
MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Using Genetic Algorithms to solve the

Minimum Labeling Spanning Tree Problem

Oliver Rourke, oliverr@umd.edu

Advisor: Dr Bruce L. Golden, bgolden@rhsmith.umd.edu
R. H. Smith School of Business

Abstract: Cellular Genetic Algorithms (CGAs) have shown themselves to be very

powerful tools for combinatorial optimization. Through this project I hope to

investigate CGAs, develop a parallel implementation of a CGA, use these

techniques on the Minimum Labeling Spanning Tree Problem, and compare

results with other heuristics.



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Introduction to MLST

First proposed in 1996 [Chang:1996]- variant on minimum
weight spanning tree

Connected Graph - set of vertices and edges.

Each edge has a color

Find the smallest set of colors which gives a connected
sub-graph



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

An example of a labelled spanning tree, and some
feasible solutions [Xiong:2005]



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Introduction to MLST

First proposed in 1996 [Chang:1996]- variant on minimum
weight spanning tree

Shown to be NP-complete

Two heuristics and an exhaustive search proposed in the
original paper - heuristics achieved moderate success



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Introduction to Genetic Algorithms (GAs)

Evolutionary-inspired heuristic for optimization problems

Population = set of solutions

Select, Breed, Replace

Advantages:

Flexible and adaptable
Robust performance at global search
Simple to parallelize



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Introduction to Genetic Algorithms (GAs)

Evolutionary-inspired heuristic for optimization problems

Population = set of solutions

Select, Breed, Replace

Advantages:

Flexible and adaptable
Robust performance at global search
Simple to parallelize



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Introduction to Genetic Algorithms (GAs)

Evolutionary-inspired heuristic for optimization problems

Population = set of solutions

Select, Breed, Replace

Advantages:

Flexible and adaptable
Robust performance at global search
Simple to parallelize



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Key steps in a Genetic Algorithm



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

One Parameter GA for MLST - Serial

From Xiong, 2005

Designed to be simple - no fine tuning

One parameter - p, population size

Representation: List of labels

Gene: Label in the list



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 1: Initialization

Create first generation of individuals - viable, varied

Initialization from Xiong:2005:
For each individual in population:

Individual = {}
While Individual Is Not Viable:

Individual.AddRandomColor()



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 1: Initialization

Create first generation of individuals - viable, varied

Initialization from Xiong:2005:
For each individual in population:

Individual = {}
While Individual Is Not Viable:

Individual.AddRandomColor()



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 2: Evaluation

Defined by problem

For some problems can be extremely time consuming

Multiple criteria
→Penalty functions?

Evaluation in Xiong:2005:
Eval(T) = len(T)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 2: Evaluation

Defined by problem

For some problems can be extremely time consuming

Multiple criteria
→Penalty functions?

Evaluation in Xiong:2005:
Eval(T) = len(T)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 3: Selection

How? Random, Sweep, ... .

Favor strongest?

Selection in Xiong:2005;
for j = 1:Size(Population)

Offspring(j) = Breed(Parent(j), parent((j + k) mod p))
(where k is the generation number)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 3: Selection

How? Random, Sweep, ... .

Favor strongest?

Selection in Xiong:2005;
for j = 1:Size(Population)

Offspring(j) = Breed(Parent(j), parent((j + k) mod p))
(where k is the generation number)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 4: Crossover

Combine genes from parents to produce viable offspring

Choose genes randomly? Follow order (pick ’strongest’
genes first)?

Crossover in Xiong:2005:
S = Union of genes (colors) from both parents
Sort(S) %According to frequency of labels in Graph
T = {}
while T Is Not Viable:

T.AddLabel(NextLabel(S))
return T



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 4: Crossover

Combine genes from parents to produce viable offspring

Choose genes randomly? Follow order (pick ’strongest’
genes first)?

Crossover in Xiong:2005:
S = Union of genes (colors) from both parents
Sort(S) %According to frequency of labels in Graph
T = {}
while T Is Not Viable:

T.AddLabel(NextLabel(S))
return T



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Crossover operator

Figure: The crossover operator used in Xiong’s GA [Xiong:2005]



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 5: Mutation

Introduce new genetic material

Typically done with small probability

Mutation in Xiong:2005 (100% chance of mutation):
T.AddRandomColor
Sort(T ) %According to frequency of labels in Graph
For Label in T(-1:-1:): %Reverse iterate

T.Remove(Label)
if T Is Not Viable:

if T.Add(Label)
return T



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 5: Mutation

Introduce new genetic material

Typically done with small probability

Mutation in Xiong:2005 (100% chance of mutation):
T.AddRandomColor
Sort(T ) %According to frequency of labels in Graph
For Label in T(-1:-1:): %Reverse iterate

T.Remove(Label)
if T Is Not Viable:

if T.Add(Label)
return T



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Mutation operator

Figure: The mutation operator used in Xiong’s GA [Xiong:2005]



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 6: Replacement

Find new generation from strongest offspring and parents

Replace parents where warranted

Replacement in Xiong:2005:
If Eval(Offspring)<Eval(Parent):

Parent.Replace(Offspring)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 6: Replacement

Find new generation from strongest offspring and parents

Replace parents where warranted

Replacement in Xiong:2005:
If Eval(Offspring)<Eval(Parent):

Parent.Replace(Offspring)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 7: Stopping Conditions

Generations count/computational time

Population Stagnant

Stopping Condition in Xiong:2005: Do p generations



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Step 7: Stopping Conditions

Generations count/computational time

Population Stagnant

Stopping Condition in Xiong:2005: Do p generations



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

GA improvements

Improve Crossover/Mutation operators?

Make crossover/mutation stochastic. Mix up ordering

Favor retention of mutated genes?

Keep equally good offspring?

Divide up population space - promote diversity



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

GA improvements

Improve Crossover/Mutation operators?

Make crossover/mutation stochastic. Mix up ordering

Favor retention of mutated genes?

Keep equally good offspring?

Divide up population space - promote diversity



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

GA improvements

Improve Crossover/Mutation operators?

Make crossover/mutation stochastic. Mix up ordering

Favor retention of mutated genes?

Keep equally good offspring?

Divide up population space - promote diversity



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

3 Different types of GA

Figure: Three different types of GAs showing interaction between
individuals (black dots) in the population. a)Panmictic b) Distributed
c) Cellular [Alba:2008]



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Genetic Algorithm − > Cellular Genetic Algorithm

Modify Selection operator- limit to neighborhood on grid

Arrangement of entire population space

Neighborhood size?

Choosing within neighborhood:

Step through neighborhood
Randomly choose one
Pick ’strongest’ neighbor?



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Genetic Algorithm − > Cellular Genetic Algorithm

Modify Selection operator- limit to neighborhood on grid

Arrangement of entire population space

Neighborhood size?

Choosing within neighborhood:

Step through neighborhood
Randomly choose one
Pick ’strongest’ neighbor?



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Genetic Algorithm − > Cellular Genetic Algorithm

Modify Selection operator- limit to neighborhood on grid

Arrangement of entire population space

Neighborhood size?

Choosing within neighborhood:

Step through neighborhood
Randomly choose one
Pick ’strongest’ neighbor?



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Serial Cellular Genetic Algorithm − > Parallel
Cellular Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Serial Cellular Genetic Algorithm − > Parallel
Cellular Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Serial Cellular Genetic Algorithm − > Parallel
Cellular Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Parallel Structures

Figure: Different approaches to parallel programming. (a)
Master/Slave configuration and (b) Inter processor communication



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Cellular Genetic Algorithm − > Parallel Cellular
Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication

Lock nodes when in use. Queues?

Synchronous (simultaneous) vs asynchronous



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Cellular Genetic Algorithm − > Parallel Cellular
Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication

Lock nodes when in use. Queues?

Synchronous (simultaneous) vs asynchronous



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Cellular Genetic Algorithm − > Parallel Cellular
Genetic Algorithm

Why?

Speedup
Larger Problems

Allocate nodes to separate processors

Master-slave vs. direct communication

Lock nodes when in use. Queues?

Synchronous (simultaneous) vs asynchronous



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Hardware/Software/Databases

Language - C++ with MPI (Message Passing Interface)
Hardware - array of processors at UMD
Database: Randomly generated labeled spanning trees



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Validation/Testing

Comparing my serial CGA with other heuristics and with
global optimum (if known, e.g. through exhaustive search)

Compare parallel results with serial CGA, ensure as
expected (feasible, function in the right range)

Calculate speedup of parallel vs. serial, asynchronous vs.
synchronous [Fujimoto:2011, Vidal:2010, Drummond:2001,
Groer:2010]



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Schedule: Part I

Part 1: Creating my serial Cellular Genetic Algorithm
Tasks:

Adding improvements to the Genetic Algorithm

Modifying selection operator/imposing grid structure so
becomes CGA

Timing: Sept - Oct 2010
Result: Competitive, efficient serial CGA code
Validation: Compare computational effort, results with other
heuristics (e.g. GA from Xiong, 2005)



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Schedule: Part 2

Part 2: Going parallel
Tasks:

Initially converting to synchronous code - direct
communication, locking nodes ...

Converting synchronous code to asynchronous code

Timing: Nov 2010- Jan 2011
Result: Efficient, parallel, asynchronous CGA code using direct
communication
Validation:

Check results match serial code

Check speed-up rate of synchronous code over serial code
(hopefully equal to number of processors)

Check speed-up of asynchronous code over synchronous
code



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Schedule: Part 3

Part 3: Fine tuning/Polishing
Tasks:

Determine optimum parameters, neighborhood/population
space arrangement etc.

Further optimize code if possible

Timing: Feb 2011
Result: Efficient, competitive, parallel, asynchronous CGA code
using direct communication
Validation: Compare with earlier version of algorithm/with
other algorithms used in literature



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Schedule: Part 4

Part 4: Running on massive array/Reporting
Tasks:

Run on powerful array of processors

Prepare final report/presentation

Timing: Mar 2011-
Result:

Results for larger problems than attempted earlier (incl %
optimal, speed-up results ...)

Parallel, asynchronous, competitive Cellular Genetic
Algorithm code for the MLST using direct
processor-processor communication

Final report/presentation



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Bibliography

Alba, E. and Dorronsoro, B., Cellular Genetic Algorithms, Springer, NY, 2008

Back, T., Hammel., U and Schwefel, H., Evolutionary Computation: Comments on the History and
Current State, IEEE Transactions on evolutionary computation, Vo. 1, No 1, 1997

Canyurt, O. And Hajela, P., Cellular Genetic algorithm technique for the multicriterion design
optimization, Struct. Multidisc Optim 20, 2010

Chang, R. and Leu, S., The minimum labeling spanning trees, Information Processing Letters 63,
1997

Drummond, L., Ochi, L. and Vianna, D., An Asynchronous parallel metaheuristic for the period
vehicle routing problem, Future Generation Computer Systems 17, 2001

Groer, C., Golden, B. and Wasil, E., A Parallel Algorithm for the Vehicle Routing Problem,
INFORMS Journal on Computing, 2010

Fujimoto, N. and Tsutsui, S., A Highly-Parallel TSP Solver for a GPU Computing Platform, LNCS
6046, 2011

Huy, N. et al., Adaptive Cellular Memttic Algorithms, Evolutionary Computation 17(2), 2009

Karova, M., Smarkov, V. and Penev, S, Genetic operators crossover and mutation in solving the TSP
problem, International conference on computer systems and technologies, 2005. Katayama,
Hirabayashi, Naruhusa, Performance Analysis for Crossover Operators of Genetic Algorithm, Systems
and Computers in Japan, Vol 30., No 2., 1999

Papaioannou, G. and Wilson, J., The evolution of cell formation problem methodologies based on
recent studies (1997-2008): Review and directions for future research, European Journal of
Operational Research 206, 2010

Paszkowicz, W., Properties of a Genetic algorithm extended by a random self-learning operator and
asymmetric mutations: A convergence study for a task of powder-pattern indexing, Analytics
Chimica Acta 566 (2006)

Sarma J., and De Jong, K., An analysis of the effect of the neighborhood size and shape on local
selection algorithms. In H.M. Voigt, W. Ebeling, I. Rechenberg, and H.P. Schwefel, editors, Proc. of
the International Confer- ence on Parallel Problem Solving from Nature IV (PPSN-IV), volume 1141
of Lecture Notes in Computer Science (LNCS), pages 236244. Springer-Verlag, Heidelberg, 1996.



MLST;
problem
set-up

Genetic
Algorithms

MLST: GA

MLST:
GA++

Implementation/
Validation

Timeline/
Results

Bibliography (cont.)

Simoncini D., et al., From Cells to Islands: An Unified Model of Cellular Parallel Genetic Algorithms,
ACRI, 2006.

Seredynski, F. and Zomaya, A., Sequential and Parallel Automata-Based Scheduling Algorithms, IEE
Transactions on Parallel and Distributed Systems, Vol 13, No 10, 2002

Serpell, M. and Smith, E., Self-Adaptation of Mutation Operator and Probability for Permutation
Representation in Genetic Algorithms, Evolutionary Computation 18(3), 2010

Vidal, P. and Alba, E., A Multi-GPU Implementation of a Cellular Genetic Algorithm, IEEE 2010

Xiong, Y., Golden, B. and Wasil, E., A One-Parameter Genetic Algorithm for the Minimum labeling
Spanning Tree problem, IEEE Transactions on evolutionary computation, Vol. 9, No. 1, 2005

Xiong, Y., Golden, B., and Wasil, E., Improved Heuristic for the Minimum Label Spanning Tree
Problem, IEEE Transactions on evolutionary computing, Vol 10., No. 6, 2006


	MLST; problem set-up
	Genetic Algorithms
	MLST: GA
	MLST: GA++
	Implementation/ Validation
	Timeline/ Results

