
An Agent-Based Model of Information Diffusion

Final Report

Neža Vodopivec
Applied Mathematics and Scientific Computation Program

nvodopiv@math.umd.edu

Advisor: Dr. Jeffrey Herrmann
Mechanical Engineering Department

jwh2@umd.edu

Abstract: Understanding how information spreads throughout a population can help public health
officials improve how they communicate with the public in emergency situations. In this project, I
implement a fast, memory-efficient agent-based information diffusion model inspired by the Bass
model. I compare my discrete-time simulation to a traditional differential-equation version of the Bass
model. Finally, I test my model by seeing how well it describes the real-life spread of information
through a Twitter network.

Contents

1 Background .. 2

2 Project Goals ... 2

3 Overview of Approach ... 2

4 The Bass Model .. 4

4.1 The Traditional Bass Model .. 4

4.2 An Agent-Based Bass Model ... 4

5 Implementation of the Agent-Based Bass Model ... 6

5.1 Approach .. 6

5.2 Basic Implementation ... 6

 5.2.1 Algorithm .. 6

5.3 Neighbor-Set Implementation .. 7

5.3.1 Formulation .. 7

5.3.2 Algorithm .. 7

5.3.3 Parallel Implementation ... 9

6 Validation of the Agent-Based Bass Model ... 9

6.1 Mutual Validation among Four Implementations .. 9

6.2 Comparing Simulation Results to a Theoretical Distribution ... 10

6.2.1 Computing Theoretical Distributions .. 11

6.2.2 Constructing Theoretical Intervals .. 11

6.2.3 Testing Theoretical Intervals on the Simulation .. 12

6.3 Comparing the Agent-Based Bass Model to Analytical Bass Model ... 13

6.3.1 Convergence of Agent-Based Model to Analytical Model .. 13

6.3.2 Comparing the Parameters in the Two Models .. 14

7 Results ... 16

7.1 Simulation Output .. 16

7.2 Implementation Time and Memory Requirements .. 17

7.3 Testing the Model on Real-World Twitter Data ... 17

7.3.1 Optimizing the Parameters ... 18

7.3.2 Error as a Function of the Time Step .. 19

8 Project Milestones... 19

9 Deliverables ... 20

 10 Conclusion ... 21

 11 References ... 21

1

1. Background

In the weeks following the events of 9/11, seven letters containing dangerous strains of Bacillus
anthracis were mailed to senators and news agencies. Although the FBI never determined a sender or
motive, the attacks informed the country to the possibility of bioterrorism and spurred public health
agencies to plan out responses to similar, larger-scale scenarios. Anthrax is not contagious, but its
dynamics require a fast dissemination of targeted public health information because newly infected
individuals have a far better prognosis when they are treated quickly. To increase effectiveness of a
targeted public health message, its broadcasters must understand how information spreads through a
population.

Traditionally, information diffusion has been modeled with differential equations that describe the
dynamics of a global system — in this case, an entire population. A disadvantage of such models is that
they describe only aggregate diffusion patterns, not taking into account that individuals behave in
complex ways and that they function within social networks. Thus traditional models can describe the
successive increases in the fraction of people who are aware of a given piece of information as a
function of time, but they cannot give insight into how this information spreads through space.

Recently, bottom-up modeling in the form of agent-based simulation has gained attention. Agent-based
models capture how patterns of behavior at the macro level emerge as the result of the interactions of
individuals, or agents, at the micro level. Agent-based models are discrete-time simulations of the
interactions in an ensemble of autonomous agents. At each time step, each agent evaluates its situation
and makes decisions according to a set of rules.

2. Project Goals

The goal of the current project is to implement an agent-based formulation of the Bass information
diffusion model. I create a fast, memory-efficient implementation of this model and use it to simulate
how a piece of information spreads through a real-life Twitter network. To ensure that my model is
correctly implemented, I compare its output to theoretically predicted results as well as to the output of
the traditional differential equation-based Bass model. Finally, I test my model to see how well it
describes the actual diffusion of information through Twitter networks and optimize the model’s
parameters in order to achieve a good fit to such real-world data.

3. Overview of Approach

The Bass model (Bass, 1969) can be used to describe information diffusion. It uses an ordinary
differential equation to describe how the fraction of a population aware of a given piece of information
increases over time. In an agent-based version of this model (Rand and Rust, 2011), the spread of

2

information is viewed in the context of a network that has individual agents as decision makers. In my
implementation of the agent-based Bass model, I use a network formed from a set of real-world Twitter
users, with the observed users as agents. My simulation consists of a series of time steps during which
each agent who is still unaware of a given piece of information has an opportunity to change its state.
This state change is probabilistic but depends on the fraction of the agent’s neighbors who are already
aware. Since the simulation is stochastic, I model the spread of information by running the simulation
numerous times, then outputting at each time step the mean number of aware agents as well as 95%
confidence intervals. (See Section 4.)

I create three implementations of the agent-based Bass model in MATLAB (The MathWorks Inc., 2010).
My basic implementation, used as a reference, relies on two adjacency matrices; it determines agents’
awareness statuses by recomputing such a status for each node at each iteration. A second version that
I refer to as the neighbor-set implementation is more subtle: it stores only edges of the graph and
determines agents’ statuses by updating each edge exactly once during the entire simulation. My final
version – a parallelized neighbor-set implementation – runs multiple simulations simultaneously before
computing the mean and confidence intervals. (See Section 5.)

To validate my neighbor-set implementation, I compare samples obtained from many runs of the
simulation on a fully connected network, against theoretical distributions. Because the number of
aware agents at a given time step depends only on the number aware at the previous time step, the
overall system forms a Markov process. I use a transition matrix to compute the distributions of the
number of aware agents at each time step and then construct intervals within which 95% of the
distribution falls for each time step. I determine, at each time step, the fraction of instances for which
the simulation results fall within the theoretically computed interval. If this fraction approaches 95% as
the number of simulations increases, this serves as evidence that the model has been properly
implemented. (See Section 6.2.)

As another method of code validation, I compare the output of my agent-based Bass model to output
generated by the traditional analytical Bass model. If the two models produce nearly identical
trajectories when we run the agent-based simulation with a small-enough time step on a fully connected
network, we have yet another indicator that the code is correct. I compute the error between the two
curves, agent-based and analytical, when the agent-based version is run with successively smaller time
steps to test if the agent-based model converges to the analytical curve as ∆𝑡 decreases. I also examine
the correspondence between the parameters in the analytical Bass model to their counterparts in the
agent-based model to see if the model trajectories match most closely when identical parameter values
are chosen for each model. (See Section 6.3.)

Finally, I test my model against real data to see how well the model describes the actual spread of
information through a Twitter network. I take the same Twitter network that was used in the
simulations, but this time I record the times that tweets were actually posted by the users. I use these
times to compute the aggregate number of users truly aware by various times. I compare the curve of
the simulated number of agents aware at each time step to the true curve. I then optimize the model’s

3

parameters by doing a grid search for the values that minimize the error between the two curves. (See
Section 7.)

4. The Bass Model

4.1. The Traditional Bass Model

The Bass model was originally developed by a marketer to model brand awareness, but it can also be
applied more generally to the diffusion of information. The model is based on the assumption that
people get their information from two sources, advertising and word of mouth.

The Bass model describes the fractional change in a population’s awareness of a piece of information by
the equation:

𝐹′(𝑡)
1 − 𝐹(𝑡)

= 𝑝𝑝 + 𝑞𝑞𝐹(𝑡)

𝐹(0) = 0 ,

where 𝐹(𝑡) is the aware fraction of the population as a function of time, 𝑝𝑝 is the advertising coefficient,
and 𝑞𝑞 is the word-of-mouth coefficient. The equation can be interpreted as describing a hazard rate,
that is, the conditional probability that a person will become aware of information at time 𝑡 given that
they are not yet aware. In this case, the hazard rate 𝐹′(𝑡) (1 − 𝐹(𝑡))⁄ is the sum of a constant
advertising effect 𝑝𝑝 and a word-of-mouth effect 𝑞𝑞𝐹(𝑡) that scales linearly in the fraction of population
aware. Rearranging terms reveals that the equation is simply the logistic equation in disguise, and has
the solution:

𝐹(𝑡) =
𝑞𝑞 − 𝑞𝑞𝑒−(𝑝+𝑞)𝑡

𝑞𝑞 + 𝑝𝑝𝑒−(𝑝+𝑞)𝑡 .

4.2. An Agent-Based Bass Model

We can formulate an agent-based model inspired by the Bass model above. First, we discretize the
problem, giving unaware agents an opportunity to become aware of the information at each time step.
Then, instead of taking a deterministic aggregate at each time step, we update each agent’s state
probabilistically. Finally, we consider agents within the context of a social network: instead of allowing
each agent to be influenced by the entire population, it is influenced only by its direct neighbors in some
underlying directed graph.

The current project focuses on developing an agent-based Bass model that simulates the diffusion of
information through Twitter networks. (Twitter is an online service which allows its users to post short

4

messages, or “tweets”, and list which other users they read, or “follow”.) In each case, the model’s
underlying graph Γ has V(Γ) a real-world set of observed Twitter users and E(Γ) the real-world relation
“𝑥 is ‘followed’ by 𝑦”. Two such graphs were used in simulations; they consisted of users who posted
messages about the death of Osama Bin Laden and the landfall of Hurricane Irene, respectively. A word-
of-mouth transfer of information represents the exchange of information in the form of a Twitter post.
The effect of advertising is any external transfer of information, that is, information obtained from a
source other than Twitter. We define a Twitter user to be aware when he or she posts a message that
conveys the relevant piece of information to followers.

The agent-based Bass model is a discrete-time model in which each agent has one of two states at each
time step 𝑡: (1) unaware or (2) aware. At the beginning of the simulation, all agents are unaware. At
each time step, an unaware agent has an opportunity to become aware. Its state changes with a
probability that reflects advertising and word-of-mouth effects. The probability that an agent becomes
aware due to word of mouth increases as a function of the fraction of its neighbors who became aware
in previous time steps. Once an agent becomes aware, it remains aware for the rest of the simulation.

At each time step, an unaware agent 𝑖 becomes aware with probability

𝑃𝑟𝑖(𝑡) = 𝑝𝑝�∆𝑡 + 𝑞𝑞�∆𝑡
𝑎𝑖(𝑡)
𝑛𝑖

− 𝑝𝑝�𝑞𝑞�∆𝑡2
𝑎𝑖(𝑡)
𝑛𝑖

= 𝑝𝑝�∆𝑡 +
𝑎𝑖(𝑡)
𝑛𝑖

(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡 ,

where 𝑛𝑖 is the number of neighbors of agent 𝑖, 𝑎𝑖(𝑡) is the number of neighbors of agent 𝑖 that became
aware before time 𝑡, and 𝑝𝑝� and 𝑞𝑞� are parameters which indicate the effectiveness — per unit time — of
advertising and word of mouth, respectively. The first term is the probability that an agent becomes
aware due to advertising, the second term that it becomes aware due to word of mouth, and the third
term that it becomes aware due to both.

It is not obvious 𝑃𝑟𝑖(𝑡) represents a true probability, that is to say, we have that 0 ≤ 𝑃𝑟𝑖(𝑡) ≤ 1. But if
we examine its complement

1 − 𝑃𝑟𝑖(𝑡) = 1 − 𝑝𝑝�∆𝑡 −
𝑎𝑖(𝑡)
𝑛𝑖

(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡 = [1 − 𝑝𝑝�∆𝑡] �1 −
𝑎𝑖(𝑡)
𝑛𝑖

𝑞𝑞�∆𝑡� ,

noting that [1 − 𝑝𝑝�∆𝑡] ≤ 1 and [1 − (𝑎𝑖(𝑡) 𝑛𝑖 ⁄)𝑞𝑞�∆𝑡] ≤ 1, we have that 1 − 𝑃𝑟𝑖(𝑡) ≤ 1. Furthermore,
because 𝑎𝑖(𝑡) ≤ 𝑛𝑖 , we have that 𝑎𝑖(𝑡) 𝑛𝑖 ≤ 1⁄ . Therefore, so long as 𝑝𝑝�∆𝑡 ≤ 1 and 𝑞𝑞�∆𝑡 ≤ 1, we also
have that [1 − 𝑝𝑝�∆𝑡] ≥ 0 and [1 − (𝑎𝑖(𝑡) 𝑛𝑖 ⁄)𝑞𝑞�∆𝑡] ≥ 0, so that 1 − 𝑃𝑟𝑖(𝑡) ≥ 0. Combining inequalities,
then, we have that 0 ≤ 1 − 𝑃𝑟𝑖(𝑡) ≤ 1, and so 0 ≤ 𝑃𝑟𝑖(𝑡) ≤ 1 as well.

5

5. Implementation of the Agent-Based Bass Model

5.1. Approach

In their paper, “Agent-Based Models of Information Diffusion”, Auzolle and Herrmann (2012) describe
their implementations of four types of agent-based diffusion simulations. Their codebase, written in
NetLogo, a programming language used to develop agent-based simulations (Tisue and Wilensky, 2004),
turned out not to be fast enough to handle large networks. The goal of the current project is to code
the agent-based Bass model in MATLAB with the hope of producing a faster, more memory-efficient
implementation. I implement three versions of this model. First, I code a basic implementation to use
as a reference. Then, I implement the model using a more efficient updating rule and taking advantage
of sparse data structures. I call this second implementation the neighbor-set implementation. Finally, I
code a parallelized version of the neighbor-set implementation.

5.2. Basic implementation

The basic implementation depends on the use of an adjacency matrix to store relationships between
agents and to record agents’ awareness statuses. A straightforward algorithmic description of the basic
simulation is as follows.

5.2.1 Algorithm (Basic)

Arbitrarily identify the 𝑁 agents of the graph Γ with the set 1, … ,𝑁. Let 𝐸 denote the |E(Γ)| × 2 matrix
listing all (directed) edges of Γ as ordered pairs of nodes.

INPUT: matrix 𝐸, parameters 𝑝𝑝� and 𝑞𝑞�, parameter ∆𝑡.

1. Create an 𝑁 × 1 bit vector 𝑋, initialized to 𝟎. 𝑋 will keep track of which nodes are aware.
2. Create an 𝑁 × 1 bit vector ∆𝑋, initialized to 𝟎. ∆𝑋 will keep track of which nodes are newly aware.
3. Create an 𝑁 × 𝑁 adjacency matrix 𝐴, initialized to 𝟎. Set 𝐴(𝑖, 𝑗) to 1 if the vector (𝑖, 𝑗) appears as a

row of 𝐸. 𝐴 will remain static throughout the simulation.
4. Create an 𝑁 × 𝑁 adjacency matrix 𝐵, initialized to 𝟎. 𝐵 will keep track of the directed edges in 𝐴

whose upstream node is aware, as marked in 𝑆.
5. At each time step:

a. For each node 𝑖:
i. Check 𝑋(𝑖) to determine whether node 𝑖 is already aware. If so, skip it.
ii. With probability 𝑝𝑝�∆𝑡, make node 𝑖 newly aware by setting ∆𝑋(𝑖) to 1.
iii. Look up node 𝑖’s upstream neighbors in 𝐴(∗, 𝑖), and then its aware upstream neighbors in

𝐵(∗, 𝑖). Determine what fraction 𝑓 of upstream neighbors are aware. With probability
𝑓 × 𝑞𝑞�∆𝑡, make node 𝑖 newly aware by setting ∆𝑋(𝑖) to 1.

b. Once all nodes have been processed:

6

i. Record the newly aware nodes marked in ∆𝑋 as aware in 𝑋.
ii. For each newly aware node marked in ∆𝑋, copy the corresponding row of 𝐴 to the

corresponding row of 𝐵.
iii. Reset ∆𝑋 to 𝟎.

6. Stop once all nodes have become aware, or after a maximum number of iterations.

OUTPUT: complete history of the bit vector 𝑋.

5.3 Neighbor-Set Implementation

The neighbor-set implementation benefits from a more efficient updating rule and from custom sparse
data structures tailored to this new updating rule. The result is a faster runtime and more efficient use
of memory.

5.3.1 Formulation

In order to decide whether to change the status of an unaware node, the node’s number of unaware
upstream nodes (its “awareness number”) must be computed. The basic implementation effectively
recomputes each node’s awareness number from scratch at every time step. But because changes in
the awareness number are entirely due to nodes which have just become aware, such a computation
seems wasteful. This suggests a possible improvement: a preliminary pass through just the newly
aware nodes which updates just their downstream nodes. After this preliminary step, we can proceed
as in the basic implementation, but without needing to recompute awareness numbers.

This new updating procedure suggests a further possible improvement: replacing the network’s
adjacency matrix with a sparse data structure which reflects the structure of the updating rule.
Information about adjacency can be stored by rewriting the adjacency relation as a function 𝑓: V(Γ) →
2V(Γ) which returns a node’s downstream nodes. Concretely, this function is most naturally
implemented as a vector of length |𝐸| concatenating the output sets of 𝑓 together with a list of pointers
marking the start of each set. Note that the coding of this function can also be thought of as an |𝐸| × 2
ordered list of the coordinates of the nonzero entries in the original adjacency matrix.

5.3.2 Algorithm (Neighbor-Set)

Arbitrarily identify the 𝑁 agents of the graph Γ with the set 1, … ,𝑁. Let 𝐸 denote the |E(Γ)| × 2 matrix
listing all (directed) edges of Γ as ordered pairs of nodes.

INPUT: matrix 𝐸, parameters 𝑝𝑝� and 𝑞𝑞�, parameter ∆𝑡.

1. Create an 𝑁 × 1 bit vector 𝑋, initialized to 𝟎. 𝑋 will keep track of which nodes are aware.

7

2. Create three 𝑁 × 1 vectors 𝑛, 𝑎, and ∆𝑎, all initialized to 𝟎. These vectors will list, for each node, a
count of the node’s (upstream) neighbors, the node’s aware (upstream) neighbors, and the node’s
newly aware (upstream) neighbors, respectively.

3. Passing through the rows of 𝐸, note when 𝑘 appears as the second entry of the row, and increment
𝑛(𝑘). Because 𝑛(𝑘) will have been incremented once for each time 𝑘 appeared in 𝐸 paired with an
(upstream) neighbor, it will count 𝑘’s (upstream) neighbors.

4. Ensure that the rows of 𝐸 are sorted in lexicographic order. This will guarantee that all the edges
out of a given node appear consecutively within 𝐸.

5. By noting the rows at which the entries of 𝐸(∗ ,1) jump, create an 𝑁 × 1 vector 𝐼∗ whose 𝑘th entry
is the starting index (in 𝐸) of the consecutive run of all edges out of node 𝑘. In the same way, create
a matching 𝑁 × 1 vector 𝐼∗ for the ending indices.

6. 𝐸(∗ ,2) may now be viewed as a node-by-node concatenation of each node’s (downstream)
“neighbor set”, with pointers to the location of the 𝑘th set given by 𝐼∗(𝑘) and 𝐼∗(𝑘). To reinforce
this view, rename 𝐸(∗ ,2) to 𝑆 and then discard 𝐸.

The quantities 𝑛, 𝐼∗, 𝐼∗, and 𝑆 constitute a convenient encoding of Γ, and now that they have been
computed they will remain static. At each time step, we will be updating 𝑋 after examining these
quantities and the dynamic variables 𝑎 and ∆𝑎.

7. At each time step:

a. For each node 𝑖:

i. Check 𝑋(𝑖) to determine whether node 𝑖 is already aware. If so, skip it.

ii. With probability 𝑝𝑝�∆𝑡, make node 𝑖 newly aware by setting 𝑋(𝑖) to 1.

iii. Look up the count of node 𝑖’s upstream neighbors in 𝑛(𝑖), and then the count of its aware
upstream neighbors in 𝑎(𝑖). Determine what fraction 𝑓 of upstream neighbors are aware.

iv. With probability 𝑓 × 𝑞𝑞�∆𝑡, make node 𝑖 newly aware by setting 𝑋(𝑖) to 1.

v. If node 𝑖 is now aware, then all of its downstream neighbors now have a newly aware
upstream neighbor. Look up node 𝑖’s downstream neighbors in the entries of 𝑆 that lie
between indices 𝐼∗(𝑖) and 𝐼∗(𝑖). For each downstream neighbor, increment the
corresponding entry of ∆𝑎.

b. Once all nodes have been processed:

i. Increment 𝑎 by ∆𝑎. (The computation inside the loop is using the entries of 𝑎, and so we
must save making increments to 𝑎 for a final step occurring after the loop.)

8

ii. Reset ∆𝑎 to 𝟎.

8. Stop once all nodes have become aware, or after a maximum number of iterations.

OUTPUT: complete history of the bit vector 𝑋.

5.3.3 Parallel Implementation

We can increase the efficiency of the neighbor-set implementation further through parallelization. We
model information diffusion by running the simulation numerous times and then computing the mean
and 95% confidence intervals at each time step. This process lends itself naturally to parallelization.
The neighbor-set implementation was parallelized so that multiple simulations run simultaneously. The
results of each simulation are logged at the end of each run and the complete set of data is analyzed
after all runs have been completed. The parallelization was implemented using MATLAB’s parfor
command.

6. Validation of the Agent-Based Bass Model

6.1 Mutual Validation among Four Implementations

The simulation was run once using the the NetLogo implementation, the basic implementation, and
both versions of the neighbor-set implementation, respectively. The outputs of the four
implementations were compared by computing the L1 error between each pair of curves. When run
with the same random numbers, the basic implementation and the two neighbor-set implementations
produced identical results (a zero error). There was no easy way to induce identical behavior in the
existing NetLogo code, but its output broadly matches the other implementations. The curves for each
of the serial implementations run on four datasets are plotted below.

9

Figure 1: Implementation Comparison

6.2 Comparing Simulation Output to Theoretical Distributions

A second way to validate the simulation would be to compare samples, obtained from many runs of the
simulation, against theoretical distributions. In general, determining the theoretical distribution of a
statistic taken from the model is an interesting but very difficult question. The question becomes easier
when we make a simplifying assumption: all agents are connected. (To make the bookkeeping slightly
easier, we will even assume that each agent is connected to itself.) As a result, local network structure
disappears and, for each agent 𝑖, 𝑎𝑖(𝑡) 𝑛𝑖⁄ is simply 𝐴(𝑡) 𝑁⁄ , the aware fraction of the network. Then, at
each time step, the probability that an unaware agent becomes aware does not depend on 𝑖:

𝑃𝑟(𝑡) = 𝑝𝑝�∆𝑡 + 𝑞𝑞�∆𝑡
𝐴(𝑡)
𝑁

− 𝑝𝑝�𝑞𝑞�∆𝑡2
𝐴(𝑡)
𝑁

= 𝑝𝑝�∆𝑡 +
𝐴(𝑡)
𝑁

(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡 .

At every time step, each agent is in one of two states: aware or unaware. Thus, there are 2𝑁 possible
states for the system. The number of aware agents is not binomially distributed at each time step:
unless 𝑞𝑞� = 0, the awareness of an agent correlates to the past, and therefore present, awareness of
other agents. Nevertheless, because its current state depends only on its previous state, the overall
system forms a Markov process. The map which counts the number of aware agents takes the system’s
state space to a reduced space with only 𝑁 + 1 states. Because of the very special structure of the
system, the counting map respects the original Markov process, giving rise to a compatible Markov
process on the reduced state space. Rather than describe the first Markov process and then trace

10

through the counting map to obtain a description of the second Markov process, it is easier to describe
the second Markov process directly.

6.2.1 Computing Theoretical Distributions

Let 𝑋𝑡 be a random variable giving the number of agents aware at time step 𝑡. Since the number of
agents aware at a given time step depends only on the number aware at the previous time step, the
sequence 𝑋0,𝑋∆𝑡 ,𝑋2∆𝑡 , … forms a Markov chain. We can represent its transition probabilities with a
matrix 𝑇.

Because the state space consists of the 𝑁 + 1 elements 0,1, … ,𝑁, it is convenient to index the rows and
columns of the transition matrix 𝑇 from 0 instead of 1. The system is in state 𝑗 if exactly 𝑗 agents are
aware. The probability 𝑇(𝑖, 𝑗) = Pr (𝑋𝑡+∆𝑡 = 𝑖|𝑋𝑡 = 𝑗) of transitioning from state 𝑗 to state 𝑖 at time
step 𝑡 + ∆𝑡 is:

𝑇(𝑖, 𝑗) = ��
𝑁 − 𝑗
𝑖 − 𝑗

� (𝑃 + 𝑗𝑄)𝑖−𝑗(1 − 𝑃 − 𝑗𝑄)𝑁−𝑖 , 𝑖 ≥ 𝑗

0, 𝑖 < 𝑗 ,

where 𝑃 ≔ 𝑝𝑝�∆𝑡 and 𝑄 ≔ 𝑁−1(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡.

6.2.2 Constructing Theoretical Intervals

We can use the transition matrix 𝑇 to compute the distributions of the random variables 𝑋𝑡. With these
distributions in hand, we wish to determine at each time step 𝑡 an interval [𝑎𝑡 ,𝑏𝑡] such that Pr(𝑎𝑡 ≤
𝑋𝑡 ≤ 𝑏𝑡) = 0.95. But since our distributions are discrete, such an interval will not in general exist. We
therefore choose the 𝑎𝑡 which minimizes |Pr(𝑋𝑡 < 𝑎𝑡) − 0.025| and, similarly, the 𝑏𝑡 which minimizes
|Pr(𝑋𝑡 > 𝑏𝑡) − 0.025|. The probability that 𝑋𝑡 falls within the interval, we call 𝑃𝑡 . 𝑃𝑡 is approximately
but not exactly 95%, and the 𝑃𝑡-intervals we compute below play the role of 95% intervals for a
discrete distribution.

11

Figure 2: 𝑃𝑡-intervals

Figure 4 shows curves for 𝑎𝑡 (bottom) and 𝑏𝑡 (top) at each time step 𝑡, such that Pr(𝑎𝑡 ≤ 𝑋𝑡 ≤ 𝑏𝑡) ≈
0.95. Between the curves lies the analytical solution to the Bass ODE.

6.2.3 Testing Theoretical Intervals on the Simulation

At each time step, does our simulation produce a number of aware agents whose distribution matches
the theoretical distribution? One obvious way to make a comparison is to run the simulation numerous
times and determine, at each time step, the fraction of instances for which the simulation results fall
within the theoretically computed 𝑃𝑡-interval. If that fraction is indeed 𝑃𝑡, we have some validation that
the simulation is correctly implemented.

After running the simulation 𝑛 times, we compute at each time step 𝑡 an empirical fraction 𝑆𝑛,𝑡 of
instances for which the simulation results fall within the 𝑃𝑡-interval. We would like to know how well
𝑆𝑛,𝑡 compares to 𝑃𝑡 as 𝑛 increases.

𝑛 = 5,000 𝑛 = 50,000

Figure 3: Percentage of Simulation Points that Fall within Theoretically Predicted Intervals

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000
Theoretical Interval within Which Simulation is 95% Likely to Fall

Time (Hours)

N
um

be
r o

f A
w

ar
e

A
ge

nt
s

Interval Endpoints
Bass Analytical Solution

0 5 10 15 20 25 30 35 40

90

92

94

96

98

100

Percentage of Simulation Points that Fall within Theoretically-Predicted Interval

Time Step

P
er

ce
nt

 In
si

de
 In

te
rv

al

Percent Inside Interval at Given Time Step
Predicted Percent Inside

0 5 10 15 20 25 30 35 40

90

92

94

96

98

100

Percentage of Simulation Points that Fall within Theoretically-Predicted Interval

Time Step

P
er

ce
nt

 In
si

de
 In

te
rv

al

Percent Inside Interval at Given Time Step
Predicted Percent Inside

12

For each 𝑛 and 𝑡, we can compute 𝐸𝑛,𝑡 = �𝑃𝑡 − 𝑆𝑛,𝑡� the discrepancy between the fraction of times that
𝑋𝑡 is predicted to fall in the interval [𝑎𝑡 , 𝑏𝑡] and the fraction of times that it actually does. To summarize
the behavior of the 𝐸𝑛,𝑡 for a given 𝑛, we can take their mean 𝐸�𝑛 over 𝑡. In addition to computing the
first moment over 𝑡, we also compute the second moment σ𝑛2 . The plots below show the behavior of 𝐸�𝑛
and σ𝑛2 as 𝑛 increases.

Figure 4: 𝐸�𝑛 and σ𝑛2 as 𝑛 Increases

6.3 Comparing the Agent-Based Bass Model to the Analytical Bass Model

Another way to validate the implementation of the agent-based Bass model is by comparing it to the
analytical Bass model. We again restrict ourselves to the case of a fully connected network. Each time
we run the simulation, we can compute the total fraction Φ(𝑡) of the network that has become aware
as a function of time. We can run the simulation numerous times and recompute Φ(𝑡) multiple times to

obtain an average Φ�(𝑡). In this section, we compare Φ�(𝑡) to 𝐹(𝑡) = 𝑞−𝑞𝑒−(𝑝+𝑞)𝑡

𝑞+𝑝𝑒−(𝑝+𝑞)𝑡 , the cumulative aware

fraction of the network given by the analytical Bass ODE.

6.3.1 Convergence of Agent-Based Model to Analytical Model

We would like to know if the agent-based model converges to analytical curve as ∆𝑡 decreases.
Beginning with ∆𝑡 = 1 hour and successively decreasing time-step length, we compute the L1 error
between Φ�(𝑡) and 𝐹(𝑡) for each value of ∆𝑡. As shown in figure 7, Φ�(𝑡) converges to 𝐹(𝑡) – evidence
that the agent-based model was correctly implemented.

10
1

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

10
0

10
1

n

E
n

En as n Increases

Data
Best-Fit Power Law, Exponent -0.5260

10
1

10
2

10
3

10
4

10
5

10
6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n

σ
2 n

σ2
n as n Increases

Data
Best-Fit Power Law, Exponent -0.9724

13

Figure 5: L1 Error Between Φ�(𝑡) and 𝐹(𝑡)

6.3.2 Comparing the Parameters in the Two Models

Another way to explore the relationship between the analytical and agent-based models is to determine
the correspondence between parameters 𝑝𝑝 and 𝑞𝑞 in the analytical Bass model to their counterparts 𝑝𝑝�
and 𝑞𝑞� in the agent-based model. We would expect that the model trajectories would be most similar
when 𝑝𝑝� = 𝑝𝑝 and 𝑞𝑞� = 𝑞𝑞. To test this, we fix the values of the parameters of the analytical model at
𝑝𝑝 = 0.07 and 𝑞𝑞 = 0.06. and perform a grid search. For each of an exhaustive selection of (𝑝𝑝�, 𝑞𝑞�) pairs,
we run the simulation 100 times and take the mean pointwise in time. We then choose the (𝑝𝑝,� 𝑞𝑞�) pair
(𝑝𝑝�∗,𝑞𝑞�∗) that minimizes the L1 error between the analytical Bass curve with parameters 𝑝𝑝 = 0.07 and
𝑞𝑞 = 0.06 and the output of the agent-based model with values of 𝑝𝑝� and 𝑞𝑞�.

 The color map gives, as a function of 𝑝𝑝� and 𝑞𝑞�, the L1 error between the agent-based curves with (𝑝𝑝�, 𝑞𝑞�)
and analytical curve with (𝑝𝑝, 𝑞𝑞) = (0.06, 0.07). The minimum error occurred at (𝑝𝑝�∗,𝑞𝑞�∗) =
(0.0690 , 0.0595).

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

Error between Mean Simulation and Analytical Model

Step Size

L1
E

rro
r

Data
Best-Fit Power Law, Exponent 1.004

14

Figure 6: L1 Error as a Function of 𝑝𝑝� and 𝑞𝑞�

We can compute the best-fit quadratic approximation to the error function. Figure 8 shows the
contours of this quadratic approximation. The conic center of the approximation is too far to the right
to match the parameters (𝑝𝑝�∗, 𝑞𝑞�∗) = (0.0690,0.0595), that mimimize the error.

Figure 7: Best L2 Fit to Error

𝐸 = 9871[0.2832(𝑝𝑝� − 0.09041) + 0.9591(𝑞𝑞� − 0.05368)]2

+ 22.67[−0.9591(𝑝𝑝� − 0.09041) + 0.2832(𝑞𝑞� − 0.05368)]2

+ 0.2438 .

Error as a Function of p' and q'

p'

q'

0.06 0.062 0.064 0.066 0.068 0.07 0.072 0.074 0.076 0.078 0.08
0.05

0.052

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

𝑞𝑞�

𝑝𝑝�

𝑝𝑝�

𝑞𝑞�

15

7. Results

7.1 Simulation Output

Figure 8: Simulation Trajectories on the ‘Bin Laden’ Twitter Network

The plots above show the number of agents aware at each time step of the simulation. Figure 1a shows
the trajectories for two simulation executions; figure 1b shows trajectories for 200 executions. Since the
simulation is stochastic, a single run provides, at each time step, only a sample of the network’s true
behavior — the trajectories are close but not the same.

Figure 9: Confidence Intervals Surrounding the Simulation Mean at Each Time Step

The simulation was run 100 times and the mean and 95% confidence intervals were computed.

16

7.2 Implementation Time and Memory Requirements

Table 1: Time and Space Efficiency of Model Implementations

 Bin Laden Network (7.27 MB, 4.7K nodes, 477K edges)
Implementation Type Memory Simulation Time 1K Simulations’ Time
NetLogo — ~3 min. —
Basic 506.73 MB 13.8 sec. 3.6 hr.
Neighbor-Set, Serial 18.55 MB 0.8 sec. 12.5 min.
Neighbor-Set, Parallel 18.55 MB 10.2 sec. 8.6 min.

 Hurricane Irene Network (0.70 MB, 1.1K nodes, 46K edges)
Implementation Type Memory Simulation Time 1K Simulations’ Time
NetLogo — ~50 sec. —
Basic 30.31 MB 3.74 sec. 52.2 min.
Neighbor-Set, Serial 1.84 MB 0.27 sec. 3.6 min.
Neighbor-Set, Parallel 1.84 MB 9.46 sec. 2.6 min.

Table 1 gives the time and space requirements for the NetLogo, basic, neighbor-set serial, and neighbor-
set parallelized implementations of the agent-based Bass model for the two Twitter networks. The
neighbor-set implementations stand out as the fastest and the most memory-efficient. Memory
requirements for each implementation were computed by summing the number of bytes used to store
all the variables created during one run of the simulation. Times for the parallelized neighbor-set
implementation were obtained by running two simulations in parallel and they include MATLAB’s
overhead time for initiating parallelization. These times indicate that using the parallelized code is
effective only when repeating the simulation many times. Values listed for the NetLogo implementation
are an estimate as the program is designed to be run in two stages; the table gives runtimes for the
second stage. Six out of the ten times it was executed, the NetLogo program was stopped after running
for longer than an hour. The best runtime (out of ten) was taken for each dataset.

7.3 Testing the Model on Real-World Twitter Data

We wish to determine how well the Bass agent-based model describes the actual spread of information
through a Twitter network. One way to do this is to analyze the actual “tweets” made by the users in
the Twitter networks we used for the simulations — those posting the news of Osama Bin Laden’s death
and Hurricane Irene’s landfall, respectively. We can record the first time that each user posted a
message containing a relevant string of text, take this time as the definition of his or her “true
awareness time”, and then integrate to obtain the aggregate number of users aware by various times.
Now, we can run our simulation, compute the curve representing the number of agents aware at each
time step, and compare the computed curve to the true curve.

17

7.3.1 Optimizing the Parameters

Our model has two free parameters, 𝑝𝑝� and 𝑞𝑞�. We can use a grid search to find the values of 𝑝𝑝� and 𝑞𝑞� for
which the simulation most closely approximates the observed Twitter data. For each of an exhaustive
selection of (𝑝𝑝�, 𝑞𝑞�) pairs, we run the simulation 100 times and take the mean pointwise in time. We then
choose the (𝑝𝑝,� 𝑞𝑞�) pair (𝑝𝑝�∗, 𝑞𝑞�∗) that minimizes the L1 error between the simulation means and the real
data. For the Bin Laden dataset, a color map below shows the error as a function of 𝑝𝑝� and 𝑞𝑞� when
∆𝑡 = 1 hour. The optimal parameters were: 𝑝𝑝�∗ = 0.099, 𝑞𝑞�∗ = 0.001

Figure 10: Error as a Function of 𝑝𝑝� and 𝑞𝑞� for ∆𝑡 = 1

The plots below compare the true number of aware Twitter users to the number of aware agents as
given by the optimal agent-based model. Figure 3a shows a plot for the Bin Laden dataset, and Figure
3b shows a plot for the Irene dataset. For each dataset, the simulation values plotted were obtained by
averaging 100 runs.

𝑝𝑝� = 0.099, 𝑞𝑞� = 0.001. 𝑝𝑝� = 0.023, 𝑞𝑞� = 0.001

Figure 11: Comparing the Agent-Based Model to Observed Twitter Data

1 hr: Simulation Error as a Function of p and q

q

p

0 0.01 0.02 0.03 0.04 0.05 0.06
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Information Diffusion Models with Bin Laden Data

Time (Hours)

N
um

be
r o

f A
w

ar
e

A
ge

nt
s

Real Twitter Data
Agent-Based Bass Model

50 100 150 200 250 300 350 400
0

500

1000

1500

2000

Information Diffusion Models with Irene Data

Time (Hours)

N
um

be
r o

f A
w

ar
e

A
ge

nt
s

Real Twitter Data
Agent-Based Bass Model

𝑝𝑝�

𝑞𝑞�

18

7.3.2 Error as a Function of the Time Step

We would like to know if the optimal parameters and the error are affected by our choice of ∆𝑡. In
addition to the highly visible parameters 𝑝𝑝� and 𝑞𝑞�, and the underlying graph Γ, the agent-based Bass
model also depends on the rather less visible parameter ∆𝑡. It would be nice to know whether refining
∆𝑡 substantially affects the model’s fit to real-world data. To investigate this question, the search for
optimal parameters (𝑝𝑝�∗, 𝑞𝑞�∗) for the Bin Laden dataset was conducted anew using ∆𝑡 = 0.25, 0.50, 0.75
hours, in exactly the same way as with ∆𝑡 = 1 hour. Table 2 below shows the optimal parameters for
each ∆𝑡, along with the corresponding minimal L1 error. Using different values of ∆𝑡 does not
significantly affect how well the model fits the real-world data.

Table 2: Optimal Parameters and Error as ∆𝑡 Changes

∆𝑡 (hr) Optimal 𝑝𝑝� Optimal 𝑝𝑝�∆𝑡 Optimal 𝑞𝑞� Optimal 𝑞𝑞�∆𝑡 Error

1 0.099 0.099 0.0010 0.0010 7.4632e+003

0.75 0.101 0.076 0.0008 0.0006 7.5229e+003

0.5 0.102 0.052 0.0009 0.0005 7.4734e+003

0.25 0.103 0.026 0.0010 0.0003 7.5602e+003

8. Project Milestones

My milestones as described in my proposal:

October Develop basic simulation code. Develop code for statistical analysis of results.

November Validate simulation code by checking corner cases, sampled cases, and by relative
testing. Validate code against analytical model.

December Validate simulation against existing NetLogo implementation. Prepare mid-year

presentation and report.

January Investigate efficiency improvements to code. Incorporate sparse data structures.

February Parallelize code. Test code efficiency against existing NetLogo implementation.

March Test model against empirical Twitter data. Create visualization of model, time
permitting.

April Write final project report and prepare presentation.

19

My milestones as achieved:

October Developed basic simulation code. Wrote a more efficient neighbor-set implementation
of simulation.

November Validated code against analytic model. Developed code for statistical analysis of results.
Analyzed confidence intervals.

December Validated simulation against existing NetLogo implementation. Prepared mid-year
presentation and report.

January Tested model against empirical Twitter data. Performed parameter searches to
determine best fit. Tested best fit as a function of ∆t.

February Parallelized code. Analyzed convergence of agent-based model to analytical model.
Computed probability distributions using Markov chains.

March Computed and tested 95% intervals. Compared correspondence of parameters in
agent-based model to those in analytical model. Analyzed the error.

April Revised and re-tested ~95% intervals. Fitted quadratic function to error. Wrote final
project report and prepared presentation.

9. Deliverables

I will submit all deliverables promised in my proposal (1-4) as well as a few additional ones (5-7).

1. Code for my simulation.

2. Code for my statistical analysis.

3. A plot showing at each time step the mean and both ends of a 95% confidence interval
based on data collected from numerous runs of the simulation.

4. A comparison of my code’s running time against that of the existing NetLogo
implementation.

5. Faster neighbor-set implementation of the simulation, parallelized.

6. Code for grid search to determine best-fit parameters.

20

7. Code to compute and test theoretical distributions for fully connected networks using
Markov chains.

10. Conclusion

The current project was an effort to implement an agent-based Bass information diffusion model. Using
an efficient updating rule and taking advantage of sparse data structures produced a more time- and
memory-efficient code. The current implementation is faster and runs more reliably than a previous
NetLogo implementation, allowing simulations to be performed on larger, denser networks in future
research.

With the correct parameters, the agent-based Bass model provides a reasonable description of real-
world Twitter information diffusion. The model parameters that produce the best fit are specific to each
data set. Varying the length of time steps has little effect on the fit between the model and real data.

We can compare the discrete agent-based model to the analytical Bass model. As time steps decrease
in length, the agent-based Bass model converges to the analytical Bass model. Parameters p and q of
the analytical model correspond well to parameters 𝑝𝑝� and 𝑞𝑞� of the agent-based model.

11. References

Auzolle, Ardechir and Herrmann, Jeffrey (2012). “Agent-Based Models of Information Diffusion”.
Working paper, University of Maryland, College Park, Maryland.
Bass, Frank (1969). “A new product growth model for consumer durables”. Management Science 15
(5): p. 215–227.

Chandrasekaran, Deepa and Tellis, Gerard J. (2007). “A Critical Review of Marketing Research on
Diffusion of New Products”. Review of Marketing Research, p. 39-80; Marshall School of Business
Working Paper No. MKT 01-08.

Devore, J.L. (1991). Probability and statistics for engineering and science. Brooks/Cole.

Dodds, P.S. and Watts, D.J. (2004). “Universal behavior in a generalized model of contagion”. Phys.
Rev. Lett. 92, 218701.

Karlin, S. and Taylor, H.M. (1968). A first course in stochastic processes. Academic Press.

MATLAB v. 7.10.0. (2010). Natick, Massachusetts: The MathWorks Inc.

21

Mahajan, Vijay, Muller, Eitan and Bass, Frank (1995). “Diffusion of new products: Empirical
generalizations and managerial uses”. Marketing Science 14 (3): G79–G88.

Rand, William M. and Rust, Roland T. (2011). “Agent-Based Modeling in Marketing: Guidelines for Rigor
(June 10, 2011)”. International Journal of Research in Marketing; Robert H. Smith School Research
Paper No. RHS 06-132.

Tisue, S. and Wilensky, U. (2004). NetLogo: A simple environment for modeling complexity. Paper
presented at the Fifth Proceedings of the International Conference on Complex Systems, Boston.

22

