: An example of Xiong’s Crossover algorithm [16]
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Figure 4: An example of Xiong’s Mutation algorithm [16]
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Figure 5: The Distributed algorithm implemented by Scharrenbroich. Each 'node’ now represents a

processor, monitoring its own sub-population, with the arrows representing migration between
sub-populations [13]



Appendix B: Algorithms

Note: GG denotes the graph, composed of vertices V' and edges F, each edge having a label belonging to the
set of labels L.

The MVCA algorithm

Let C' = () be the set of used labels
Let H be the subgraph generated by C' (H updated whenever C is)
While H not connected:
For all colors i € L — C:
Addito C
Count the number of connected components in H
Remove ¢ from C
Add the color which resulted in the least number of connected components

Crossover Operator from Xiong’s GA

Let S be the union of all labels from either parent

T=0

Sort labels in Saccording to frequency in G While T is not viable:
Add next color in S to T' (first to last)

Mutation Operator from Xiong’s GA

Let T be the set of labels belonging to the offspring (follows on from crossover operator)
Choose random c € L — T
Addcto T
Sort labels in T according to frequency in G
For label in T (reverse iterate, start from least common in G):
Remove label from T
If T is viable (subgraph connected):
continue
Else:
(Re-)Add label to T

Combination operator from Xiong’s MGA

Let S be the union of all labels from either parent
Apply the MVCA algorithm (above) to the subgraph generated by S to get output
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