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Background

Compressed Sensing

M. Zhong Example (Compressed Sensing)

Can one recover a sparse signal with the fewest possible
number of linear measurements?

Signal ing

e x € R"is our target signal.
e Ais a linear measurement matrix:

e Ais a given matrix (DCT, etc).
e Ais constructed with certain properties.

e We only know Ax € R™

e In particular, x has ¢ non-zero entries, we do not know
where they are, and what the values are.

Can we recover x with m < n? If so, how?
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Sampling Principle

Yes for sparse x ({ < m < n):
M. Zhong

Compressive Sensing Principle

Sparse signal statistics can be recovered from a relatively
Signal Processing small number of non-adaptive linear measurements.

Then how? We can find it through the following ¢,,
L — minimization:
Problem

Given A and b, we want to find the sparest x, such that
Ax = b. This leads to:

min {{ix|le, | Ax = b} (1)

Then what would be a suitable p?
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The Constrained Minimal ¢,-Norm
fz, Zo, and 01

M. Zh
ond Problem

min{|[x]lp | Ax = b} @

o p=2,x=AT(AAT) b, not sparse!!
ppwosnain e 0 < p <1, it enforces sparsity.
e p=0,m=/+1,its NP hard".
e p=1, m= Cllog(n), it is a convex problem.2.

But why is the ¢1-norm more appropriate?

'0o(-) measures the number of non-zero entries; and proof done in
Test Resul B.K.Natarajan, 95
“ 2D. Dohono, 04; E.J.Candes & T.Tao, 04
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2-Dimensional Example

Dense Vs. Sparse

M. Zhong

a
2

Signal Processing !

£, Minimizations
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Figure: the ¢ and ¢1 Minimizers

Introduction
Implementation

The ¢4 problem gives a sparse solution, while the /> one
does not.
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Tikhonov Regularization

With the ¢4 problem possibly being ill-posed, we can add

AR Tikhonov Regularization® to (2) (p = 1):
Problem (Tikhonov Regularization)
min {[[x]}s + 516~ AxI ) ©
xeR" 1 2 2
Shanss " « (3) becomes an unconstrained minimization.

e The minimizer depends on the regularization parameter
A (scale).

e Small A leads to x = 0; larger \ leads to the minimizer
of (2). So we need large enough \.

e Our goalis to find a suitable range for .

SDifferent from Lagrange Multiplier
M. Zhong (UMD) HR0SS 10/35



Tikhonov Regularizations, Cont.

An Extremal Pair

It is proven? that x being a solution of (3) it equivalent to
M. Zhong then x and r(x) = b — Ax satisfying the following:

Theorem (Validation Principles)

(GATr(x)) = XM IIAT ()]l (4)

1
Approximation at A | |ATI‘(X)| ’oo — -~ (5)

Given Scale
Theoretical Bounds >\

x and r(x) are called an extremal pair. The validation
principles are achieved only when \ is sufficiently large,

oduction
mplementation 1

AT S A (6)
[|ATbl|so

Y. Meyer; E. Tadmor, et al, 04 and 08
M. Zhong (UMD) HRoSS 11/35



The Signum Equation

M. Zhong

The sub-gradient of (3) is:

T(x) = sign(x) + AT (Ax — b) (7)

0 € T(Xopt) < Xopt = arg Ein {Ix[ls + %HAX - ng}
xeR"

Approximation at A
Given Scale

T(x) is a maximal monotone operator®.

We can split T(x) by letting To(x) = AT (Ax — b) and
Ti(x) = 1sign(x), also making sure /+ 7 Ty is invertible.
A fixed point formula: x = (I +7T1)~'(/ — 7T2)x

5R. Rockafellar, Convex Analysis
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Relationship between (2) and (3)

M. Zhong From (7), we can derive the following:

Theorem

Given that A has the Null Space Property?, the minimizer x,
of (3) converges to the minimizer x. of (2).

@R. Gribonval, 2002

e We sketch the proof as the following:
« We show that ||Ax — b|| is bounded by O(1).
« Then we show that |||xc||1 — ||x.||1| is bounded by O(1).

e Null Space Property ensures that (2) has unique
minimzier.
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Convergence of the Unconstrained Minimizer

M. Zhong

We looked at the difference,

the following:

Theoretical Bounds

M. Zhong (UMD)

A

[lIxell1 = [1x]]1]

ratio

2.0869¢e + 000

1.5700e + 002

4.1738e + 000

1.3911e 4+ 002

1.1286e + 000

8.3476e + 000

8.3440e + 001

1.6672e + 000

1.6695¢e + 001

4.1722e + 001

1.9999¢ + 000

3.3390e + 001

2.0861e + 001

2.0000e + 000

6.6781e + 001

1.0430e + 001

2.0000e + 000

1.3356e + 002

5.2152e + 000

2.0000e + 000

Table: Convergence Rate Using GPSR Basic

HRoSS

|IXc||1 — [|X]]1|, and obtained
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Introduction

Motivation

Using similar ideas from Image Processing®, we start out by
letting (xy, r\) be an extremal pair, that is:

. A
b=Ax+n, Dol =argmin {|x|li + 3|r|i3}

Ax+r=b

We can extract useful signal from r, on a refined scale, say
2):

_ 2\
o= AXox + 2y, [Xea, r2a] = argmin {|[x|[s + ?HrH%}
Ax+r=ry

We end up with a better two-scale approximation:
b = A(X) + X2)) + 2\ = A(Xy + X2)). We can keep on
extracting, ...

8E. Tadmor, et al, 04 and 08
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Hierarchical Reconstruction
The Algorithm

Data: A and b, pick \o(from(6))
M. Zhong Initialize: rp = b, Xyrss = 0, and j = 0;
while j < Jdo
x; == argmin {||x|[1 + ¥lr — Ax|[3};
Signal Processing xeR"
fi+1 =1} = AX;
)‘/+1 =2x )‘j;
sgprsinaton XHRSS = XHRSS * Xj;
[ty
end

J

Result: x = Xi
S J=

T _ 1
° b:AXHRSS+rJ+1 and||A rJ+1||oo—m—>0as
)\J+1 — OQ.

M. Zhong (UMD) HRoSS 18/35



Some Theoretical Bounds

M. Zhong Using (7), we can show that:

3
ATAX |00 < = 8
AT Axil oo < 51 ®)
Hence Ax, — textNull(A) as \x — oo.. And we also have

1 .
AT(b — Axypss) = )\*JS'QN(XJ) 9)

If bis noise free, that is b = Ax., then
—— [|AT A(Xe — Xpass)| oo < AiJ If b = Ax; + ¢, then we to want

pick a A, such that 5-sign(x,) — ATe is small.
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Numerical Advantages

M. Zhong

e The Hierarchical Reconstruction needs only a one
scale solver (GPSRs or FPC).

e When there is no noise, we will stop the algorithm using
small update and small residual.

e When there is some noise, we want to stop the
algorithm when AT — -sign(x,) is small.

e |t has built-in de-biasing step: decreasing the residual

through the unconstrained minimization and and also
try to keep the ¢1 term small, it is better than de-biasing.

Implementation

M. Zhong (UMD) HRoSS 21/35



M. Zhong

Implementation

Validation Results |

Since the residual at k' iterate satisfies (7), we found that it
is bounded above by O(1):

Table: Convergence Rate of Residual with Noise Level o =0

M. Zhong (UMD)

||r = b— Axypssl|2 ratio

5.3806¢e + 000

1.5936¢e + 000 3.3763e + 000
8.1145e — 001 1.9639¢ + 000
4.1502e — 001 1.9552e + 000
2.2065e — 001 1.8809¢e + 000
1.2048¢e — 001 1.8314e + 000
6.6032e — 002 1.8246¢ + 000
3.5953e — 002 1.8366¢e + 000

HRoSS
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Implementation

Validation Results Il

The convergence rate should not be affected by noise:

||r = b — Axypssl|2 ratio
6.3408¢e + 000
2.4855e + 000 2.5511e + 000

1.3479¢e + 000

1.8440e + 000

7.0396e — 001 1.9148e + 000
3.6064e — 001 1.9520e + 000
1.8339e — 001 1.9665¢e + 000
9.2890e — 002 1.9743e + 000
4.6838e — 002 1.9832¢e + 000

Table: Convergence Rate of Residual with Noise Level o = 0.1
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M. Zhong

We tests the HRSS algorithm with the following case:

e m= 1024, n = 4096, and A is obtained by first filling it
with independent samples of a standard Gaussian
distribution and then orthonormalizing the rows.

e The original signal has only k = 160 non-zeros, and
they are +1’s.

e b= Ax + ¢, where ¢ is a white noise with variance
o2 =10"*%.

o The error is measured in MSE = (1)[|x — Xiruel|3-

Test Results

M. Zhong (UMD) HRoSS 25/35
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Test Results

Test Results 0

The Original Signal And Minimum Norm Solution

We obtain the following results for HRSS:

M. Zhong (

Original (n = 4096, number of nonzeros = 160)
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Test Results |
HRSS with 3 different solvers

And compare HRSS solutions among 3 different solvers:

M. Zhong
GPSR Basic (m = 1024, lambda = 4.17e+000, MSE = 9.65e-005)
v -
s
-1/ 90009® ¢ © 00,00 MO 09000 UIMEMO OO © ARGy S0WW O
0 500 1000 1500 2000 2500 3000 3500 4000
GPSR Barzilai Borwein (m = 1024, lambda = 4.17e+000, MSE = 9.75e-005)
1F oo o Po @O D% %P ® F00 00 GRp Gom o® b PO flcetelon)
051
C = " 7
-05F
_1/. 000009 ¢ © 0000 MO 0% 00 AIMWMO OO © ARG COW ¢
0 500 1000 1500 2000 2500 3000 3500 4000
FPC Method (m = 1024, lambda = 4.17e+000, MSE = 1.01e-004)
v w
-051
Test Results -1, 000009 ¢ © 90 00 M® 0% 000 IO OO ° ARG oW O
0 500 1000 1500 2000 2500 3000 3500 4000

M. Zhong (

HRoSS

27/35



M. Zhong

£, Mini

Test Results

Summary

Test Results |l

Reconstruction Process with no noise

Xgs the approxi. signal

Xgs the approxi. signal

Approxi. at 2-th iterate., noice = 0.0e+000
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Reconstruction Process with some noise
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Test Results IV

Reconstruction Process with a lot of noise

M. Zhong Approxi. at 2-th iterate., noice = 1.0e-001 . Approxi. at 4-th iterate., noice = 1.0e-001
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Implementation

“{000_ 2000 3000 4000 000~ 2000 3000

n, position of the pikes n, position of the pikes

Test Results

Summary

HRoSS 30/35




Outline

M. Zhong

@ Numerics and Summary

Implementation

Summa Summary

Summary

M. Zhong (UMD) HRoSS

31/35



Milestones

M. Zhong

e Project Background Research started on 08/29/2013.

e Presentation given on 10/02/2012 and Project
Proposal written on 10/05/2012.

e Implementation of the GPSR algorithm finished and
debugged on 11,/05/2012, validation finished on
11/21/2012.

e Preparation for mid-year report and presentation
started on 11/22/2012, FPC implementation started.

Summary
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Milestones, Cont.

M. Zhong

 Implementation of FPC done by 12/21/2012,
debugged and validated by 01,/22/2013.

e Implementation of HRSS finished by 02/22/20183,
Near-Completion Presentation on 03/07/2013.

e Validatin of HRSS done by 03/22/2013, theoretical
results obtained by 04,/22,/20183.

» More tests done by 04/30/2013, End-of-year
Presentation on 05/07,/2013.
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Deliverables

M. Zhong

Whole Matlab Package for GPSR, FPC, and HRSS
Test results and graphs.

Proposal, mid-year, mid-spring, and end-of-year
presentation slides.

Complete project document.
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