M. Zhong

Signal Processing $\ell_{\scriptscriptstyle D}$ Minimizations

Given Scale
Theoretical Bounds

Introduction Implementation

Test Results

Hierarchical Reconstruction of Sparse Signals

Ming Zhong

mzhong1@umd.edu

Advisor: Dr. Eitan Tadmor tadmor@cscamm.umd.edu
End of Year Presentation

May 7th, 2013

1/35

M. Zhona

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ntroduction mplementation

- Introduction and Background Signal Processing
 \(\ell_p\) Minimizations
- Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds
- 3 Multi-scale Construction Hierarchical Reconstruction Introduction Implementation
- Numerics and Summary Test Results Summary

M. Zhona

Signal Processing *ℓ_p* Minimizations

Introduction and Background

Approximation at A Given Scale

- Multi-scale Construction Hierarchical Reconstruction
- Mumerics and Summary Test Results Summary

Signal Processing ℓ, Minimizations

Background Compressed Sensing

M. Zhong

Example (Compressed Sensing)

Can one recover a sparse signal with the fewest possible number of linear measurements?

Approximation at A Given Scale

Theoretical Bounds

ntroduction mplementation

Test Results

- $x \in \mathbf{R}^n$ is our target signal.
- A is a linear measurement matrix:
 - A is a given matrix (DCT, etc).
 - A is constructed with certain properties.
- We only know $Ax \in \mathbf{R}^m$
- In particular, x has ℓ non-zero entries, we do not know where they are, and what the values are.

Can we recover x with $m \ll n$? If so, how?

4/35

Sampling Principle

Yes for sparse x ($\ell < m \ll n$):

Compressive Sensing Principle

Sparse signal statistics can be recovered from a relatively small number of non-adaptive linear measurements.

Then how? We can find it through the following ℓ_p minimization:

Problem

Given A and b, we want to find the sparest x, such that Ax = b. This leads to:

$$\min_{\mathbf{x} \in \mathbf{R}^n} \{ ||\mathbf{x}||_{\ell_p} \mid A\mathbf{x} = \mathbf{b} \} \tag{1}$$

Then what would be a suitable p?

M. Zhong

Signal Processing

Approximation at A Given Scale Theoretical Bounds

Introduction Implementation

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ntroduction

- Introduction and Background Signal Processing ℓ_D Minimizations
- ② Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds
- 3 Multi-scale Construction Hierarchical Reconstruction Introduction Implementation
- Numerics and Summary Test Results Summary

The Constrained Minimal ℓ_p -Norm

 ℓ_2 , ℓ_0 , and ℓ_1

M. Zhona

Problem

$$\min_{x \in \mathbf{R}^n} \{ ||x||_p \mid Ax = b \}$$
 (2)

ℓ , Minimizations

• p = 2, $x = A^{T}(AA^{T})^{-1}b$, not sparse!!

• $0 \le p \le 1$, it enforces sparsity.

• p = 0. $m = \ell + 1$. it's NP hard¹.

• p = 1, $m = C\ell log(n)$, it is a convex problem.².

But why is the ℓ_1 -norm more appropriate?

 $^{^{1}\}ell_{0}(\cdot)$ measures the number of non-zero entries; and proof done in B.K.Natarajan, 95

²D. Dohono, 04; E.J.Candes & T.Tao, 04

2-Dimensional Example

Dense Vs. Sparse

Figure: the ℓ_2 and ℓ_1 Minimizers

The ℓ_1 problem gives a sparse solution, while the ℓ_2 one does not.

8/35

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale

Theoretical Bounds

Introduction Implementation

- Introduction and Background Signal Processing
 ℓ_D Minimizations
- 2 Single Scale Reconstruction Approximation at A Given Scale
- Multi-scale Construction Hierarchical Reconstruction
 - Introduction Implementation
- Numerics and Summary Test Results Summary

Tikhonov Regularization

M. Zhong

With the ℓ_1 problem possibly being ill-posed, we can add Tikhonov Regularization³ to (2) (p = 1):

Problem (Tikhonov Regularization)

$$\min_{x \in \mathbf{R}^n} \{ ||x||_1 + \frac{\lambda}{2} ||b - Ax||_2^2 \}$$
 (3)

Approximation at A Given Scale

ℓ, Minimizations

heoretical Bounds

ntroduction mplementation

Test Results Summary • (3) becomes an unconstrained minimization.

- The minimizer depends on the regularization parameter λ (scale).
- Small λ leads to x = 0; larger λ leads to the minimizer of (2). So we need large enough λ.
- Our goal is to find a suitable range for λ .

³Different from Lagrange Multiplier

Tikhonov Regularizations, Cont.

An Extremal Pair

It is proven⁴ that x being a solution of (3) it equivalent to then x and r(x) = b - Ax satisfying the following:

Theorem (Validation Principles)

$$\langle x, A^T r(x) \rangle = ||x||_1 ||A^T r(x)||_{\infty}$$
 (4)

$$\langle x, A^T r(x) \rangle = ||x||_1 ||A^T r(x)||_{\infty}$$
 (4)
 $||A^T r(x)||_{\infty} = \frac{1}{\lambda}$ (5)

x and r(x) are called an extremal pair. The validation principles are achieved only when λ is sufficiently large,

$$\frac{1}{||A^Tb||_{\infty}} \le \lambda \tag{6}$$

M. Zhona

ℓ, Minimizations

Approximation at A Given Scale

⁴Y. Meyer; E. Tadmor, et al, 04 and 08

The Signum Equation

M. Zhong

The sub-gradient of (3) is:

$$T(x) = sign(x) + \lambda A^{T}(Ax - b)$$
 (7)

• $0 \in T(x_{opt}) \Leftrightarrow x_{opt} = \underset{x \in R^n}{\operatorname{arg min}} \{||x||_1 + \frac{\lambda}{2}||Ax - b||_2^2\}$

- T(x) is a maximal monotone operator⁵.
- We can split T(x) by letting $T_2(x) = A^T(Ax b)$ and $T_1(x) = \frac{1}{\lambda} sign(x)$, also making sure $I + \tau T_1$ is invertible.
- A fixed point formula: $x = (I + \tau T_1)^{-1}(I \tau T_2)x$

Approximation at A

ℓ_n Minimizations

heoretical Bounds

ntroduction mplementation

⁵R. Rockafellar, Convex Analysis

M. Zhona

ℓ, Minimizations

Theoretical Bounds

- Introduction and Background *ℓ_p* Minimizations
- 2 Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds
- Multi-scale Construction Hierarchical Reconstruction
- Mumerics and Summary Test Results Summary

Relationship between (2) and (3)

M. Zhong

From (7), we can derive the following:

Theorem

Given that A has the Null Space Property^a, the minimizer x_* of (3) converges to the minimizer x_c of (2).

^aR. Gribonval, 2002

We sketch the proof as the following:

- We show that $||Ax b||_p$ is bounded by $\mathcal{O}(\frac{1}{\lambda})$.
- Then we show that $|||x_c||_1 ||x_*||_1|$ is bounded by $\mathcal{O}(\frac{1}{\lambda})$.
- Null Space Property ensures that (2) has unique minimzier

Approximation at A Given Scale

ℓ, Minimizations

Introduction Implementation

Convergence of the Unconstrained Minimizer

M. Zhong

We looked at the difference, $|||x_c||_1 - ||x_*||_1|$, and obtained the following:

λ	$ X_c _1 - X_* _1$	ratio
2.0869 <i>e</i> + 000	1.5700 <i>e</i> + 002	
4.1738 <i>e</i> + 000	1.3911 <i>e</i> + 002	1.1286 <i>e</i> + 000
8.3476 <i>e</i> + 000	8.3440 <i>e</i> + 001	1.6672 <i>e</i> + 000
1.6695 <i>e</i> + 001	4.1722 <i>e</i> + 001	1.9999 <i>e</i> + 000
3.3390 <i>e</i> + 001	2.0861 <i>e</i> + 001	2.0000 <i>e</i> + 000
6.6781 <i>e</i> + 001	1.0430 <i>e</i> + 001	2.0000 <i>e</i> + 000
1.3356 <i>e</i> + 002	5.2152 <i>e</i> + 000	2.0000e + 000

Table: Convergence Rate Using GPSR Basic

troduction id

Approximation at /

ℓ, Minimizations

Theoretical Bounds

Introduction Implementation

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction

- Introduction and Background Signal Processing
 ℓ_P Minimizations
- ② Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds
- Multi-scale Construction Hierarchical Reconstruction Introduction
 Implementation
- 4 Numerics and Summary Test Results Summary

Motivation

M. Zhona

ℓ, Minimizations

Introduction

Using similar ideas from Image Processing⁶, we start out by letting $(x_{\lambda}, r_{\lambda})$ be an extremal pair, that is:

$$b = Ax_{\lambda} + r_{\lambda}, \quad [x_{\lambda}, r_{\lambda}] = \underset{Ax+r=b}{\operatorname{arg min}} \{||x||_{1} + \frac{\lambda}{2}||r||_{2}^{2}\}$$

We can extract useful signal from r_{λ} on a refined scale, say 2λ :

$$r_{\lambda} = Ax_{2\lambda} + r_{2\lambda}, \quad [x_{2\lambda}, r_{2\lambda}] = \underset{Ax + r = r_{\lambda}}{\operatorname{arg\,min}} \{||x||_{1} + \frac{2\lambda}{2}||r||_{2}^{2}\}$$

We end up with a better two-scale approximation: $b = A(x_{\lambda} + x_{2\lambda}) + r_{2\lambda} \approx A(x_{\lambda} + x_{2\lambda})$. We can keep on extracting, ...

⁶E. Tadmor, et al, 04 and 08

Hierarchical Reconstruction

The Algorithm

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction

Test Results

Data: A and b, pick $\lambda_0(from(6))$ Initialize: $r_0 = b$, $x_{HBSS} = 0$, and i = 0; while i < J do $x_j \coloneqq \underset{x \in \mathbf{R}^n}{\operatorname{arg\,min}} \{ ||x||_1 + \frac{\lambda_j}{2} ||r_j - Ax||_2^2 \};$ $r_{i+1} = r_i - Ax_i$; $\lambda_{i+1} = 2 * \lambda_i;$ $X_{HRSS} = X_{HRSS} + X_i;$ j = j + 1; end Result: $x = \sum_{j=1}^{J} x_{j}$

esuit:
$$X = \sum_{j=0}^{\infty} X_j$$

• $b = Ax_{HRSS} + r_{J+1}$ and $||A^T r_{J+1}||_{\infty} = \frac{1}{\lambda_{J+1}} \to 0$ as $\lambda_{J+1} \to \infty$.

Some Theoretical Bounds

M. Zhong

Using (7), we can show that:

$$||A^T A x_k||_{\infty} \le \frac{3}{2\lambda_k} \tag{8}$$

Hence $Ax_k \to textNull(A)$ as $\lambda_k \to \infty$.. And we also have

$$A^{T}(b - Ax_{HRSS}) = \frac{1}{\lambda_{J}} sign(x_{J})$$
 (9)

If b is noise free, that is $b = Ax_c$, then $||A^TA(x_c - x_{HRSS})||_{\infty} \le \frac{1}{\lambda_J}$. If $b = Ax_c + \epsilon$, then we to want pick a λ_J such that $\frac{1}{\lambda_J} sign(x_J) - A^T \epsilon$ is small.

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale

Introduction

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ulti-scale

Introduction Implementation

- Introduction and Background Signal Processing
 \(\ell_p\) Minimizations
- ② Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds
- 3 Multi-scale Construction Hierarchical Reconstruction Introduction Implementation
- A Numerics and Summary Test Results Summary

Numerical Advantages

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction Implementation

- The Hierarchical Reconstruction needs only a one scale solver (GPSRs or FPC).
- When there is no noise, we will stop the algorithm using small update and small residual.
- When there is some noise, we want to stop the algorithm when $A^T \epsilon \frac{1}{\lambda_J} sign(x_J)$ is small.
- It has built-in de-biasing step: decreasing the residual through the unconstrained minimization and and also try to keep the ℓ_1 term small, it is better than de-biasing.

Validation Results I

M. Zhong

ℓ, Minimizations

Since the residual at k^{th} iterate satisfies (7), we found that it is bounded above by $\mathcal{O}(\frac{1}{\lambda})$:

$ r = b - Ax_{HRSS} _2$	ratio
5.3806 <i>e</i> + 000	
1.5936 <i>e</i> + 000	3.3763 <i>e</i> + 000
8.1145 <i>e</i> – 001	1.9639 <i>e</i> + 000
4.1502 <i>e</i> – 001	1.9552 <i>e</i> + 000
2.2065 <i>e</i> - 001	1.8809 <i>e</i> + 000
1.2048 <i>e</i> – 001	1.8314 <i>e</i> + 000
6.6032 <i>e</i> – 002	1.8246 <i>e</i> + 000
3.5953 <i>e</i> - 002	1.8366 <i>e</i> + 000

Given Scale Theoretical Bounds

Introduction Implementation

Test Results

Table: Convergence Rate of Residual with Noise Level $\sigma = 0$

Validation Results II

M. Zhong

The convergence rate should not be affected by noise:

$ r = b - Ax_{HRSS} _2$	ratio
6.3408 <i>e</i> + 000	
2.4855 <i>e</i> + 000	2.5511 <i>e</i> + 000
1.3479 <i>e</i> + 000	1.8440 <i>e</i> + 000
7.0396 <i>e</i> – 001	1.9148 <i>e</i> + 000
3.6064 <i>e</i> - 001	1.9520 <i>e</i> + 000
1.8339 <i>e</i> – 001	1.9665 <i>e</i> + 000
9.2890 <i>e</i> – 002	1.9743 <i>e</i> + 000
4.6838 <i>e</i> – 002	1.9832 <i>e</i> + 000

Given Scale
Theoretical Bounds

ℓ, Minimizations

Table: Convergence Rate of Residual with Noise Level $\sigma=0.1$

Introduction Implementation

Test Result

23 / 35

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ntroduction mplementation

- Introduction and Background Signal Processing
 ℓ_D Minimizations
- ② Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds
- 3 Multi-scale Construction Hierarchical Reconstruction Introduction Implementation
- 4 Numerics and Summary Test Results Summary

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction Implementation

Test Results Summary

We tests the HRSS algorithm with the following case:

- m = 1024, n = 4096, and A is obtained by first filling it with independent samples of a standard Gaussian distribution and then orthonormalizing the rows.
- The original signal has only k=160 non-zeros, and they are ± 1 's.
- $b = Ax + \epsilon$, where ϵ is a white noise with variance $\sigma^2 = 10^{-4}$.
- The error is measured in MSE = $(\frac{1}{n})||x x_{true}||_2^2$.

Test Results 0

The Original Signal And Minimum Norm Solution

We obtain the following results for HRSS:

Approximation at A

lulti-scale

ntroduction mplementation

Test Results I HRSS with 3 different solvers

And compare HRSS solutions among 3 different solvers:

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ntroduction mplementation

Test Results II

Reconstruction Process with no noise

28 / 35

Test Results III

Reconstruction Process with some noise

Test Results IV

Reconstruction Process with a lot of noise

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction Implementation

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ntroduction

Test Results Summary Introduction and Background Signal Processing
 ℓ_D Minimizations

② Single Scale Reconstruction Approximation at A Given Scale Theoretical Bounds

3 Multi-scale Construction - Hierarchical Reconstruction Introduction Implementation

4 Numerics and Summary

Milestones

M. Zhona

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction Implementation

- Project Background Research started on 08/29/2013.
- Presentation given on 10/02/2012 and Project Proposal written on 10/05/2012.
- Implementation of the GPSR algorithm finished and debugged on 11/05/2012, validation finished on 11/21/2012.
- Preparation for mid-year report and presentation started on 11/22/2012, FPC implementation started.

Milestones, Cont.

M. Zhona

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Introduction Implementation

- Implementation of FPC done by 12/21/2012, debugged and validated by 01/22/2013.
- Implementation of HRSS finished by 02/22/2013, Near-Completion Presentation on 03/07/2013.
- Validatin of HRSS done by 03/22/2013, theoretical results obtained by 04/22/2013.
- More tests done by 04/30/2013, End-of-year Presentation on 05/07/2013.

Deliverables

M. Zhong

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

ntroduction mplementation

- Whole Matlab Package for GPSR, FPC, and HRSS
- Test results and graphs.
- Proposal, mid-year, mid-spring, and end-of-year presentation slides.
- Complete project document.

Thank You Note

Signal Processing ℓ_p Minimizations

Approximation at A Given Scale Theoretical Bounds

Theoretical bounds

Introduction Implementation

Test Results Summary Thank you!