
End of Semester
Presentation

AMSC 663: Advanced Scientific Computing

December 11, 2012

Nonlinear Dimensionality Reduction Applied to
the Classification of Images

Student:
Chae A. Clark (cclark18 [at] math.umd.edu)

Advisor:

Dr. Kasso A. Okoudjou (kasso [at] math.umd.edu)
Norbert Wiener Center for Harmonic Analysis

Department of Mathematics
University of Maryland

 Abstract:

For this project I plan to implement a dimension reduction algorithm
entitled “Locally Linear Embeddings” in the programming language
MatLab. For a group of images, the dimension reduction algorithm is
applied, and the results are used to compare classification
accuracies.

Review I

•We start with multiple high-dimensional points
(maybe a set of images)

•We map that image to a D dimensional vector

•Lots of elements means the processing of this
data is more computationally intensive

•Usually lots of redundant data, or lots of
correlation in the elements

•We want a vector of a reduced size that retains
important characteristics of the data

•We also want the new vector’s elements to be un-
correlated

4 2 4 1 5 9 0 9

mean IQR

median Std dev
min

max

D

i RX

1.42 0.44 2.71 3.14 5.01

d

i RY

Dd

Dimension Reduction

X

There are a number of techniques to
perform this operation under the field
Dimension Reduction

•Search for a matrix A (or matrix
operation) that maps your high-
dimensional data into a lower
dimensional space

•Preserves key characteristics of data

•Use a nonlinear mapping that reduces
your dimension

•Preserves key characteristics of data

Linear Reduction Methods

Nonlinear Reduction Methods

X

Y

Y

YXA :

YXG :

G

A

Dimension Reduction

Locally Linear Embeddings (LLE)

•Nonlinear dimension reduction method

•Developed by Dr. Sam Roweis and Dr.
Lawrence Saul

•Takes a high-dimensional point X and
maps it a lower dimensional point Y

•Preserves local geometry (local
distances between points)

•This is done by solving a series (two)
constrained optimization problems

Figure 1: Obtained from LLE website [1]

[1] http://www.cs.nyu.edu/~roweis/lle/algorithm.html

LLE Overview

http://www.cs.nyu.edu/~roweis/lle/algorithm.html

LLE Overview

•Find the nearest neighbors of each point in our set

•Try to find a linear (almost convex) combination of the
nearest neighbors that best represents the point

•Use the found weights as the contribution of each
neighbor point

i j

jiji XWXWE

2

)(:minarg

Optimization Problem

i j

jiji YWYYe

2

)(:minarg

Optimization Problem

•Find the reduced dimension points that retain the
weight spacing determined in Step 1

•In essence, we are preserving pair wise distances
between neighbors

•Try to find a linear (almost convex) combination of the
nearest neighbors that best represents the point

•Use the found weights as the contribution of each
neighbor point

0
j

iY

IYY
N i

i

T

i
1

1
j

ijW

0ijW
For points that
are not neighbors
of

jX

iX

Software

Algorithms implemented in the
programming language MatLab

This is due to:

• Flexibility in syntax

• Ubiquitous use by the scientific
community

• Wide availability of support

Hardware

Currently using a personal computer for
development, validation, and testing

If this becomes computationally infeasible,
I will also use the computers in the
Norbert Weiner Center for testing

Implementation

Nearest Neighbor Search

Process & Algorithm

•There are a number of ways to find the K-nearest
neighbors

•In this project, 3 different methods are
implemented, one through binary programming,
another through a heuristic method, and the one
presented below

Algorithm: Nearest Neighbors through Full Enumeration
• for each (for each data point in our data set)
• compute the pair-wise distance between and every point in the dataset
• arrange these distances as a sorted array, keeping track of the indices of the
K+1 smallest distances
• remove the index of the 0 distance
• the remaining indices are the K nearest neighbors
• end for

XX i

iX

Validation

• Using MatLab’s built-in nearest
neighbor search (knnsearch.m), we
can validate our search code.

• The graph below shows the
difference in nearest neighbors
found between our implementation
and MatLab’s

• This test was performed on
random matrices
• Filename: knn_validation.m

• This graph is uninteresting, but it validates the nearest neighbor code

Timing Results

• Here are some timing results as
well

• They are the ratio of the time
required to process the same
dataset

• Here the time for my algorithm is
divided by the timing for MatLab’s
implementation

Weights Construction

Process & Algorithm

• Given the K-nearest neighbors for each data point in the dataset
(Denote these)

• We want to find the weights that reduce reconstruction error for each data point

•2 different methods implemented in the project, one through matrix inversion and the
other presented here

Algorithm: Weight Construction II
• for each (for each data point in our data set)
• center the points about ,
• create the matrix
• for the Gram matrix
• solve the system:

• compute the Lagrange multiplier to enforce the constraints
• compute the reconstruction weights
• end for

XX i

iijij XZZ
~

iX

i

T

ii ZZG

Kii wG 15.0

]
~~

[1 iKii ZZZ

iii ww

K

j

ji w
1

/1

iX
K

jijZ 1}{

iX

Validation

• Here, validation of the algorithm
will be viewed as the correctness of
its constraint requirements

• Optimality of the method will be
present in the appendix of the
report

• Using random matrices, validation
results are presented
• Filename: weights_validation.m

• This colormap is as interesting as the last, but it validates the implementation

Embedding Construction

Process

Minimizing e(Y)
• It has been proven that minimizing this

function is equivalent to performing an eigen-
decomposition [1]

• We find the eigenvalues and eigenvectors of

• Taking the eigenvectors that correspond to
the smallest eigenvalues, we now have Y

• The rows of the eigenvector matrix are the
reduced dimension dataset Y

0
j

jY

IYY
N i

i

T

i
1

i j

jiji YWYYe

2

)(:minarg

[1] Sam Roweis and Lawrence Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings, Science v.290 no.5500, Dec.22,
2000. pp.2323--2326.

Eigenvectors

)()(WIWI T

dNRY

Algorithm & Validation

•Here, built-in MatLab functions are used exclusively,
so a validation step would be to check the function
against itself (so it’s not included here)

Algorithm: Nearest Neighbors through Full Enumeration
• form the matrix
• compute the eigenvalues and eigenvectors of
• discard the eigenvector corresponding to the eigenvalue of 0
• let denote the matrix of the smallest d eigenvectors ()
•Return as the lower-dimensional embedding

)()(
~

WIWIW T

W
~

][1 dqqQ Q
Q

101)(

WId

101)()(

 WIdWId T

11

W

Why a 0-Eigenvalue?

Algorithm Validation

Twin Peaks Function

Swiss Roll Mapping

Logistic Function Gaussian Function

Validation Surfaces

Author’s Implementation

•On the co-author’s site there is a full implementation of the LLE
algorithm

•It is free to use and open to the public

•Using the random data sets and the surfaces in the previous slide,
we can compare the output to ensure a correct implementation of
our LLE algorithm

Available at: http://www.cs.nyu.edu/~roweis/lle/

Presence of Nearest Neighbors

• In this test, the two implementations
are compared for the presence of
nearest neighbors in the embedding

• Order of the nearest neighbors doesn’t
matter

•This is done on random datasets

• The values are percentage errors in
correspondence

Neighbors (Same)

Preservation of Nearest Neighbors

• In this test, the same process is
undertaken, with the exception that the
order of the nearest neighbors is
compared

•This is done on random datasets

• The values are percentage errors in
correspondence

Neighbors (Not the same)

Norm of the Difference

• Here, the difference between the
resulting embeddings is explored

• There is more activity here, but it
seems to vary with the size of the
dataset and not the number of
neighbors

• This would seem to imply that the
embeddings differ by some scalar with
the dataset

Review II

Testing

Our specific application is in image classification

We want to find a hyper plane that separates different
images

This can be done using Support Vector Machines, which
finds the optimal hyper plane that separates the data

w is the vector normal to the hyper plane and is the
offset from the origin

We can find this by solving a constrained optimization
problem, or a similar Lagrangian unconstrained problem

Here, are our data points and are the class
labels (which group an image belongs to)

w

2

2

1
:minarg w

1)(0 wxwy i

T

i

0w

Constraints

ix }1,1{iy

Databases

The Yale Face Database B [1]

•Over 5000 face images

•10 different subjects (people)

•Over 500 different positions and
illuminations

•Using the original dataset (images) and the
reduced dataset (LLE), I plan to compare
the classification accuracy of the SVM on
these sets

[1] http://www.csie.ntu.edu.tw/ cjlin/libsvm/faq.html#f203

Updated Project Schedule
September 2012 - November 2012
• Plan and implement the LLE algorithm in MatLab,
efficiently handling storage and memory management
issues.

• Perform unit tests to correct any bugs present in code.

• Validate code on standard topological structures (Swiss
Roll, etc.).

• Compare results of algorithm output to the LLE
algorithm made available by the co-author

• Test the LLE algorithm on a randomly distributed
dataset

November 2012 - December 2012
• Make any necessary preprocessing changes to the
image database used.

• Prepare the mid-year (end of semester) report and
presentation.

• Deliver mid-year report and deliverables.

January 2013
• Implement a pre-developed SVM package for MatLab.

• Test classification accuracy of SVM on dimension-
reduced dataset.

• Assess effectiveness.

February 2013 - April 2013
• Implement SVM in MatLab (time permitting).

• Implement LLE extensions.

• Compare results of original LLE implementation to
extended versions.

April 2013 - May 2013
• Prepare final presentation, report, and deliverables.

• Make any last minute adjustments to code that are
required.

• Package and deliver deliverables.

Deliverables

•Implemented LLE MatLab code

•Testing scripts

•Documentation regarding code use and available options

• Final report of algorithm design, testing, and results

•Final presentation

References

[1] Sam Roweis and Lawrence Saul, Nonlinear Dimensionality Reduction by Locally Linear Embeddings, Science v.290
no.5500, Dec.22, 2000. pp.2323--2326.

[2] Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Fourth Edition, Academic Press 2008.

[3] Olga Kouropteva and Oleg Okun and Matti Pietikäinen, Selection of the Optimal Parameter Value for the Locally
Linear Embedding Algorithm, 1 st International Conference on Fuzzy Systems, 2002, 359--363.

[4] O. Kouropteva and M. Pietikainen. Incremental locally linear embedding. Pattern Recognition, 38:1764–1767,
2005.

[5] Boschetti and Fabio, Dimensionality Reduction and Visualization of Geoscientific Images via Locally Linear
Embedding, Comput. Geosci., July, 2005, 31,6, 689--697.

[6] Hong Chang and Dit-yan Yeung, Robust Locally Linear Embedding, 2005.

[7] Chang, Chih-Chung and Lin, Chih-Jen, LIBSVM: A library for support vector machines, ACM Transactions on
Intelligent Systems and Technology, 2, 3, 2011, 27:1--27:27.

[8] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J., From Few to Many: Illumination Cone Models for Face
Recognition under Variable Lighting and Pose, IEEE Trans. Pattern Anal. Mach. Intelligence, 2001, 23, 6, 643-660.

[9] Zhang Z, Wang J (2007) MLLE: Modified locally linear embedding using multiple weights. Advances in Neural
Information Processing Systems (NIPS) 19, eds Scho lkopf B, Platt J, Hofmann T (MIT Press, Cambridge, MA), pp 1593–
1600.

QUESTIONS

