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 Abstract: 

For this project I plan to implement a dimension reduction algorithm 
entitled “Locally Linear Embeddings” in the programming language 
MatLab. For a group of images, the dimension reduction algorithm is 
applied, and the results are used to compare classification 
accuracies. 



Review I 



•We start with multiple high-dimensional points 
(maybe a set of images) 
 
•We map that image to a D dimensional vector 
 
•Lots of elements means the processing of this 
data is more computationally intensive 
 
•Usually lots of redundant data, or lots of 
correlation in the elements 

•We want a vector of a reduced size that retains 
important characteristics of the data 
 
•We also want the new vector’s elements to be un-
correlated 
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There are a number of techniques to 
perform this operation under the field 
Dimension Reduction 

•Search for a matrix A (or matrix 
operation) that maps your high-
dimensional data into a lower 
dimensional space 
 
•Preserves key characteristics of data 

•Use a nonlinear mapping that reduces 
your dimension 
 
•Preserves key characteristics of data 

Linear Reduction Methods 

Nonlinear Reduction Methods 
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Locally Linear Embeddings (LLE) 

•Nonlinear dimension reduction method 
 
•Developed by Dr. Sam Roweis and Dr. 
Lawrence Saul 
 
•Takes a high-dimensional point X and 
maps it a lower dimensional point Y 
 
•Preserves local geometry (local 
distances between points) 
 
•This is done by solving a series (two) 
constrained optimization problems 

Figure 1: Obtained from LLE website [1] 

[1] http://www.cs.nyu.edu/~roweis/lle/algorithm.html 

LLE Overview 

http://www.cs.nyu.edu/~roweis/lle/algorithm.html


LLE Overview 

•Find the nearest neighbors of each point in our set 
 
•Try to find a linear (almost convex) combination of the 
nearest neighbors that best represents the point 
 
•Use the found weights as the contribution of each 
neighbor point 
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Optimization Problem 

•Find the reduced dimension points that retain the 
weight spacing determined in Step 1 
 
•In essence, we are preserving pair wise distances 
between neighbors 
 
•Try to find a linear (almost convex) combination of the 
nearest neighbors that best represents the point 
 
•Use the found weights as the contribution of each 
neighbor point 
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Software 

Algorithms implemented in the 
programming language MatLab 
 
This is due to: 

• Flexibility in syntax 
 

• Ubiquitous use by the scientific 
community 
 

• Wide availability of support 

Hardware 

Currently using a personal computer for 
development, validation, and testing 
 
If this becomes computationally infeasible, 
I will also use the computers in the 
Norbert Weiner Center for testing 

Implementation 



Nearest Neighbor Search 



Process & Algorithm 

•There are a number of ways to find the K-nearest 
neighbors 
 
•In this project, 3 different methods are 
implemented, one through binary programming, 
another through a heuristic method, and the one 
presented below 

Algorithm: Nearest Neighbors through Full Enumeration 
• for each              (for each data point in our data set) 
• compute the pair-wise distance between       and every point in the dataset 
• arrange these distances as a sorted array, keeping track of the indices of the 
K+1 smallest distances 
• remove the index of the 0 distance 
• the remaining indices are the K nearest neighbors 
• end for 
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Validation 

• Using MatLab’s built-in nearest 
neighbor search (knnsearch.m), we 
can validate our search code. 
 
• The graph below shows the 
difference in nearest neighbors 
found between our implementation 
and MatLab’s 
 
• This test was performed on 
random matrices 
• Filename: knn_validation.m 

• This graph is uninteresting, but it validates the nearest neighbor code 



Timing Results 

• Here are some timing results as 
well 
 
• They are the ratio of the time 
required to process the same 
dataset 
 
• Here the time for my algorithm is 
divided by the timing for MatLab’s 
implementation 



Weights Construction 



Process & Algorithm 

• Given the K-nearest neighbors for each data point       in the dataset         
(Denote these               ) 
 
• We want to find the weights that reduce reconstruction error for each data point 
 
•2 different methods implemented in the project, one through matrix inversion and the 
other presented here 

Algorithm: Weight Construction II 
• for each              (for each data point in our data set) 
• center the points about       ,    
• create the matrix 
• for the Gram matrix 
• solve the system: 
 
• compute the Lagrange multiplier to enforce the constraints 
• compute the reconstruction weights   
• end for 
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Validation 

• Here, validation of the algorithm 
will be viewed as the correctness of 
its constraint requirements 
 
• Optimality of the method will be 
present in the appendix of the 
report 
 
• Using random matrices, validation 
results are presented 
• Filename: weights_validation.m 

• This colormap is as interesting as the last, but it validates the implementation 



Embedding Construction 



Process 

Minimizing e(Y) 
• It has been proven that minimizing this 

function is equivalent to performing an eigen-
decomposition [1] 
 

• We find the eigenvalues and eigenvectors of 
 
 

• Taking the eigenvectors that correspond to 
the smallest eigenvalues, we now have Y 
 

• The rows of the eigenvector matrix are the 
reduced dimension dataset Y 
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[1] Sam Roweis and Lawrence Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings, Science v.290 no.5500, Dec.22, 
2000. pp.2323--2326. 
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Algorithm & Validation 

•Here, built-in MatLab functions are used exclusively, 
so a validation step would be to check the function 
against itself (so it’s not included here) 

Algorithm: Nearest Neighbors through Full Enumeration 
• form the matrix 
• compute the eigenvalues and eigenvectors of  
• discard the eigenvector corresponding to the eigenvalue of 0 
• let      denote the matrix of the smallest d eigenvectors (                          ) 
•Return     as the lower-dimensional embedding 
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Why a 0-Eigenvalue? 



Algorithm Validation 



Twin Peaks Function 

Swiss Roll Mapping 

Logistic Function Gaussian Function 

Validation Surfaces 



Author’s Implementation 

•On the co-author’s site there is a full implementation of the LLE 
algorithm 
 
•It is free to use and open to the public 
 
•Using the random data sets and the surfaces in the previous slide, 
we can compare the output to ensure a correct implementation of 
our LLE algorithm 

Available at: http://www.cs.nyu.edu/~roweis/lle/  



Presence of Nearest Neighbors 

• In this test, the two implementations 
are compared for the presence of 
nearest neighbors in the embedding 
 
• Order of the nearest neighbors doesn’t 
matter 
 
•This is done on random datasets 
 
• The values are percentage errors in 
correspondence 

Neighbors (Same) 



Preservation of Nearest Neighbors 

• In this test, the same process is 
undertaken, with the exception that the 
order of the nearest neighbors is 
compared 
 
•This is done on random datasets 
 
• The values are percentage errors in 
correspondence 

Neighbors (Not the same) 



Norm of the Difference 

• Here, the difference between the 
resulting embeddings is explored 
 
• There is more activity here, but it 
seems to vary with the size of the 
dataset and not the number of 
neighbors 
 
• This would seem to imply that the 
embeddings differ by some scalar with 
the dataset 



Review II 



Testing 

Our specific application is in image classification 
 
We want to find a hyper plane that separates different 
images 
 
This can be done using Support Vector Machines, which 
finds the optimal hyper plane that separates the data 
 
w is the vector normal to the hyper plane and      is the 
offset from the origin 
 
We can find this by solving a constrained optimization 
problem, or a similar Lagrangian unconstrained problem 
 
Here,     are our data points and                   are the class 
labels (which group an image belongs to) 
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Databases 

The Yale Face Database B [1] 
 
•Over 5000 face images 
 
•10 different subjects (people) 
 
•Over 500 different positions and 
illuminations 
 
•Using the original dataset (images) and the 
reduced dataset (LLE), I plan to compare 
the classification accuracy of the SVM on 
these sets 

[1] http://www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html#f203 



Updated Project Schedule 
September 2012 - November 2012 
• Plan and implement the LLE algorithm in MatLab, 
efficiently handling storage and memory management 
issues. 
 
• Perform unit tests to correct any bugs present in code. 
 
• Validate code on standard topological structures (Swiss 
Roll, etc.). 
 
• Compare results of algorithm output to the LLE 
algorithm made available by the co-author 
 
• Test the LLE algorithm on a randomly distributed 
dataset 
 
November 2012 - December 2012 
• Make any necessary preprocessing changes to the 
image database used. 
 
• Prepare the mid-year (end of semester) report and 
presentation. 
 
• Deliver mid-year report and deliverables. 

January 2013 
• Implement a pre-developed SVM package for MatLab. 
 
• Test classification accuracy of SVM on dimension-
reduced dataset. 
 
• Assess effectiveness. 
 
February 2013 - April 2013 
• Implement SVM in MatLab (time permitting). 
 
• Implement LLE extensions. 
 
• Compare results of original LLE implementation to 
extended versions. 
 
April 2013 - May 2013 
• Prepare final presentation, report, and deliverables. 
 
• Make any last minute adjustments to code that are 
required. 
 
• Package and deliver deliverables. 



Deliverables 

•Implemented LLE MatLab code 
 
•Testing scripts 
 
•Documentation regarding code use and available options 
 
• Final report of algorithm design, testing, and results 
 
•Final presentation 
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QUESTIONS 


