
An Agent-Based Model of Information Diffusion 

Final Report 

Neža Vodopivec 
Applied Mathematics and Scientific Computation Program 

nvodopiv@math.umd.edu 

Advisor:  Dr. Jeffrey Herrmann 
Mechanical Engineering Department  

jwh2@umd.edu 

Abstract:  Understanding how information spreads throughout a population can help public health 
officials improve how they communicate with the public in emergency situations.  In this project, I 
implement a fast, memory-efficient agent-based information diffusion model inspired by the Bass 
model.  I compare my discrete-time simulation to a traditional differential-equation version of the Bass 
model.  Finally, I test my model by seeing how well it describes the real-life spread of information 
through a Twitter network. 
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1. Background 

In the weeks following the events of 9/11, seven letters containing dangerous strains of Bacillus 
anthracis were mailed to senators and news agencies.  Although the FBI never determined a sender or 
motive, the attacks informed the country to the possibility of bioterrorism and spurred public health 
agencies to plan out responses to similar, larger-scale scenarios.  Anthrax is not contagious, but its 
dynamics require a fast dissemination of targeted public health information because newly infected 
individuals have a far better prognosis when they are treated quickly.  To increase effectiveness of a 
targeted public health message, its broadcasters must understand how information spreads through a 
population. 

Traditionally, information diffusion has been modeled with differential equations that describe the 
dynamics of a global system — in this case, an entire population.  A disadvantage of such models is that 
they describe only aggregate diffusion patterns, not taking into account that individuals behave in 
complex ways and that they function within social networks.  Thus traditional models can describe the 
successive increases in the fraction of people who are aware of a given piece of information as a 
function of time, but they cannot give insight into how this information spreads through space. 

Recently, bottom-up modeling in the form of agent-based simulation has gained attention.  Agent-based 
models capture how patterns of behavior at the macro level emerge as the result of the interactions of 
individuals, or agents, at the micro level.  Agent-based models are discrete-time simulations of the 
interactions in an ensemble of autonomous agents.  At each time step, each agent evaluates its situation 
and makes decisions according to a set of rules. 

2. Project Goals 

The goal of the current project is to implement an agent-based formulation of the Bass information 
diffusion model.  I create a fast, memory-efficient implementation of this model and use it to simulate 
how a piece of information spreads through a real-life Twitter network.  To ensure that my model is 
correctly implemented, I compare its output to theoretically predicted results as well as to the output of 
the traditional differential equation-based Bass model.  Finally, I test my model to see how well it 
describes the actual diffusion of information through Twitter networks and optimize the model’s 
parameters in order to achieve a good fit to such real-world data. 

3. Overview of Approach 

The Bass model (Bass, 1969) can be used to describe information diffusion.  It uses an ordinary 
differential equation to describe how the fraction of a population aware of a given piece of information 
increases over time.  In an agent-based version of this model (Rand and Rust, 2011), the spread of 
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information is viewed in the context of a network that has individual agents as decision makers.  In my 
implementation of the agent-based Bass model, I use a network formed from a set of real-world Twitter 
users, with the observed users as agents.  My simulation consists of a series of time steps during which 
each agent who is still unaware of a given piece of information has an opportunity to change its state.  
This state change is probabilistic but depends on the fraction of the agent’s neighbors who are already 
aware.  Since the simulation is stochastic, I model the spread of information by running the simulation 
numerous times, then outputting at each time step the mean number of aware agents as well as 95% 
confidence intervals.  (See Section 4.) 
 
I create three implementations of the agent-based Bass model in MATLAB (The MathWorks Inc., 2010).  
My basic implementation, used as a reference, relies on two adjacency matrices; it determines agents’ 
awareness statuses by recomputing such a status for each node at each iteration.  A second version that 
I refer to as the neighbor-set implementation is more subtle:  it stores only edges of the graph and 
determines agents’ statuses by updating each edge exactly once during the entire simulation.  My final 
version – a parallelized neighbor-set implementation – runs multiple simulations simultaneously before 
computing the mean and confidence intervals. (See Section 5.) 
 
To validate my neighbor-set implementation, I compare samples obtained from many runs of the 
simulation on a fully connected network, against theoretical distributions.  Because the number of 
aware agents at a given time step depends only on the number aware at the previous time step, the 
overall system forms a Markov process.  I use a transition matrix to compute the distributions of the 
number of aware agents at each time step and then construct intervals within which 95% of the 
distribution falls for each time step.  I determine, at each time step, the fraction of instances for which 
the simulation results fall within the theoretically computed interval.  If this fraction approaches 95% as 
the number of simulations increases, this serves as evidence that the model has been properly 
implemented. (See Section 6.2.) 
 
As another method of code validation, I compare the output of my agent-based Bass model to output 
generated by the traditional analytical Bass model.  If the two models produce nearly identical 
trajectories when we run the agent-based simulation with a small-enough time step on a fully connected 
network, we have yet another indicator that the code is correct.  I compute the error between the two 
curves, agent-based and analytical, when the agent-based version is run with successively smaller time 
steps to test if the agent-based model converges to the analytical curve as ∆𝑡 decreases.  I also examine 
the correspondence between the parameters in the analytical Bass model to their counterparts in the 
agent-based model to see if the model trajectories match most closely when identical parameter values 
are chosen for each model.  (See Section 6.3.) 
 
Finally, I test my model against real data to see how well the model describes the actual spread of 
information through a Twitter network.  I take the same Twitter network that was used in the 
simulations, but this time I record the times that tweets were actually posted by the users.  I use these 
times to compute the aggregate number of users truly aware by various times.  I compare the curve of 
the simulated number of agents aware at each time step to the true curve.  I then optimize the model’s 

3 
 



parameters by doing a grid search for the values that minimize the error between the two curves.  (See 
Section 7.) 

4. The Bass Model 

4.1.  The Traditional Bass Model 

The Bass model was originally developed by a marketer to model brand awareness, but it can also be 
applied more generally to the diffusion of information.  The model is based on the assumption that 
people get their information from two sources, advertising and word of mouth. 

The Bass model describes the fractional change in a population’s awareness of a piece of information by 
the equation: 

𝐹′(𝑡)
1 − 𝐹(𝑡)

= 𝑝𝑝 + 𝑞𝑞𝐹(𝑡)

𝐹(0) = 0 ,

 

where 𝐹(𝑡) is the aware fraction of the population as a function of time, 𝑝𝑝 is the advertising coefficient, 
and 𝑞𝑞 is the word-of-mouth coefficient.  The equation can be interpreted as describing a hazard rate, 
that is, the conditional probability that a person will become aware of information at time 𝑡 given that 
they are not yet aware.  In this case, the hazard rate 𝐹′(𝑡) (1 − 𝐹(𝑡))⁄  is the sum of a constant 
advertising effect 𝑝𝑝 and a word-of-mouth effect 𝑞𝑞𝐹(𝑡) that scales linearly in the fraction of population 
aware.  Rearranging terms reveals that the equation is simply the logistic equation in disguise, and has 
the solution: 

𝐹(𝑡) =
𝑞𝑞 − 𝑞𝑞𝑒−(𝑝+𝑞)𝑡

𝑞𝑞 + 𝑝𝑝𝑒−(𝑝+𝑞)𝑡 . 

4.2.  An Agent-Based Bass Model 

We can formulate an agent-based model inspired by the Bass model above.  First, we discretize the 
problem, giving unaware agents an opportunity to become aware of the information at each time step.  
Then, instead of taking a deterministic aggregate at each time step, we update each agent’s state 
probabilistically.  Finally, we consider agents within the context of a social network:  instead of allowing 
each agent to be influenced by the entire population, it is influenced only by its direct neighbors in some 
underlying directed graph. 

The current project focuses on developing an agent-based Bass model that simulates the diffusion of 
information through Twitter networks.  (Twitter is an online service which allows its users to post short 
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messages, or “tweets”, and list which other users they read, or “follow”.)  In each case, the model’s 
underlying graph Γ has V(Γ) a real-world set of observed Twitter users and E(Γ) the real-world relation 
“𝑥 is ‘followed’ by 𝑦”.  Two such graphs were used in simulations; they consisted of users who posted 
messages about the death of Osama Bin Laden and the landfall of Hurricane Irene, respectively.  A word-
of-mouth transfer of information represents the exchange of information in the form of a Twitter post.  
The effect of advertising is any external transfer of information, that is, information obtained from a 
source other than Twitter.  We define a Twitter user to be aware when he or she posts a message that 
conveys the relevant piece of information to followers. 

The agent-based Bass model is a discrete-time model in which each agent has one of two states at each 
time step 𝑡:  (1) unaware or (2) aware.  At the beginning of the simulation, all agents are unaware.  At 
each time step, an unaware agent has an opportunity to become aware.  Its state changes with a 
probability that reflects advertising and word-of-mouth effects.  The probability that an agent becomes 
aware due to word of mouth increases as a function of the fraction of its neighbors who became aware 
in previous time steps.  Once an agent becomes aware, it remains aware for the rest of the simulation. 

At each time step, an unaware agent 𝑖 becomes aware with probability 

𝑃𝑟𝑖(𝑡) = 𝑝𝑝�∆𝑡 + 𝑞𝑞�∆𝑡
𝑎𝑖(𝑡)
𝑛𝑖 

− 𝑝𝑝�𝑞𝑞�∆𝑡2
𝑎𝑖(𝑡)
𝑛𝑖 

= 𝑝𝑝�∆𝑡 +
𝑎𝑖(𝑡)
𝑛𝑖 

(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡 , 

where 𝑛𝑖 is the number of neighbors of agent 𝑖, 𝑎𝑖(𝑡) is the number of neighbors of agent 𝑖 that became 
aware before time 𝑡, and 𝑝𝑝� and 𝑞𝑞� are parameters which indicate the effectiveness — per unit time — of 
advertising and word of mouth, respectively.  The first term is the probability that an agent becomes 
aware due to advertising, the second term that it becomes aware due to word of mouth, and the third 
term that it becomes aware due to both. 

It is not obvious 𝑃𝑟𝑖(𝑡) represents a true probability, that is to say, we have that 0 ≤ 𝑃𝑟𝑖(𝑡) ≤ 1.  But if 
we examine its complement 

1 − 𝑃𝑟𝑖(𝑡) = 1 − 𝑝𝑝�∆𝑡 −
𝑎𝑖(𝑡)
𝑛𝑖 

(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡 = [1 − 𝑝𝑝�∆𝑡] �1 −
𝑎𝑖(𝑡)
𝑛𝑖 

𝑞𝑞�∆𝑡� , 

noting that [1 − 𝑝𝑝�∆𝑡] ≤ 1 and [1 − (𝑎𝑖(𝑡) 𝑛𝑖 ⁄ )𝑞𝑞�∆𝑡] ≤ 1, we have that 1 − 𝑃𝑟𝑖(𝑡) ≤ 1.  Furthermore, 
because 𝑎𝑖(𝑡) ≤ 𝑛𝑖 , we have that 𝑎𝑖(𝑡) 𝑛𝑖 ≤ 1⁄ .  Therefore, so long as 𝑝𝑝�∆𝑡 ≤ 1 and 𝑞𝑞�∆𝑡 ≤ 1, we also 
have that [1 − 𝑝𝑝�∆𝑡] ≥ 0 and [1 − (𝑎𝑖(𝑡) 𝑛𝑖 ⁄ )𝑞𝑞�∆𝑡] ≥ 0, so that 1 − 𝑃𝑟𝑖(𝑡) ≥ 0.  Combining inequalities, 
then, we have that 0 ≤ 1 − 𝑃𝑟𝑖(𝑡) ≤ 1, and so 0 ≤ 𝑃𝑟𝑖(𝑡) ≤ 1 as well. 
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5. Implementation of the Agent-Based Bass Model 

5.1.  Approach 

In their paper, “Agent-Based Models of Information Diffusion”, Auzolle and Herrmann (2012) describe 
their implementations of four types of agent-based diffusion simulations.  Their codebase, written in 
NetLogo, a programming language used to develop agent-based simulations (Tisue and Wilensky, 2004), 
turned out not to be fast enough to handle large networks.  The goal of the current project is to code 
the agent-based Bass model in MATLAB with the hope of producing a faster, more memory-efficient 
implementation.  I implement three versions of this model.  First, I code a basic implementation to use 
as a reference.  Then, I implement the model using a more efficient updating rule and taking advantage 
of sparse data structures.  I call this second implementation the neighbor-set implementation.  Finally, I 
code a parallelized version of the neighbor-set implementation. 

5.2.  Basic implementation 

The basic implementation depends on the use of an adjacency matrix to store relationships between 
agents and to record agents’ awareness statuses.  A straightforward algorithmic description of the basic 
simulation is as follows. 

5.2.1  Algorithm (Basic) 

Arbitrarily identify the 𝑁 agents of the graph Γ with the set 1, … ,𝑁.  Let 𝐸 denote the |E(Γ)| × 2 matrix 
listing all (directed) edges of Γ as ordered pairs of nodes. 

INPUT:  matrix 𝐸, parameters 𝑝𝑝� and 𝑞𝑞�, parameter ∆𝑡. 

1. Create an 𝑁 × 1 bit vector 𝑋, initialized to 𝟎.  𝑋 will keep track of which nodes are aware. 
2. Create an 𝑁 × 1 bit vector ∆𝑋, initialized to 𝟎.  ∆𝑋 will keep track of which nodes are newly aware. 
3. Create an 𝑁 × 𝑁 adjacency matrix 𝐴, initialized to 𝟎.  Set 𝐴(𝑖, 𝑗) to 1 if the vector (𝑖, 𝑗) appears as a 

row of 𝐸.  𝐴 will remain static throughout the simulation. 
4. Create an 𝑁 × 𝑁 adjacency matrix 𝐵, initialized to 𝟎.  𝐵 will keep track of the directed edges in 𝐴 

whose upstream node is aware, as marked in 𝑆. 
5. At each time step: 

a. For each node 𝑖: 
i. Check 𝑋(𝑖) to determine whether node 𝑖 is already aware.  If so, skip it. 
ii. With probability 𝑝𝑝�∆𝑡, make node 𝑖 newly aware by setting ∆𝑋(𝑖) to 1. 
iii. Look up node 𝑖’s upstream neighbors in 𝐴(∗, 𝑖), and then its aware upstream neighbors in 

𝐵(∗, 𝑖).  Determine what fraction 𝑓 of upstream neighbors are aware.  With probability 
𝑓 × 𝑞𝑞�∆𝑡, make node 𝑖 newly aware by setting ∆𝑋(𝑖) to 1. 

b. Once all nodes have been processed: 
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i. Record the newly aware nodes marked in ∆𝑋 as aware in 𝑋. 
ii. For each newly aware node marked in ∆𝑋, copy the corresponding row of 𝐴 to the 

corresponding row of 𝐵. 
iii. Reset ∆𝑋 to 𝟎. 

6. Stop once all nodes have become aware, or after a maximum number of iterations. 

OUTPUT:  complete history of the bit vector 𝑋. 

5.3  Neighbor-Set Implementation   

The neighbor-set implementation benefits from a more efficient updating rule and from custom sparse 
data structures tailored to this new updating rule.  The result is a faster runtime and more efficient use 
of memory. 

5.3.1 Formulation 

In order to decide whether to change the status of an unaware node, the node’s number of unaware 
upstream nodes (its “awareness number”) must be computed.  The basic implementation effectively 
recomputes each node’s awareness number from scratch at every time step.  But because changes in 
the awareness number are entirely due to nodes which have just become aware, such a computation 
seems wasteful.  This suggests a possible improvement:  a preliminary pass through just the newly 
aware nodes which updates just their downstream nodes.  After this preliminary step, we can proceed 
as in the basic implementation, but without needing to recompute awareness numbers. 

This new updating procedure suggests a further possible improvement:  replacing the network’s 
adjacency matrix with a sparse data structure which reflects the structure of the updating rule.  
Information about adjacency can be stored by rewriting the adjacency relation as a function 𝑓: V(Γ) →
2V(Γ) which returns a node’s downstream nodes.  Concretely, this function is most naturally 
implemented as a vector of length |𝐸| concatenating the output sets of 𝑓 together with a list of pointers 
marking the start of each set.  Note that the coding of this function can also be thought of as an |𝐸| × 2 
ordered list of the coordinates of the nonzero entries in the original adjacency matrix. 

5.3.2 Algorithm (Neighbor-Set) 

Arbitrarily identify the 𝑁 agents of the graph Γ with the set 1, … ,𝑁.  Let 𝐸 denote the |E(Γ)| × 2 matrix 
listing all (directed) edges of Γ as ordered pairs of nodes. 

INPUT:  matrix 𝐸, parameters 𝑝𝑝� and 𝑞𝑞�, parameter ∆𝑡. 

1. Create an 𝑁 × 1 bit vector 𝑋, initialized to 𝟎.  𝑋 will keep track of which nodes are aware. 
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2. Create three 𝑁 × 1 vectors 𝑛, 𝑎, and ∆𝑎, all initialized to 𝟎.  These vectors will list, for each node, a 
count of the node’s (upstream) neighbors, the node’s aware (upstream) neighbors, and the node’s 
newly aware (upstream) neighbors, respectively. 

3. Passing through the rows of 𝐸, note when 𝑘 appears as the second entry of the row, and increment 
𝑛(𝑘).  Because 𝑛(𝑘) will have been incremented once for each time 𝑘 appeared in 𝐸 paired with an 
(upstream) neighbor, it will count 𝑘’s (upstream) neighbors. 

4. Ensure that the rows of 𝐸 are sorted in lexicographic order.  This will guarantee that all the edges 
out of a given node appear consecutively within 𝐸. 

5. By noting the rows at which the entries of 𝐸(∗ ,1) jump, create an 𝑁 × 1 vector 𝐼∗ whose 𝑘th entry 
is the starting index (in 𝐸) of the consecutive run of all edges out of node 𝑘.  In the same way, create 
a matching 𝑁 × 1 vector 𝐼∗ for the ending indices. 

6. 𝐸(∗ ,2) may now be viewed as a node-by-node concatenation of each node’s (downstream) 
“neighbor set”, with pointers to the location of the 𝑘th set given by 𝐼∗(𝑘) and 𝐼∗(𝑘).  To reinforce 
this view, rename 𝐸(∗ ,2) to 𝑆 and then discard 𝐸. 

The quantities 𝑛, 𝐼∗, 𝐼∗, and 𝑆 constitute a convenient encoding of Γ, and now that they have been 
computed they will remain static.  At each time step, we will be updating 𝑋 after examining these 
quantities and the dynamic variables 𝑎 and ∆𝑎. 

7. At each time step: 

a. For each node 𝑖: 

i. Check 𝑋(𝑖) to determine whether node 𝑖 is already aware.  If so, skip it. 

ii. With probability 𝑝𝑝�∆𝑡, make node 𝑖 newly aware by setting 𝑋(𝑖) to 1. 

iii. Look up the count of node 𝑖’s upstream neighbors in 𝑛(𝑖), and then the count of its aware 
upstream neighbors in 𝑎(𝑖).  Determine what fraction 𝑓 of upstream neighbors are aware. 

iv. With probability 𝑓 × 𝑞𝑞�∆𝑡, make node 𝑖 newly aware by setting 𝑋(𝑖) to 1. 

v. If node 𝑖 is now aware, then all of its downstream neighbors now have a newly aware 
upstream neighbor.  Look up node 𝑖’s downstream neighbors in the entries of 𝑆 that lie 
between indices 𝐼∗(𝑖) and 𝐼∗(𝑖).  For each downstream neighbor, increment the 
corresponding entry of ∆𝑎. 

b. Once all nodes have been processed: 

i. Increment 𝑎 by ∆𝑎.  (The computation inside the loop is using the entries of 𝑎, and so we 
must save making increments to 𝑎 for a final step occurring after the loop.) 
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ii. Reset ∆𝑎 to 𝟎. 

8. Stop once all nodes have become aware, or after a maximum number of iterations. 

OUTPUT:  complete history of the bit vector 𝑋. 

5.3.3  Parallel Implementation 

We can increase the efficiency of the neighbor-set implementation further through parallelization.  We 
model information diffusion by running the simulation numerous times and then computing the mean 
and 95% confidence intervals at each time step.  This process lends itself naturally to parallelization.  
The neighbor-set implementation was parallelized so that multiple simulations run simultaneously.  The 
results of each simulation are logged at the end of each run and the complete set of data is analyzed 
after all runs have been completed.  The parallelization was implemented using MATLAB’s parfor 
command. 

6. Validation of the Agent-Based Bass Model 

 

6.1  Mutual Validation among Four Implementations   

The simulation was run once using the the NetLogo implementation, the basic implementation, and 
both versions of the neighbor-set implementation, respectively.  The outputs of the four 
implementations were compared by computing the L1 error between each pair of curves.  When run 
with the same random numbers, the basic implementation and the two neighbor-set implementations 
produced identical results (a zero error).  There was no easy way to induce identical behavior in the 
existing NetLogo code, but its output broadly matches the other implementations.  The curves for each 
of the serial implementations run on four datasets are plotted below. 
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Figure 1:  Implementation Comparison 

 

6.2  Comparing Simulation Output to Theoretical Distributions 

A second way to validate the simulation would be to compare samples, obtained from many runs of the 
simulation, against theoretical distributions.  In general, determining the theoretical distribution of a 
statistic taken from the model is an interesting but very difficult question.  The question becomes easier 
when we make a simplifying assumption:  all agents are connected.  (To make the bookkeeping slightly 
easier, we will even assume that each agent is connected to itself.)  As a result, local network structure 
disappears and, for each agent 𝑖, 𝑎𝑖(𝑡) 𝑛𝑖⁄  is simply 𝐴(𝑡) 𝑁⁄ , the aware fraction of the network.  Then, at 
each time step, the probability that an unaware agent becomes aware does not depend on 𝑖: 

𝑃𝑟(𝑡) = 𝑝𝑝�∆𝑡 + 𝑞𝑞�∆𝑡
𝐴(𝑡)
𝑁

− 𝑝𝑝�𝑞𝑞�∆𝑡2
𝐴(𝑡)
𝑁

= 𝑝𝑝�∆𝑡 +
𝐴(𝑡)
𝑁

(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡 . 

At every time step, each agent is in one of two states:  aware or unaware.  Thus, there are 2𝑁 possible 
states for the system.  The number of aware agents is not binomially distributed at each time step:  
unless 𝑞𝑞� = 0, the awareness of an agent correlates to the past, and therefore present, awareness of 
other agents.  Nevertheless, because its current state depends only on its previous state, the overall 
system forms a Markov process.  The map which counts the number of aware agents takes the system’s 
state space to a reduced space with only 𝑁 + 1 states.  Because of the very special structure of the 
system, the counting map respects the original Markov process, giving rise to a compatible Markov 
process on the reduced state space.  Rather than describe the first Markov process and then trace 
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through the counting map to obtain a description of the second Markov process, it is easier to describe 
the second Markov process directly. 

6.2.1  Computing Theoretical Distributions 

Let 𝑋𝑡 be a random variable giving the number of agents aware at time step 𝑡.  Since the number of 
agents aware at a given time step depends only on the number aware at the previous time step, the 
sequence 𝑋0,𝑋∆𝑡 ,𝑋2∆𝑡 , … forms a Markov chain.  We can represent its transition probabilities with a 
matrix 𝑇. 

Because the state space consists of the 𝑁 + 1 elements 0,1, … ,𝑁, it is convenient to index the rows and 
columns of the transition matrix 𝑇 from 0 instead of 1.  The system is in state 𝑗 if exactly 𝑗 agents are 
aware.  The probability 𝑇(𝑖, 𝑗) = Pr (𝑋𝑡+∆𝑡 = 𝑖|𝑋𝑡 = 𝑗) of transitioning from state 𝑗 to state 𝑖 at time 
step 𝑡 + ∆𝑡 is: 

𝑇(𝑖, 𝑗) = ��
𝑁 − 𝑗
𝑖 − 𝑗

� (𝑃 + 𝑗𝑄)𝑖−𝑗(1 − 𝑃 − 𝑗𝑄)𝑁−𝑖 , 𝑖 ≥ 𝑗

0, 𝑖 < 𝑗 ,
 

where 𝑃 ≔ 𝑝𝑝�∆𝑡 and 𝑄 ≔ 𝑁−1(1 − 𝑝𝑝�∆𝑡)𝑞𝑞�∆𝑡. 

 

6.2.2  Constructing Theoretical Intervals  

We can use the transition matrix 𝑇 to compute the distributions of the random variables 𝑋𝑡.  With these 
distributions in hand, we wish to determine at each time step 𝑡 an interval [𝑎𝑡 ,𝑏𝑡] such that Pr(𝑎𝑡 ≤
𝑋𝑡 ≤ 𝑏𝑡) = 0.95.  But since our distributions are discrete, such an interval will not in general exist.  We 
therefore choose the 𝑎𝑡 which minimizes |Pr(𝑋𝑡 < 𝑎𝑡) − 0.025| and, similarly, the 𝑏𝑡 which minimizes 
|Pr(𝑋𝑡 > 𝑏𝑡) − 0.025|.  The probability that 𝑋𝑡 falls within the interval, we call 𝑃𝑡 .  𝑃𝑡  is approximately 
but not exactly 95%, and the 𝑃𝑡-intervals we compute below play the role of 95% intervals for a 
discrete distribution. 
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Figure 2:  𝑃𝑡-intervals 

Figure 4 shows curves for 𝑎𝑡 (bottom) and 𝑏𝑡 (top) at each time step 𝑡, such that Pr(𝑎𝑡 ≤ 𝑋𝑡 ≤ 𝑏𝑡) ≈
0.95.  Between the curves lies the analytical solution to the Bass ODE. 

6.2.3  Testing Theoretical Intervals on the Simulation 

At each time step, does our simulation produce a number of aware agents whose distribution matches 
the theoretical distribution?  One obvious way to make a comparison is to run the simulation numerous 
times and determine, at each time step, the fraction of instances for which the simulation results fall 
within the theoretically computed 𝑃𝑡-interval.  If that fraction is indeed 𝑃𝑡, we have some validation that 
the simulation is correctly implemented. 

After running the simulation 𝑛 times, we compute at each time step 𝑡 an empirical fraction 𝑆𝑛,𝑡 of 
instances for which the simulation results fall within the 𝑃𝑡-interval.  We would like to know how well 
𝑆𝑛,𝑡 compares to 𝑃𝑡  as 𝑛 increases. 

𝑛 = 5,000       𝑛 = 50,000 

 

Figure 3:  Percentage of Simulation Points that Fall within Theoretically Predicted Intervals 
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For each 𝑛 and 𝑡, we can compute 𝐸𝑛,𝑡 = �𝑃𝑡 − 𝑆𝑛,𝑡� the discrepancy between the fraction of times that 
𝑋𝑡 is predicted to fall in the interval [𝑎𝑡 , 𝑏𝑡] and the fraction of times that it actually does.  To summarize 
the behavior of the 𝐸𝑛,𝑡 for a given 𝑛, we can take their mean 𝐸�𝑛 over 𝑡.  In addition to computing the 
first moment over 𝑡, we also compute the second moment σ𝑛2 .  The plots below show the behavior of 𝐸�𝑛 
and σ𝑛2  as 𝑛 increases. 

 

 

Figure 4:  𝐸�𝑛 and σ𝑛2  as 𝑛 Increases 

 

6.3  Comparing the Agent-Based Bass Model to the Analytical Bass Model 
 
Another way to validate the implementation of the agent-based Bass model is by comparing it to the 
analytical Bass model.   We again restrict ourselves to the case of a fully connected network.  Each time 
we run the simulation, we can compute the total fraction Φ(𝑡) of the network that has become aware 
as a function of time.  We can run the simulation numerous times and recompute Φ(𝑡) multiple times to 

obtain an average Φ�(𝑡).  In this section, we compare Φ�(𝑡) to 𝐹(𝑡) = 𝑞−𝑞𝑒−(𝑝+𝑞)𝑡

𝑞+𝑝𝑒−(𝑝+𝑞)𝑡  , the cumulative aware 

fraction of the network given by the analytical Bass ODE. 
 
 
6.3.1  Convergence of Agent-Based Model to Analytical Model 

We would like to know if the agent-based model converges to analytical curve as ∆𝑡 decreases.  
Beginning with ∆𝑡 = 1 hour and successively decreasing time-step length, we compute the L1 error 
between Φ�(𝑡) and 𝐹(𝑡) for each value of ∆𝑡.  As shown in figure 7, Φ�(𝑡)  converges to 𝐹(𝑡) – evidence 
that the agent-based model was correctly implemented. 
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Figure 5: L1 Error Between Φ�(𝑡) and 𝐹(𝑡) 

 

6.3.2  Comparing the Parameters in the Two Models 

Another way to explore the relationship between the analytical and agent-based models is to determine 
the correspondence between parameters 𝑝𝑝 and 𝑞𝑞 in the analytical Bass model to their counterparts 𝑝𝑝� 
and 𝑞𝑞� in the agent-based model.  We would expect that the model trajectories would be most similar 
when 𝑝𝑝� = 𝑝𝑝 and 𝑞𝑞� = 𝑞𝑞.  To test this, we fix the values of the parameters of the analytical model at 
𝑝𝑝 = 0.07  and 𝑞𝑞 = 0.06.  and perform a grid search.  For each of an exhaustive selection of (𝑝𝑝�, 𝑞𝑞�) pairs, 
we run the simulation 100 times and take the mean pointwise in time.  We then choose the (𝑝𝑝,� 𝑞𝑞�) pair 
(𝑝𝑝�∗,𝑞𝑞�∗) that minimizes the L1 error between the analytical Bass curve with parameters 𝑝𝑝 = 0.07 and 
𝑞𝑞 = 0.06  and the output of the agent-based model with values of 𝑝𝑝�  and 𝑞𝑞�.     

  The color map gives, as a function of 𝑝𝑝�  and 𝑞𝑞�, the L1 error between the agent-based curves with (𝑝𝑝�, 𝑞𝑞�) 
and analytical curve with (𝑝𝑝, 𝑞𝑞) = (0.06, 0.07).    The minimum error occurred at (𝑝𝑝�∗,𝑞𝑞�∗) =
(0.0690 , 0.0595).   
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Figure 6:  L1 Error as a Function of 𝑝𝑝� and 𝑞𝑞�  

We can compute the best-fit quadratic approximation to the error function.  Figure 8 shows the 
contours of this quadratic approximation.  The conic center of the approximation is too far to the right 
to match the parameters (𝑝𝑝�∗, 𝑞𝑞�∗) = (0.0690,0.0595), that mimimize the error. 

 

Figure 7: Best L2 Fit to Error 
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+ 22.67[−0.9591(𝑝𝑝� − 0.09041) + 0.2832(𝑞𝑞� − 0.05368)]2
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7.  Results 

7.1  Simulation Output 

 

Figure 8:  Simulation Trajectories on the ‘Bin Laden’ Twitter Network 

The plots above show the number of agents aware at each time step of the simulation.  Figure 1a shows 
the trajectories for two simulation executions; figure 1b shows trajectories for 200 executions.  Since the 
simulation is stochastic, a single run provides, at each time step, only a sample of the network’s true 
behavior — the trajectories are close but not the same. 

 

 

Figure 9:  Confidence Intervals Surrounding the Simulation Mean at Each Time Step 

The simulation was run 100 times and the mean and 95% confidence intervals were computed. 

  

16 
 



7.2  Implementation Time and Memory Requirements 

Table 1:  Time and Space Efficiency of Model Implementations 

 Bin Laden Network (7.27 MB, 4.7K nodes, 477K edges) 
Implementation Type Memory Simulation Time 1K Simulations’ Time 
NetLogo — ~3 min. — 
Basic 506.73 MB 13.8 sec.  3.6 hr. 
Neighbor-Set, Serial 18.55 MB 0.8 sec.  12.5 min. 
Neighbor-Set, Parallel 18.55 MB 10.2 sec. 8.6 min. 

 
 Hurricane Irene Network (0.70 MB, 1.1K nodes, 46K edges) 
Implementation Type Memory Simulation Time 1K Simulations’ Time 
NetLogo — ~50 sec. — 
Basic 30.31 MB 3.74 sec. 52.2 min. 
Neighbor-Set, Serial 1.84 MB 0.27 sec. 3.6 min. 
Neighbor-Set, Parallel 1.84 MB 9.46 sec. 2.6 min. 

 
Table 1 gives the time and space requirements for the NetLogo, basic, neighbor-set serial, and neighbor-
set parallelized implementations of the agent-based Bass model for the two Twitter networks.  The 
neighbor-set implementations stand out as the fastest and the most memory-efficient.  Memory 
requirements for each implementation were computed by summing the number of bytes used to store 
all the variables created during one run of the simulation.  Times for the parallelized neighbor-set 
implementation were obtained by running two simulations in parallel and they include MATLAB’s 
overhead time for initiating parallelization.  These times indicate that using the parallelized code is 
effective only when repeating the simulation many times.  Values listed for the NetLogo implementation 
are an estimate as the program is designed to be run in two stages; the table gives runtimes for the 
second stage.  Six out of the ten times it was executed, the NetLogo program was stopped after running 
for longer than an hour.  The best runtime (out of ten) was taken for each dataset. 

7.3  Testing the Model on Real-World Twitter Data 
 
We wish to determine how well the Bass agent-based model describes the actual spread of information 
through a Twitter network.  One way to do this is to analyze the actual “tweets” made by the users in 
the Twitter networks we used for the simulations — those posting the news of Osama Bin Laden’s death 
and Hurricane Irene’s landfall, respectively.  We can record the first time that each user posted a 
message containing a relevant string of text, take this time as the definition of his or her “true 
awareness time”, and then integrate to obtain the aggregate number of users aware by various times.  
Now, we can run our simulation, compute the curve representing the number of agents aware at each 
time step, and compare the computed curve to the true curve. 
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7.3.1  Optimizing the Parameters 

Our model has two free parameters, 𝑝𝑝� and 𝑞𝑞�.  We can use a grid search to find the values of 𝑝𝑝� and 𝑞𝑞� for 
which the simulation most closely approximates the observed Twitter data.  For each of an exhaustive 
selection of (𝑝𝑝�, 𝑞𝑞�) pairs, we run the simulation 100 times and take the mean pointwise in time.  We then 
choose the (𝑝𝑝,� 𝑞𝑞�) pair (𝑝𝑝�∗, 𝑞𝑞�∗) that minimizes the L1 error between the simulation means and the real 
data.  For the Bin Laden dataset, a color map below shows the error as a function of 𝑝𝑝� and 𝑞𝑞� when 
∆𝑡 = 1 hour.  The optimal parameters were:  𝑝𝑝�∗ = 0.099, 𝑞𝑞�∗ = 0.001 

 

Figure 10: Error as a Function of 𝑝𝑝� and 𝑞𝑞� for ∆𝑡 = 1 

The plots below compare the true number of aware Twitter users to the number of aware agents as 
given by the optimal agent-based model.  Figure 3a shows a plot for the Bin Laden dataset, and Figure 
3b shows a plot for the Irene dataset.  For each dataset, the simulation values plotted were obtained by 
averaging 100 runs. 

  

𝑝𝑝� = 0.099, 𝑞𝑞� = 0.001.                 𝑝𝑝� = 0.023, 𝑞𝑞�  = 0.001                                    

Figure 11:  Comparing the Agent-Based Model to Observed Twitter Data 
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7.3.2  Error as a Function of the Time Step 

We would like to know if the optimal parameters and the error are affected by our choice of ∆𝑡.  In 
addition to the highly visible parameters 𝑝𝑝� and 𝑞𝑞�, and the underlying graph Γ, the agent-based Bass 
model also depends on the rather less visible parameter ∆𝑡.  It would be nice to know whether refining 
∆𝑡 substantially affects the model’s fit to real-world data.  To investigate this question, the search for 
optimal parameters (𝑝𝑝�∗, 𝑞𝑞�∗) for the Bin Laden dataset was conducted anew using ∆𝑡 = 0.25, 0.50, 0.75 
hours, in exactly the same way as with ∆𝑡 = 1 hour.  Table 2 below shows the optimal parameters for 
each ∆𝑡, along with the corresponding minimal L1 error.  Using different values of ∆𝑡 does not 
significantly affect how well the model fits the real-world data. 

Table 2:  Optimal Parameters and Error as ∆𝑡 Changes 

 
∆𝑡 (hr) Optimal 𝑝𝑝� Optimal 𝑝𝑝�∆𝑡 Optimal 𝑞𝑞� Optimal 𝑞𝑞�∆𝑡 Error 

1 0.099 0.099 0.0010 0.0010 7.4632e+003 

0.75 0.101 0.076 0.0008 0.0006 7.5229e+003 

0.5 0.102 0.052 0.0009 0.0005 7.4734e+003 

0.25 0.103 0.026 0.0010 0.0003 7.5602e+003 
 
 

8. Project Milestones 

 
My milestones as described in my proposal: 

October Develop basic simulation code.  Develop code for statistical analysis of results. 

November Validate simulation code by checking corner cases, sampled cases, and by relative 
testing.  Validate code against analytical model. 

 
December Validate simulation against existing NetLogo implementation.  Prepare mid-year 

presentation and report. 
 
January  Investigate efficiency improvements to code.  Incorporate sparse data structures. 

February Parallelize code.  Test code efficiency against existing NetLogo implementation. 

March Test model against empirical Twitter data.  Create visualization of model, time 
permitting. 

April Write final project report and prepare presentation. 
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My milestones as achieved: 

October Developed basic simulation code.  Wrote a more efficient neighbor-set implementation 
of simulation. 

November Validated code against analytic model.  Developed code for statistical analysis of results.  
Analyzed confidence intervals. 

December Validated simulation against existing NetLogo implementation.  Prepared mid-year 
presentation and report. 

January Tested model against empirical Twitter data.  Performed parameter searches to 
determine best fit.  Tested best fit as a function of ∆t. 

February Parallelized code.  Analyzed convergence of agent-based model to analytical model.  
Computed probability distributions using Markov chains. 

March Computed and tested 95% intervals.  Compared correspondence of parameters in 
agent-based model to those in analytical model.  Analyzed the error. 

April Revised and re-tested ~95% intervals.  Fitted quadratic function to error.  Wrote final 
project report and prepared presentation. 

 

9.  Deliverables 

I will submit all deliverables promised in my proposal (1-4) as well as a few additional ones (5-7). 

1. Code for my simulation.   

2. Code for my statistical analysis. 

3. A plot showing at each time step the mean and both ends of a 95% confidence interval 
based on data collected from numerous runs of the simulation. 

4. A comparison of my code’s running time against that of the existing NetLogo 
implementation. 

5. Faster neighbor-set implementation of the simulation, parallelized. 

6. Code for grid search to determine best-fit parameters. 
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7. Code to compute and test theoretical distributions for fully connected networks using 
Markov chains. 

 

 

10.  Conclusion 

The current project was an effort to implement an agent-based Bass information diffusion model.  Using 
an efficient updating rule and taking advantage of sparse data structures produced a more time- and 
memory-efficient code.  The current implementation is faster and runs more reliably than a previous 
NetLogo implementation, allowing simulations to be performed on larger, denser networks in future 
research. 

With the correct parameters, the agent-based Bass model provides a reasonable description of real-
world Twitter information diffusion.  The model parameters that produce the best fit are specific to each 
data set.  Varying the length of time steps has little effect on the fit between the model and real data.   

We can compare the discrete agent-based model to the analytical Bass model.  As time steps decrease 
in length, the agent-based Bass model converges to the analytical Bass model.  Parameters p and q of 
the analytical model correspond well to parameters  𝑝𝑝� and 𝑞𝑞� of the agent-based model. 
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