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R. H. Smith School of Business

Abstract: Cellular Genetic Algorithms (CGAs) have shown themselves to be very

powerful tools for combinatorial optimization. Through this project I hope to

investigate CGAs, develop a parallel implementation of a CGA, use these

techniques on the Minimum Labeling Spanning Tree Problem, and compare

results with other heuristics.
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Introduction to MLST

First proposed in 1996 [Chang:1996]- variant on minimum
weight spanning tree

Connected Graph - set of vertices and edges.

Each edge has a color

Find the smallest set of colors which gives a connected
sub-graph
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An example of a labelled spanning tree, and some
feasible solutions [Xiong:2005]
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Introduction to MLST

First proposed in 1996 [Chang:1996]- variant on minimum
weight spanning tree

Shown to be NP-complete

Two heuristics and an exhaustive search proposed in the
original paper - heuristics achieved moderate success
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Introduction to Genetic Algorithms (GAs)

Evolutionary-inspired heuristic for optimization problems

Population = set of solutions

Select, Breed, Replace

Advantages:

Flexible and adaptable
Robust performance at global search
Simple to parallelize
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Evolutionary-inspired heuristic for optimization problems
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Key steps in a Genetic Algorithm
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One Parameter GA for MLST - Serial

From Xiong, 2005

Designed to be simple - no fine tuning

One parameter - p, population size

Representation: List of labels

Gene: Label in the list
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Step 1: Initialization

Create first generation of individuals - viable, varied

Initialization from Xiong:2005:
For each individual in population:

Individual = {}
While Individual Is Not Viable:

Individual.AddRandomColor()
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Step 2: Evaluation

Defined by problem

For some problems can be extremely time consuming

Multiple criteria
→Penalty functions?

Evaluation in Xiong:2005:
Eval(T) = len(T)
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Step 3: Selection

How? Random, Sweep, ... .

Favor strongest?

Selection in Xiong:2005;
for j = 1:Size(Population)

Offspring(j) = Breed(Parent(j), parent((j + k) mod p))
(where k is the generation number)
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Step 3: Selection
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Step 4: Crossover

Combine genes from parents to produce viable offspring

Choose genes randomly? Follow order (pick ’strongest’
genes first)?

Crossover in Xiong:2005:
S = Union of genes (colors) from both parents
Sort(S) %According to frequency of labels in Graph
T = {}
while T Is Not Viable:

T.AddLabel(NextLabel(S))
return T
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Crossover operator

Figure: The crossover operator used in Xiong’s GA [Xiong:2005]
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Step 5: Mutation

Introduce new genetic material

Typically done with small probability

Mutation in Xiong:2005 (100% chance of mutation):
T.AddRandomColor
Sort(T ) %According to frequency of labels in Graph
For Label in T(-1:-1:): %Reverse iterate

T.Remove(Label)
if T Is Not Viable:

if T.Add(Label)
return T
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Mutation operator

Figure: The mutation operator used in Xiong’s GA [Xiong:2005]
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Step 6: Replacement

Find new generation from strongest offspring and parents

Replace parents where warranted

Replacement in Xiong:2005:
If Eval(Offspring)<Eval(Parent):

Parent.Replace(Offspring)
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Step 7: Stopping Conditions

Generations count/computational time

Population Stagnant

Stopping Condition in Xiong:2005: Do p generations
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Step 7: Stopping Conditions

Generations count/computational time

Population Stagnant

Stopping Condition in Xiong:2005: Do p generations
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GA improvements

Improve Crossover/Mutation operators?

Make crossover/mutation stochastic. Mix up ordering

Favor retention of mutated genes?

Keep equally good offspring?

Divide up population space - promote diversity
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3 Different types of GA

Figure: Three different types of GAs showing interaction between
individuals (black dots) in the population. a)Panmictic b) Distributed
c) Cellular [Alba:2008]
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Genetic Algorithm − > Cellular Genetic Algorithm

Modify Selection operator- limit to neighborhood on grid

Arrangement of entire population space

Neighborhood size?

Choosing within neighborhood:

Step through neighborhood
Randomly choose one
Pick ’strongest’ neighbor?
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Genetic Algorithm − > Cellular Genetic Algorithm

Modify Selection operator- limit to neighborhood on grid

Arrangement of entire population space

Neighborhood size?

Choosing within neighborhood:

Step through neighborhood
Randomly choose one
Pick ’strongest’ neighbor?
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Serial Cellular Genetic Algorithm − > Parallel
Cellular Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication
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Cellular Genetic Algorithm
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Parallel Structures

Figure: Different approaches to parallel programming. (a)
Master/Slave configuration and (b) Inter processor communication
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Cellular Genetic Algorithm − > Parallel Cellular
Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication

Lock nodes when in use. Queues?

Synchronous (simultaneous) vs asynchronous
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Hardware/Software/Databases

Language - C++ with MPI (Message Passing Interface)
Hardware - array of processors at UMD
Database: Randomly generated labeled spanning trees
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Validation/Testing

Comparing my serial CGA with other heuristics and with
global optimum (if known, e.g. through exhaustive search)

Compare parallel results with serial CGA, ensure as
expected (feasible, function in the right range)

Calculate speedup of parallel vs. serial, asynchronous vs.
synchronous [Fujimoto:2011, Vidal:2010, Drummond:2001,
Groer:2010]
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Schedule: Part I

Part 1: Creating my serial Cellular Genetic Algorithm
Tasks:

Adding improvements to the Genetic Algorithm

Modifying selection operator/imposing grid structure so
becomes CGA

Timing: Sept - Oct 2010
Result: Competitive, efficient serial CGA code
Validation: Compare computational effort, results with other
heuristics (e.g. GA from Xiong, 2005)
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Schedule: Part 2

Part 2: Going parallel
Tasks:

Initially converting to synchronous code - direct
communication, locking nodes ...

Converting synchronous code to asynchronous code

Timing: Nov 2010- Jan 2011
Result: Efficient, parallel, asynchronous CGA code using direct
communication
Validation:

Check results match serial code

Check speed-up rate of synchronous code over serial code
(hopefully equal to number of processors)

Check speed-up of asynchronous code over synchronous
code
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Schedule: Part 3

Part 3: Fine tuning/Polishing
Tasks:

Determine optimum parameters, neighborhood/population
space arrangement etc.

Further optimize code if possible

Timing: Feb 2011
Result: Efficient, competitive, parallel, asynchronous CGA code
using direct communication
Validation: Compare with earlier version of algorithm/with
other algorithms used in literature
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Schedule: Part 4

Part 4: Running on massive array/Reporting
Tasks:

Run on powerful array of processors

Prepare final report/presentation

Timing: Mar 2011-
Result:

Results for larger problems than attempted earlier (incl %
optimal, speed-up results ...)

Parallel, asynchronous, competitive Cellular Genetic
Algorithm code for the MLST using direct
processor-processor communication

Final report/presentation
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