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0. Abstract

In this project we are interested in the reduction of high-dimensional data points
x from a space RD to a lower dimensional space Rd (where d << D) in a way
that preserves certain important characteristics. In particular, we are interested
in reducing the size of high-dimensional points for their application in the binary
classification of signals. We first examine a MatLab implementation of the Lo-
cally Linear Embeddings (LLE) algorithm, and it to a specific image database.
We then use the output of the LLE and the original dataset to test and com-
pare the performance ability of a MatLab implementation of the support vector
machine.

1. Background and Motivation

In the subsections below we give an introduction to the problem of handling
high-dimensional data, as well as define necessary notions used later in the pro-
posal.

1.1. High-Dimensional Data

At a basic level, the field of dimension reduction is concerned with taking high-
dimensional data points and representing them with fewer elements while preserv-
ing the important features of the data. In current data collection and processing
applications, an enormous amount of data can now be stored easily and efficiently.
This allows for tons of information to be collected on any specific task. The issue
then becomes the usefulness of this high-dimensional data. Data points in higher
dimensions will require more computing power to efficiently handle them, but it
may not be true that all of the collected data is meaningful in any way. Redundant
and unnecessary information may be present. This is the curse of Dimensionality;
we want to collect more information to create more accurate model predictions,
but we sometimes are not sure which information is relevant to the application at
hand.

1.2. Dimension Reduction Algorithms

To combat the curse of dimensionality, various techniques and algorithms have
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been developed to choose only the important features from a high-dimensional
point. There are two fields in dimension reduction, linear techniques that use
a linear mapping to reduce the dimension, and nonlinear techniques, which are
the focus of this project, that make the assumption that the data available is
embedded on a manifold (or surface in lower dimensional space). The data is then
mapped onto a lower-dimensional manifold for more efficient processing.

Specifically for this project, we only consider the nonlinear reduction scheme, Lo-
cal Linear Embeddings (LLE). In this scheme each high-dimensional data point
x is represented by a linear combination of its nearest neighbors (in Euclidean
distance). A lower-dimensional point y is then constructed to preserve local prop-
erties in an optimal way. This scheme is computationally simple and has other
qualities that render it useful in a variety of signal processing applications. This
is further discussed in the Approach section of the proposal.

1.3. Image Types and Processing

An image here, is defined to be three m× n matrices representing the red, green,
and blue (RGB) color intensities of the image. A gray-scale image is defined to be a
single m×n matrix of intensity values representing the image. Here we standardize
the images to live in the range of [0, 1] (as opposed to the usual [0, 255]). A binary
image is defined to be a gray-scale image where every element of the matrix is in
the set B = {0, 1}.

With the rapid increase in camera (or detector) resolutions, digital images contain
an astounding amount of pixels. And not surprisingly, in classification tasks,
transforming the images into data points (usually stacking the images by row or
column) and running algorithms on them can become computationally prohibitive.
This is especially true when there are sets of these high resolution (or equivalently,
high-dimensional) images. The solution to this computational nightmare lies in
the fact that much of the image contains pixels irrelevant to the classification
tasks.

1.4. Notation

xi - data point in RD

yi - data point in Rd

X - a matrix of data points in RD (X ∈ RN×D)

Y - a matrix of data points in Rd (Y ∈ RN×d)

W - a matrix of weight elements wij (W ∈ RN×N)

Si - a set of data points

C - a matrix of correlation elements Cij (C ∈ RK×K)

Q - a matrix of eigenvectors

Ii - a matrix representing an image
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zi - the class designation of data point xi

H - a hyperplane represented by its normal vector v and an offset term v0

2. Approach

This section outlines the two methods to be examined. The dimension reduction
algorithm Locally Linear Embeddings (LLE), and a binary classifier version of
Support Vector Machines (SVM). Also discussed, are the implementation of these
algorithms in the programming language MatLab, their extensions, and possible
numerical difficulties and testing hardware.

2.1. Locally Linear Embeddings (LLE)

Locally Linear Embeddings is a nonlinear dimension reduction scheme that maps
a high-dimensional data point x ∈ RD to a lower dimensional data point y ∈ Rd,
where d is much smaller that D. It was developed by Dr. Sam Roweis and Dr.
Lawrence K. Saul [1], and is described as a neighborhood preserving embedding
algorithm. The high-dimensional points are assumed to lie on a well-behaved
manifold where we further assume that any small patch of the manifold that we
view is approximately linear. With this, we also assume that the data can be
efficiently represented in a lower-dimensional space. This is equivalent to saying
that there is irrelevant or redundant information in the data point. An LLE
algorithm attempts to reduce the dimensionality of the data set X ∈ RN×D to a
dataset Y ∈ RN×d in a way that preserves relative distances between ”close” (in
Euclidean distance) points.

The algorithm proceeds as follows.

Step 1: In the first step, we must find the K−nearest neighbors of each data
point xi ∈ X, i = 1, 2, . . . , N , as the nearest neighbors of xi are what we want
to preserve in our embedding. The K-nearest neighbors of xi will be denoted
{zij}Kj=1. Here, the subscript ij refers to the ith data point xi and its jth neighbor
zij. It’s important to note that we choose the K-nearest neighbors of xi, excluding
xi itself.

Step 2: Using the neighbors {zij}Kj=1, we now must compute the reconstruction
weights wij, i, j = 1, 2, . . . , N that when applied to the neighbors zij, best ap-
proximate xi. This search for the weight wij is equivalent to solving the following
constrained optimization problem.

W = arg min
W

: E(W) =
N∑
i=1

∥∥∥∥∥xi −
K∑
j=1

wijzij

∥∥∥∥∥
2

(1)

Here W ∈ RN×N is the matrix of optimal weight values wij. We take the con-
vention that all norms ‖ · ‖ are the Euclidean distance unless specified to be
otherwise.
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Our first constraint is that
wij = 0 (2)

for any indices j, where xj is not a neighbor of xi, or more succinctly when
xj /∈ {zij′}Kj′=1. This constraint ensures that the algorithm doesn’t attempt to
preserve the relative distance of points not in the nearest neighbor set. It’s also
important to note that wii = 0.

The second constraint is that

N∑
j=1

wij = 1, for i = 1, 2, . . . , N (3)

This essentially says that the rows of the weight matrix W must sum to one.
These constraints are required to ensure that the solution to the problem above
is invariant to rotation, rescaling, and translations of the data. The benefit of
this constraint is that the weights are no longer dependent on the current frame
of reference, and instead, they represent their relationships between data in the
set.

Step 3: After solving this optimization problem, we now have the weight matrix
W that best represents the data points xi as a linear combination of its nearest
neighbors. The next step in the algorithm is to find the best representation of xi
as the lower-dimensional point yi. This is done using the weights determined in
step 2 and solving the following constrained optimization problem.

arg min
Y

: e(Y) =
N∑
i=1

∥∥∥∥∥yi −
N∑
j=1

wijyij

∥∥∥∥∥
2

(4)

The first constraint here is that

N∑
i=1

yi = 0 (5)

This constraint is used to center the points around the origin (to remove transla-
tional invariance).

The other constraint required here is that

1

N

N∑
i=1

yTi yi = Id (6)

Here, Ia refers to the identity matrix of size a × a, and yTi yi is defined to be
the outer product (as yi is a row vector). This constraint removes the rotational
invariance.

2.2. Implementation
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Using details from the original paper by Roweis and Saul [1], the book by Theodor-
idis and Koutroumbas [2], and the book by O’Leary [10], implementations of so-
lution methods for the steps above are presented here.

Nearest Neighbor Search

Here, we present three methods for finding the K-nearest neighbors in Euclidean
distance.

1. First computing the pairwise distances between each point in the dataset X ,
we then sort them and take the K smallest to be the nearest neighbors. An
algorithm is provided below.

Algorithm 1 Nearest Neighbor Search by Full Enumeration

1: for each point xi ∈ X do
2: compute the distance between xi and each other point xj ∈ X
3: sort distances in ascending order (keeping track of the original indices)
4: choose the K indices with the smallest distances
5: return the indices of the K nearest neighbors
6: end for

2. Another method is accomplished through Binary Programming. We wish to
find the K points that are closest to xi. We can model this problem as

u = arg min
u

:
N∑
j=1

‖xi − ujxj‖2

s.t. :
N∑
j=1

uj = K (7)

u ∈ {0, 1}N

Solving this problem for the non-zero components vj (for each point xi in
our set) that correspond to the points xj, we get our K-nearest neighbors.
This must be performed for each point in our data set X . There are two
important things to remember with this method. The first is that it is
generally slow to find the solution (as the problem is NP-hard). In fact the
only reason this method is presented is to be a starting point for the next
solution method presented. There are very few occasions when this method
would be suggested. The algorithm is presented below.

Algorithm 2 Nearest Neighbor Search by Binary Programming

1: for each point xi ∈ X do
2: find u by solving the Binary Programming problem described in (7)
3: return the indices of the K non-zero elements in u
4: end for
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3. The final method presented for nearest neighbor search, is an approximate
solution to the Binary Programming problem above. We start with the
problem above, and by using Lagrange multipliers results in the following
system. The full derivation is available in Appendix A.

Au = λ1N (8)

where A ∈ RN×N is a diagonal matrix whose elements are (‖xj‖2−〈xi,xj〉),
or in other words, A = diag{‖xj‖2 − 〈xi,xj〉, for j = 1, 2, . . . , N}. λ is

a Lagrange multiplier whose value is set so that
∑N

j=1 uj = K. 1N is a
vector of ones of length N . An algorithm for nearest neighbor computation
is presented below. The important thing to note with this method is that
it’s solution is an approximate one.

Algorithm 3 Approximate Nearest Neighbor Search

1: for each point xi ∈ X do
2: build the matrix A = diag{‖xj‖2 − 〈xi,xj〉, for j = 1, 2, . . . , N}
3: solve the system Au′ = 1N for u′

4: set λ = K∑N
j=1 u

′
j

5: set u to be λ · u′
6: sort u in descending order (keeping track of the original indices)
7: return the top K indices that correspond to the nearest neighbors
8: end for

Minimization of E(W)

Here we present two methods for the solution of this minimization problem. The
first, from Roweis and Saul [1], and the other from a report by Shalizi [11].

1. For a data point xi with neighbors Si = {zij}Kj=1, compute the neighborhood
correlation matrix C ∈ RK×K , formed by taking the pairwise inner-products
of the elements zij, zik ∈ Si, or Cjk = 〈zij, zik〉. Here, we view our data points
xi as sequences of measurements, such that their scaled correlation is 〈xi,xj〉.
If the data points are normalized, then the elements of the correlation matrix
Cjk are in the interval [−1, 1]. For each correlation matrix, find the inverse
C−1.

Compute the Lagrange multiplier λ = α
β

that enforces the sum-to-one con-
straint. Here,

α = 1−
K∑
j=1

K∑
k=1

C−1jk (xi · zik) (9)

and

β =
K∑
j=1

K∑
k=1

C−1jk (10)

It’s worth noting that λ changes with the point xi.
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Finally, compute the reconstruction weights for data point xi using the for-
mula

wij =
K∑
k=1

C−1jk [(xi · zij) + λ] (11)

The above reconstruction states that for each point xi and its neighbor zij,
the weight wij is computed as stated. In the cases where the correlation
matrix are nearly singular, a small multiple of the identity matrix can be
added to overcome major problems.

Algorithm 4 Weight Construction I

1: for each point xi ∈ X given its neighbors {zij} do
2: compute the correlation matrix C ∈ RK×K

3: compute the inverse matrix C−1 ∈ RK×K

4: compute the Lagrange multiplier λ = α
β

5: return the vector of weights wij =
∑K

k=1C
−1
jk [(xi · zij) + λ]

6: end for

2. The second method constructs the weights through solving the system

Gwi =
λ

2
1N (12)

Here, G is formed by first defining z̃ij := zij − xi for j = 1, 2, . . . , N . This
centers our points around xi. We then define G to be the Gram matrix whose
elements are inner products of z̃ij for all j. λ is the Lagrange multiplier whose

value is set so that the sum-to-one constraint is satisfied (
∑N

j=1wij = 1). For
the full derivation, refer to Appendix B.

Algorithm 5 Weight Construction II

1: for each point xi ∈ X given its neighbors {zij} do
2: center the points, z̃ij = zij − xi
3: compute the Gram matrix G = [Gjk] whose elements are 〈z̃ij, z̃ik〉
4: solve the system Gw′i =

1

2
1N for w′i

5: compute the Lagrange multiplier λ = 1∑K
j=1 w

′
j

6: set wi = λ ·w′i
7: return the row of weights wi

8: end for

Minimization of e(Y)

1. For the minimization of e(Y), and the computation of Y , it has been that
by performing an eigen-decomposition of (W − IN)T (W − IN). We denote
the matrix whose columns are eigenvectors Q = [q1 q2 . . . qD]. Our lower-
dimensional dataset (whose rows are data points) is then set to be Y =
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[q1 q2 . . . qd], where the eigenvectors correspond to the smallest eigenvalues
(this assumes the eigenvalue/eigenvector pair corresponding to an eigenvalue
of 0 is removed). An algorithm is presented below.

Algorithm 6 Embedding Construction

1: construct the matrix (W − IN)T (W − IN)
2: compute the eigenvalues and eigenvectors of (W − IN)T (W − IN)
3: remove the eigenvalue/eigenvector pair corresponding to the eigenvector of 0
4: collect the eigenvectors corresponding to the lowers d eigenvalues
5: return the eigenvectors [q1 q2 . . . qd] as the dataset Y

2.3. Computational Considerations

The computational complexity of minimizing E(W) scales as O(NK3), due to the
solving of linear systems in the solution method, but we expect to have many more
data points than nearest neighbors so our weight matrix should be fairly sparse.
Using this fact to our advantage, we can implements sparse methods to handle the
linear systems more efficiently, thereby reducing computation time. The efficient
use of the sparsity in W can also result in a complexity sub-quadratic in N for
the eigen-decomposition problem. The algorithm used in MatLab eig.m, which
allows for the efficient computation of eigenvectors when structure is present in the
matrices. The complexity of the full enumeration search is quadratic in N .

When performing the computing tasks on the dataset X , efficient memory man-
agement is imperative. Understanding the programming languages memory allo-
cation, storage, and retrieval system will allow for efficient and steam-lined code.
This will reduce the setup time between steps in the LLE algorithm.

2.4. Algorithm Extensions

There are a number of possible extensions to this algorithm. Time permitting,
these extensions can increase the effectiveness and efficiency of our LLE imple-
mentation.

The number of nearest neighbors K taken is an important parameter to the weight
construction, and in the algorithm above, there is no consideration to the choice
of this variable. In the paper by Kouropteva, Okun, and Pietikainen, a method is
presented for the optimal selection of the number of nearest neighbors [3].

In another paper by Kouropteva, Okun, and Pietikainen, a method is presented
for the incremental implementation of the LLE algorithm. This allows for the
solving of smaller optimization problems (as opposed to the original algorithm, or
batch LLE) [4].

And one of the things that cause the LLE algorithm to fail is when the least-
squares problem, solved to find the weights, is ill-conditioned. To combat this,
Zhang and Wang propose a method of finding weight vectors that are linearly
independent and nearly optimal [9].
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2.5. Support Vector Machines

The specific application of this proposed project is in image classification. Given
a set of images {Ii}, we want to be able to correctly distinguish between their
various properties. Here we take the simple case of binary classification, where we
assume that any image considered is either in a class A or class B. One of the
main goals in pattern recognition is to be able to detect the differences between
various objects. There are a variety of ways to do this, but one of the most
popular utilizes Support Vector Machines (SVM). Various features of the image
under study are arranged into a vector (data point xi) that is a representation
of its properties. Each data point is then assigned one of the classes above. For
notational convenience, we will designate zi as the class designation of a data point
xi, where zi ∈ {−1, 1}.

With support vector machines, a number of these data points are collected and
called a training set, as their classes are known. These are used to find a hyperplane
H = 〈v, v0〉 that separates the two classes. Here, v is the normal vector to the
hyperplane. v0 is the offset of the hyperplane from the origin. In general there
are an infinite number of hyperplanes that have this property, but the hyperplane
desired is the one that maximizes the distance between elements in a class and the
hyperplane itself (this is called the maximal margin hyperplane). The objective
for this problem becomes finding the hyperplane whose normal vector v accurately
classifies each training vector and has maximal margin. Our problem can be solved
through constrained optimization, formulated below.

arg min :
1

2
‖v‖2 (13)

This problem is subject to the constraint that (a) all of the data points xi are
labeled correctly, or

zi(v
Txi + v0) ≥ 1 (14)

This problem will only have a solution if there exists a hyperplane that separates
the data. To account for the case where our data is not separable in this way, we
can relax the constraints, or form the Lagrangian problem, presented below.

arg minL(v, v0, µ) =
1

2
‖v‖2 −

N∑
i=1

µi[zi(v
Txi + v0)− 1] (15)

With this, we can test classification accuracy, when the dataset output for LLE is
applied.

2.6. Software

The algorithms stated above are to be implemented in the programming language
MatLab. This decision is primarily due to the languages’ flexibility in syntax, its
ubiquitous use by the scientific community, and the wide availability of support
and toolboxes. In particular, the optimization, linear algebra, and sparse matrix
support, make it an ideal choice for scientific computing tasks.

9



2.7. Hardware

In these early planning stages, the planned machine to run and develop these
algorithms is a personal computer. We plan to scale up to the computers available
in the Norbert Weiner Center computer lab if more computing power is necessary.
But as of now, no special hardware seems to be required.

3. Validation

There are two main methods we plan to use to validate our implementation of
LLE.

3.1. Standard Topological Manifolds

To test the correctness of the LLE implementation, we will apply the algorithm
to data points sampled from well-known and well-studied 3-D surfaces that have
a well-known representation in 2-D space. The four functions we plan to use are
presented below.

Swiss Roll:
F : (x, y)→ (x cos(x), y, x sin(x)) (16)

Gaussian Distribution:

f(x, y) =
1√
2π
e
−

x2 + y2

2


(17)

Twin Peaks Function:

g(x, y) = x4 + 2x2 + 4y2 + 8x (18)

Logistic Function:

h(x, y) =
1

1 + e−x
(19)

For these functions, the 2 dimensional manifold is known, which allows us to check
our LLE output against the known 2-D manifolds of these surfaces.

3.2. MatLab Dimension Reduction Toolbox

Available through Delft University of Technology, there is a dimensionality re-
duction toolbox for MatLab with various reduction algorithms (including an LLE
implementation). Using this toolbox, and some data from the database we plan
to use, the results can be compared to ensure that we have implemented LLE
correctly.

3.3. Validation of Nearest Neighbors

In this section, the validation results for the three nearest neighbor algorithms vs
MatLab’s nearest neighbor algorithm (knnsearch.m) are presented. knnsearch.m is
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partially based on work by Friedman, Bently, and Finkel [12] utilizing k-d search
for nearest neighbor searching (essentially partitioning the space and grouping
close points). They were able to prove that the expected complexity of performing
can be logarithmic (in the average case). In larger dimensions though, it is not
suitable as it essentially performs a full enumeration. It is worth mentioning that
for data points larger than 10, knnsearch.m uses an exhaustive search instead of
a k-d tree.

Presence of Neighbors

In this test, given a random data matrix, the indices of the K nearest neighbors are
chosen using the four methods (Full Enumeration, Binary Programming, Heuris-
tics, MatLab’s Implementation), and then checking the results of our algorithms
vs. MatLab’s implementation for the correspondence of nearest neighbor indices.
By the presence of nearest neighbors, we mean that in our vector of indices, if an
index is present in the our implementation and MatLab’s (regardless of order),
then they are considered to produce the same result. The results are presented
below.
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Figure 1: (Top Left) The error percentage using Full Enumeration. (Top Right)
The error percentage using Binary Programming. (Bottom Left) The error per-
centage using Heuristics.
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In the figures above, it is clear that all of our implementations reach near parity
with the MatLab results.

Preservation of Neighbors

In this test, the same method is followed as in the “Presence of Neighbors” test
above, with the exception that now the order of the neighbors is considered. This
means that even if all of the same neighbor indices are present in the results, if
they are not in the same order, they are not considered the same. The graphical
results are below.
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Figure 2: (Top Left) The error percentage using Full Enumeration. (Top Right)
The error percentage using Binary Programming. (Bottom Left) The error per-
centage using Heuristics.

In the figures above, it is clear that while the Full Enumeration method produces
analogous results, the Binary Programming and Heuristic algorithms can be vastly
different.

3.4. Weight Construction Validation

There are two variations of the Weight Construction algorithm to validate. Rather
than checking output of the methods, we will check that the sum-to-one constraints
have been satisfied. Given a random dataset, and using the Full Enumeration
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nearest neighbor search method, the weights are constructed and checked that
the weights for each data point sum to 1. Graphical results are presented be-
low. As is clear from the graph, both methods produce results that meet the
constraints.
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Figure 3: The error percentage of sum-to-one constraints.

3.5. Author’s Locally Linear Embedding Code

Available from the LLE author’s website (http://www.cs.nyu.edu/ roweis/lle/)
there is an implemented and validated code set for performing Locally Linear
Embedding. Using this code, and some of the test function mentioned in Stan-
dard Topological Manifolds, the results can be compared to ensure an accurate
implementation.

3.6. Validation of LLE Algorithm

With the constituent parts validated, we can now validate the entire LLE algo-
rithm against the Author’s implementation. The first set of validations are the
correspondence of results for the Topological Surfaces, the outputs of the two
algorithms are available further down the paper.

13



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Gaussian Surface Embedding

x−axis

y−
a

xi
s

 

 
My Implementation
Author’s Implementation

−1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5
Gaussian Surface Embedding

x−axis

y−
a

xi
s

 

 
My Implementation
Author’s Implementation 

Figure 4: (Left) Gaussian Embedding with a norm difference of absolute value
7.3131e − 10. (Right) Gaussian Embedding with a norm difference of absolute
value 5.1161e− 12
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Figure 5: (Left) Swiss Roll Embedding with a norm difference of absolute value
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Figure 6: (Left) Logistic Embedding with a norm difference of absolute value
1.4568e − 12. (Right) Logistic Embedding with a norm difference of absolute
value 1.3797e− 9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Twin Peaks Embedding

x−axis

y−
a

xi
s

 

 
My Implementation
Author’s Implementation

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Twin Peaks Embedding

x−axis

y−
a

xi
s

 

 
My Implementation
Author’s Implementation

Figure 7: (Left) Twin Peaks Embedding with a norm difference of absolute value
1.8453e − 9. (Right) Twin Peaks Embedding with a norm difference of absolute
value 4.6439e− 13

The next test is to use a randomly generated dataset and running the two im-
plementations for varying sizes and nearest neighbors used. As the embedding
dimension is generally higher than three, we can’t graph the output points, so the
results below will compare the nearest neighbors presence and preservation of the
two implementations. The norm of the difference is also presented.
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Figure 8: (Left) Random Data Embedding with a norm difference of absolute
value 1.1165e − 11. (Right) Random Data with a norm difference of absolute
value 2.2495e− 12

3.7. Validation of SVM

Time-permitting, we plan to implement certain components of the support vector
machine library (see section 4.). To ensure that any code that we implement
is working properly, we must validate it. The library (LIBSVM) comes packed
with an array of testing/validation data, where the classification result is already
known. Using this, we can be assured of our implementation.

4. Testing and Data

To test our implementation of LLE and SVM for image classification, there are
a number of public databases available, but specifically, our images will be faces
supplied by Yale University. Titled ”The Yale Face Database B”, the database
contains 5760 single light source images of 10 different subjects, each under 576
viewing conditions. Included with the database are 65 background illuminations
used when photographing the subjects [8].

Using this as our dataset, we can test our implementation of the LLE algorithm,
and then use these results in conjunction with the support vector machine. This
database is available at http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

The SVM is initially to be used from the library LIBSVM, which contains an
implementation of the support vector machine. Form this we can test the classi-
fication accuracy of data after LLE has been applied. Time-permitting, this may
be substituted for an implementation we create [7].

The library is available here http://www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html#f203

5. Project Schedule and Milestones

September 2012 - November 2012
Plan and implement the LLE algorithm in MatLab, efficiently handling storage
and memory management issues.
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Perform unit tests to correct any bugs present in code.
Validate code on standard topological structures (Swiss Roll, etc.).
Compare results of algorithm output to the results of the LLE method present in
the Dimension Reduction Toolbox.
Test the LLE algorithm on a dataset from a publicly available database.

November 2012 - December 2012
Make any necessary preprocessing changes to the image database used.
Prepare the mid-year (end of semester) report and presentation.
Deliver mid-year report.

January 2013
Implement a pre-developed SVM package for MatLab.
Test binary classification accuracy of SVM on dimension-reduced dataset.
Assess effectiveness.

February 2013 - April 2013
Implement SVM in MatLab (time permitting).
Implement LLE extensions.
Compare results of original LLE implementation to extended versions.
Parallelize original LLE algorithm (time permitting).

April 2013 - May 2013
Prepare final presentation and report.
Make any last minute adjustments to code that are required.
Package deliverables.
Ensure the safe delivery of source code and other project materials.

6. Deliverables

The deliverables for this project are the MatLab code that implements the LLE
algorithm and any code used for testing (i.e. scripts for the surface creation,
MatLab toolbox files, and other pre-packaged code). The code will be optimized
for performance and effective memory management, as well as being fully docu-
mented. Reports at various stages throughout the course will detail the approach,
implementation, validation, testing, and extensions of the algorithm. With this
information, a researcher will be able to reproduce any results present in our
reports.
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Appendix A (Heuristic Nearest Neighbor Search Derivation)

Start with the Binary Programming problem:

u = arg min
u

:
N∑
j=1

‖xi − ujxj‖2

s.t. :
N∑
j=1

uj = K (20)

u ∈ {0, 1}N

Expanding this, we have

min
u

:
N∑
j=1

‖xi − ujxj‖2

N∑
j=1

‖xi‖2 − 2〈xi, ujxj〉+ u2i ‖xj‖2

As our variables uj are binary, u2j = uj. We can then simplify our objective
function

N‖xi‖2 +
N∑
j=1

u2i (‖xj‖2 − 2〈xi,xj〉)

We will now form the Lagrangian using the constraint.

L(u) =N‖xi‖2 +
N∑
j=1

u2i (‖xj‖2 − 2〈xi,xj〉) + λ(K −
N∑
j=1

uj)

∇uL =2 · diag{‖xj‖2 − 2〈xi,xj〉}u− λ · 1N = 0 (21)

This gives the system

2 · diag{‖xj‖2 − 2〈xi,xj〉} = λ · 1N

Appendix B (Weights Construction Derivation) The find the weights for
the data point xi, we minimize

min
W

: E(W) =
N∑
i=1

∥∥∥∥∥xi −
K∑
j=1

wijzij

∥∥∥∥∥
2

Our weights sum to one, implying that

K∑
j=1

wijxi = xi
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We can now write our objective function as

min
W

: E(W) =

∥∥∥∥∥
K∑
j=1

wij(xi − zij)

∥∥∥∥∥
2

which we can further re-write as

min
W

: E(W) =

∥∥∥∥∥
K∑
j=1

wij(zij − xi)

∥∥∥∥∥
2

Let z̃i = [zi1 − xi , zi2 − xi , . . . ]. Expanding the norm, we have

E(W) = wT
i z̃Ti z̃Ti wi = wT

i Gwi

Forming the Lagrangian with our sum-to-one constraint, we have

L(wi, λ) = wT
i Gwi − λ(1Twi − 1)

∇wi
L = 2Gwi − λ1 = 0

This is now the system presented in the weights construction II algorithm.
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