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Project Goal

Processing and analyzing with high dimensional data is
difficult. Dimension reduction techniques allow us to reduce
the size of data while keeping its key structure.

This project focuses specifically on the preprocessing of
datasets using Locally Linear Embedding, and testing a
Support Vector Machine’s ability to accurately classify this
new data.
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High Dimensional Data

In data processing schemes, large quantities of data can be
collected, but it may not be true that this information is
meaningful.

In many cases, there’s redundant/unnecessary information in a
dataset.

We want a smart way to reduce the redundant information,
while keeping the structure of our dataset.
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Dimensionality Reduction Techniques

With Linear Dimension Reduction [LDR] techniques, we are
searching for a matrix ALDR, such that when we apply it to
our data, we get a faithful lower-dimensional representation.

Examples {Principal Component Analysis, Discriminant
Analysis, Independent Component Analysis, etc.}

For the cases when our data does not lie on a linear manifold,
we must resort to more powerful techniques to reduce our
dimension. These are referred to as Nonlinear Dimension
Reduction [NLDR] techniques.

Examples {Locally linear Embedding, Laplacian Eigenmaps,
Schrodinger Eigenmaps, etc.}
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Support Vector Machines [SVM]

Given some dataset X ∈ RD×N with different classes of
datapoints ~xi (images are an example), it’s reasonable to
assume that datapoints of the same class are close together.

For convenience, let’s assume that our dataset X contains
datapoints of two classes {-1,1}. SVM’s attempt to find a
hyperplane that separates (geometrically) the dataset by class.

A hyperplane can be represented as a vector normal to the
plane ~w and an offset from the origin w0. So once a datapoint
~x∗ is given, all that is required to determine its class, is to see
which side of the hyperplane it resides (which is accomplished
by determining the sign of 〈~w, ~x∗〉+ w0).
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Locally Linear Embedding

The specific DR technique explored in this project is the
Locally Linear Embedding [LLE] algorithm developed by
Lawrence Saul and Sam Roweis.

LLE is designed to map datapoints in high dimensional space
to a lower dimensional space while preserving local
neighborhoods.

This is accomplished by viewing the data as having a linear
local structure.
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Locally Linear Embedding (cont.)

The algorithm has three steps:
1 Determine the neighborhood of

each point in our dataset
X ∈ RD×N . These are the
neighborhoods we wish to preserve.

2 For each datapoint ~xi ∈ X,
determine the weight each
datapoint in the neighborhood
affects ~xi.

3 Given the weights, find the
lower-dimensional dataset
Y ∈ Rd×N that preserves them.

Chae Clark cclark18@math.umd.edu Advisor: Kasso Okoudjou kasso@math.umd.edu Department of MathematicsLLE and SVM



Introduction & Background
Locally Linear Embedding

Results

Nearest Neighbor Search

The first step in the process, is to determine the
neighborhoods of each of the datapoints ~xi ∈ X.

To accomplish this, we employ a K nearest neighbor search.

For each datapoint ~xi, we calculate its distance to every other
point in X. The K datapoints with the smallest distance to
~xi are used to define the local neighborhood.
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Validation
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1 To validate our implementation we
look at the difference (in norm) of
found nearest neighbors and actual
nearest neighbors.

2 Finding the K nearest neighbors of
a datapoint requires O[N2]
distance computations.
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Reconstruction Weights

The second step in the algorithms, is to determine weights
associated with each point in our neighborhood.

To determine these weights, we must solve the following
optimization problem:

W = argmin

{∑N
i=1

∥∥∥~xi −∑K
j=1Wij~ηij

∥∥∥2
2

}
where ~ηij is the jth neighbor of datapoint ~xi.

This problem also has the constraints∑K
j=1Wij = 1 for all i = 1, 2, . . . , N
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Reconstruction Weights (cont.)

Following from the constraints is the fact that

Wij = 0 for all datapoints that are not neighbors.

This problem is convex, and as such, if we find a local
minimum, we have found a global minimum. Furthermore,
this problem has a closed-form solution.

~Wi =
G−1

i
~1∑

G−1
i
~1

for all i = 1, 2, . . . , N
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Validation
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1 To validate our implementation we
look at the difference (in norm) of
weights found and the true optimal
weights.

2 The solution to this problem can
become ill-conditioned for K > D.
To handle these cases, a small
regularization term is added to the
objective function.
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Embedding Construction

The final step in the LLE algorithm requires us to find the
lower-dimensional representation Y ∈ Rd×N such that our
weights between neighbors are preserved. This can be written
as an optimization problem.

Y = argmin

{∑N
i=1

∥∥∥~yi −∑K
j=1Wij~ρij

∥∥∥2
2

}
where ~ρij is the jth neighbor of the dimension-reduced datapoint

~yi.

This problem has the constraints∑N
j=1 ~yi = 0 (center the points around the origin)

and
Y · Y T = I (essentially fill the same role as

∑
Wij = 1)
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Embedding Construction (cont.)

It has been shown that solving this problem is equivalent to
performing an eigen-decomposition of the matrix

M = (I −W )T (I −W )

To be exact, we find ~λ and V where these are the eigenvalues
and eigenvectors of M respectively. From here, the smallest d
non-zero eigenvalues ~λd and their eigenvectors Vd are chosen.

The matrix Vd ∈ RN×d is set to be the lower dimesnional
embedding of our dataset.
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Computing Eigen-values/vectors

Looking at our matrix M , we notice some interesting
properties.

1 M is real-valued

2 M is symmetric

3 M is positive semi-definite

Given this set of properties, there are a number of methods to
find our needed eigen-values/vectors.
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Computing Eigen-values/vectors (cont.)

To perform the eigen-decomposition, we employ an iterative
QR method, detailed as follows

1 Start with a real, symmetric, positive semi-definite matrix A
2 Set [D(0), V (0)] to be A and I respectively
3 For k = 1, 2, . . . ,m
4 factor matrix D(k−1) into Q and R, where Q is unitary and R

is lower triangular, and D(k−1) = QR
5 V (k) = V (k−1) ·Q
6 D(k) = R ·Q
7 endFor
8 Matrix D(m) is diagonal and contains the eigenvalues of A
9 Matrix V (m)’s columns are the eigenvectors of A
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Eigen-solver Validation
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The top figure shows the difference
(in norm) of the found eigenvalues
and the actual eigenvalues.

The bottom figure shows the
difference (in norm) of the found
eigenvectors and the actual
eigenvectors.
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Embedding Validation
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1 To validate our implementation we
look at the difference in norm of
thr embedding found and the true
optimal embedding.
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Full LLE Validation
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The top figure shows the difference (in
norm) of the found lower-dimensional
embedding and the true optimal
lower-dimensional embedding.

The bottom figure shows a comparison of
the quality of the preserved neighborhood.
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Test Configuration
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A dataset of handwritten images (of the digits 1-9) was used
in all testing. The full dataset contains 60,000 (28 x 28)
training images, and 10,000 (28 x 28) testing images.

To process the images, we stack the columns into a single
784-length vector. The dataset is provided by the National
Institute of Standards and Technology [NIST] and is available
here:

http://yann.lecun.com/exdb/mnist/
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Test Configuration (cont.)

We use an open source library [LibSVM] for classification
available at:

http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

For the tests, we combine the training and testing sets into a
single dataset X = [train, test] ∈ RD×(N+M). LLE is applied
to X, then an SVM is trained with the embedded training set.
We then use the embedded test set to view performance.
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Results for N = {100, 200}, M = 3000
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Results for N = {300, 400}, M = 3000
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Results for N = {500, 1000}, M = 3000
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Results for N = {2000, 3000} M = 3000
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Results for N = {4000, 5000}, M = 3000
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Conclusion

The accuracy of SMV classification, in some cases, can be
increased by using dimensionality reduction techniques as
preprocessors (especially for smaller datasets).

Even though (at higher dataset sizes) we lose some accuracy
in classification, for intelligently chosen target dimension and
nearest neighbors, we can mitigate this loss.
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Deliverables

Code to compute the nearest neighbors

Code to compute the reconstruction weights

Code for the computation of eigen-values/vectors

Code for the LLE algorithm

Testing script for all above code

Files required from LibSVM

Files required from dimensionality reduction toolbox
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