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Abstract

In this project, we develop a Hierarchical Decomposition algorithm to solve the `1-Regularized
Least Square problem: min

x∈Rn
{||x||`1

∣∣Ax = b}. With the new approach, we show a systemic

approach on how to select a family of regularization parameters λ’s in order to improve accu-
racy while retaining the sparsity of our approximation.

1 Background: A Constrained `0 Minimization
In the recent decades, there have been a considerate amount of interests put into solving a mini-
mization problem originated in Compressed Sensing. The problem is asking for the possibility of
which is to ask for effective and efficient approaches to encode a large and sparse signal (recon-
struct) with a relatively small number of linear measurements (acquire). Mathematically speaking,
we are looking for a solution of the following minimization problem:

min
x∈Rn
{||x||`0

∣∣Ax = b} (1)

Where the || · ||`0 measures the number of non-zero element in a vector x, A ∈ Rm×n is a m × n
matrix over real and a measurement vector b ∈ Rm, with m � n. Two possible scenarios exit
for choosing the matrix A: it is either prescribed by a specific transformation or chosen by the
user to recover x using least amount of information possible. The system Ax = b is under-
determined; when A has full rank, an infinite number of solutions exists. One can then find a x
with the minimal `0-norm. However, it is shown in [10] that (1) is NP hard and requires techniques
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from combinatorial optimization. Hence it is numerically appropriate to consider a relaxed (1) by
using either the `1 or `2 norm; then (1) is changed into a convex optimization problem, making it
possible for us to employ convex optimization techniques (namely linear programming) to recover
the solution.

1.1 A Constrained `2 Minimization
We will be using || · ||p instead of || · ||`p from now on. Let us consider the following Constrained
`2 minimziation:

min
x∈Rn
{||x||2

∣∣Ax = b} (2)

It is also called a minimum norm problem. An analytic solution is known as x0 = A∗(AA∗)−1b1,
where A∗ is the Hermitian transpose of A (apparently Ax0 = AA∗(AA∗)−1b = b). Let x be
another solution to Ax = b, then we want to show x − x0 is perpendicular to x0. To Justify our
claim, observe the following:

〈x− x0,x0〉2 = 〈x− x0, A
∗(AA∗)−1b〉2 = 〈A(x− x0), (AA

∗)−1b〉2
= 〈b− b, (AA∗)−1b〉2 = 0

We basically show that ∀z ∈ N(A)2, z is perpendicular to x0. Hence by the Pythagorean Theorem
in Rn):

||x||22 = ||x− x0 + x0||22 = ||x− x0||22 + ||x0||22 ≥ ||x0||22
Therefore ||x||2 ≥ ||x0||2, with equality realized only when x = x0. x0 is indeed the minimal
solution. Unfortunately, in most cases, the solution from (2) is not going to be sparse, the non-zero
elements fill up the whole vector x0

3.

1.2 A Constrained `1 Minimization
With solutions from the `2 norm not satisfying the sparsity requirement, we’d like switch our focus
to the `1 norm instead. And in fact, it is widely accepted that restricting the `1 norm generally
produces sparse solutions. Let us consider the following:

min
x∈Rn
{||x||1

∣∣Ax = b} (3)

It is shown in [2, 3] that under the Robust Uncertainty Principles: when A has the Restricted
Isometry Property and m = O(n

1
4 [log(n)]

5
2 ), one can recover the solution from (1) by finding the

minizer from (3).

Remark 1.1. Using straightforward calculus of variation, one can derive a non-linear equation
from (9), which is:

sgn(x) + λ(A∗Ax− A∗b) = 0 (4)

1Assuming A has full rank, otherwise a SVD technique is used to solve (2)
2N(A) = {x ∈ Rn

∣∣Ax = 0}
3Quotation needed!!
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Where the sgn(a) =

{
1, a > 0
−1, a < 0

is defined for scalars; so for sgn(x) on vectors, we just take

sgn(·) on each component of x ; however, sgn(a) is not defined at a = 0. Such delicacy makes
(4) hard to solve directly; furthermore, the solution set of (4) is contained in the solution set of (9)
due to nondifferentiable property of sgn(·) at 0.

However the `1 problem is not well-posed. Let us begin the argument by considering a more
general family of problems:

min
x∈Rn
{J(x)

∣∣Ax = b} (5)

Where J(·) is a energy functional defined on Rn. Moreover J(·) is continuous and convex. Let
J(x) also be coercive, i.e., whenever ||x||2 →∞, J(x)→∞. As it is stated in [12]4, the solution
set of (5) is nonempty and convex. And if J(x) is strictly or strongly convex, the solution is unique.
However J(x) = ||x||1 is not strictly convex, the solution is not going to be unique, thus making
the problem ill-posed.

1.3 Tikhonov Regularization
In order to efficiently solve ill-posed problems, a regularization type of method, called Tikhonov
Regularization, was proposed and developed ([16, 17]). Such regularization method can be applied
to a broader class of problems. Similar to the discussion in [13, 14], let us consider two topological
spaces U and W and their corresponding norms || · ||U and || · ||W . And we intend to analyze the
following regularization problem:

min
x∈Rn
{||x||U +

λ

2
||b− Ax||qW} (6)

It is proved in [13, 14] that if x solves (6), then it will satisfy the following:

Theorem 1.2 (Validation Principles).

〈x, A∗(b− Ax)〉U = ||x||U ||A∗(b− Ax)||U∗ (7)

||A∗(b− Ax)||U∗ =
1

λ
(8)

where U∗ is the dual space of U . And (x, r = b− Ax) is called an extremal pair.

Remark 1.3. In this project, we will apply theorems from [13, 14] with U = `1, W = `2, q = 2,
and A as any m × n matrix over real or a linear operator defined by either the DCT or the FFT
transformation.

Hence we can show that: a solution, say x, from

min
x∈Rn
{||x||1 +

λ

2
||b− Ax||22} (9)

4Another quotation needed
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can be thought of an approximation to (3) with ||A∗(b−Ax)||∞ = 1
λ

by (8). According to [13], if
||A∗b||∞ ≤ 1

λ
, then the optimizer of (9) is 0. To avoid such trivial solution, we will pick a λ such

that
1

||A∗b||∞
≤ λ ≤ 2

||A∗b||∞
(10)

Generally speaking, as λ increases, the solution x tends to be sparser ([7, 15]). Also with an
increasing λ, we are avoiding the ill-posed part of (3) and emphasizing more on the regularized
part of (3).

2 Hierarchical Decomposition
Following an alternate view point of (6) argued by the authors in [13], we employ a similar argu-
ment to (9).

2.1 Motivation
Let us consider the following J-functional:

J(b, λ) := arginfAx+r=b{||x||1 +
λ

2
||r||22} (11)

And let xλ and rλ be an extremal pair such that they solve (11), that is:

b = Axλ + rλ, [xλ, rλ] = J(b, λ) (12)

then we have ||A∗rλ||∞ = 1
λ

by (8). While the pair [xλ, rλ] minimize J(b, λ), they also decompose
b into two parts: the recovered sparse signal xλ and residual rλ. Most of the time, rλ is viewed as
noise under the scale λ. However, the difference between these two components is scale dependent
- whatever is considered as noise at a given scale λ contains significant information when viewed
under a refined scale, say 2λ,

rλ = Ax2λ + r2λ, [x2λ, r2λ] = J(rλ, 2λ) (13)

We end up with a better two-scale approximation to b given by b ≈ A(xλ + x2λ); noise below
scale 1

2λ
remains unresolved in r2λ. This process of (13) can continue. Beginning with an initial

scale λ = λ0,
b = Ax0 + r0, [x0, r0] = J(b, λ0)

we continue in this iterative manner for the decomposition of the dyadic refinement step (13),

rj = Axj+1 + rj+1, [xj+1, rj+1] = J(rj, 2
j+1λ0), j = 0, 1, 2, . . . (14)

generating, after k such steps, the following Hierarchical Decomposition of b:

b = Ax0 + r0

= Ax0 + Ax1 + r1

= . . . . . .

= Ax0 + Ax1 + · · ·+ Axk + rk. (15)
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We arrive at a new multiscale signal decomposition, b ≈ A(x0+x1+· · ·+xk), with a residual/noise
rk. As k increases, the xk’s resolve signal with increasing sparsity and scales, λk := 2kλ0.

Remark 2.1. The residual rk is decreasing since ||A∗r||∞ = 1
λk

= 1
2kλ0

, hence we are getting a
better approximation to b.

2.2 The Algorithm
Starting out with an initial λ0 satisfying (10) and stopping at an optimal λJ suggested in [11], we
can decompose the measurement vector b with signals on increasing level of sparsity, xj’s. We
then present the following algorithm:

Algorithm 1 Solve min
x∈Rn
{||x||1 +

λ

2
||b− Ax||22}

Require: A and b, pick λ0

Ensure: x =
J∑
j=0

xj;

Initialize: r0 = b, and j = 0;
while A certain λJ is not found do

xj(λj, rj) := argminx∈Rn{||x||1 +
λj
2
||rj − Ax||22};

rj+1 = rj − Axj;
λj+1 = 2λj;
j = j + 1;

end while

With a suitable solver for (9) the algorithm 1 is very intuitive to implement. Let us discuss in
details about 2 special solvers for (9) in the following sections.

3 Implementation
We choose the Gradient Projection for Sparse Reconstruction method and A Fixed-Point Continu-
ation method as built-in solvers for (9). We have singled these two methods out for their robustness
and efficiency5.

3.1 Gradient Projection for Sparse Reconstruction
The Gradient Projection for Sparse Reconstruction algorithm is proposed in [4] and it is used
to solve this following problem:

min
x∈Rn
{τ ||x||1 +

1

2
||b− Ax||22} (16)

5mention other methods and quotations.
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We define (a)+ =

{
a, a ≥ 0
0, otherwise , and then let u = (x)+, v = (−x)+. Putting u and v

back into (16), and simplifying (16) further with z =

[
u
v

]
, y = A∗b, c = τ12n +

[
−y
y

]
, B =[

A∗A −A∗A
−A∗A A∗A

]
. we obtain: min

z∈R2n
{c∗z +

1

2
z∗Bz ≡ F(z)

∣∣z ≥ 0}. Note that τ = 1
λ

. Before

the algorithm is described, we have to introduce some extra parameters: β (0 < β < 1) is used to
control the gradient descent step size α0, µ (0 < µ < 1

2
) is used to make sure F(·) is decreased

sufficiently from the ”Armijo rule along the projection arc” in [1, p. 226] and g(k) is a projected
gradient (defined component wise):

g
(k)
i =

{
(∇F(z(k)))i, if z

(k)
i > 0 or (∇F(z(k)))i < 0

0, otherwise
(17)

And with an initial guess of z(0) = 0, we have the following algorithm:

Algorithm 2 Solve min
x∈Rn
{τ ||x||1 +

1

2
||b− Ax||22}

Require: A, b, τ , and z(0), pick β ∈ (0, 1) and µ ∈ (0, 1/2);

Ensure: z(K)(τ) := min
z∈R2n

{c∗z +
1

2
z∗Bz ≡ F(z)

∣∣z ≥ 0};
Initialize: k = 0;
while A stopping criteria is not satisfied do

Compute α0 = min
α∈R1
{F(z(k) − αg(k))};

Let α(k) be the first in the sequence α0, βα0, β2α0, . . . , such that F((z(k) −
α(k)∇F(z(k)))+) ≤ F(z(k))− µ∇F(z(k))∗(z(k) − (z(k) − α(k)∇F(z(k)))+);

z(k+1) = (z(k) − α(k)∇F(z(k)))+;
k = k + 1;

end while

There are several types of stopping criteria available. For now we will take the most intuitive
one: ||z−(z−ᾱ∇F(z))+||2 ≤ ν, where ᾱ is a positive constant, and ν is a pre-set tolerance. When
such criteria is applied to GPSR, it is basically comparing the difference between the (k+ 1)th and
kth iterates: ||z(k+1) − z(k)||2. Although GPSR has increased the matrix-vector size from n to 2n,
the matrix vector multiplication can still be done at the O(n) level of complexity. We can simply

the matrix-vector multiplication by Bz =

[
A∗A(u− v)
−A∗A(u− v)

]
, c∗z = τ1∗n(u + v) − y∗(u − v),

z∗Bz = ||A(u− v)||2, F(z) = τ1∗n(u + v)− y∗(u− v) + 1
2
||A(u− v)||2 and∇F(z) = c +Bz.

We also do not directly calculate the product A∗A.

Remark 3.1. Theorem 1 in [4] states that the sequence of {z(k)} generated by the GPSR algorithm

either terminates at a solution of min
z∈R2n

{c∗z +
1

2
z∗Bz ≡ F(z)

∣∣z ≥ 0} or converge to a solution of

the aforementioned minimization problem at an R-linear rate.
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3.2 Fixed-Point Continuation Method
In [6], the Fixed-Point Continuation algorithm is developed to solve the following:

min
x∈Rn
{||x||1 +

λ

2
||b− Ax||2M} (18)

Where ||x||M :=
√
x∗Mx and M is a Symmetric Positive Definite matrix. In this project, we take

M = I . Let f : Rn → R and g : Rn → Rn defined as followed:

f(x) :=
1

2
||b− Ax||22

g(x) := ∇f(x) = A∗(Ax− b)

And consider two mappings sξ and h, both from Rn to Rn, defined as (for any η > 0):

h(x) := x− ηg(x) (19)
sξ(x) := sgn(x)�max{|x| − ξ, 0} (20)

where ξ = η
λ

and� is component wise multiplication for vectors. And then consider the following
fixed point equation:

xk+1 = sξ ◦ h(xk) (21)

Remark 3.2. As it is proven in [6], if x∗ solves (9), then 0 ∈ sgn(x∗) + λg(x∗) and vice versa.
And if x∗ is a fixed point of (21), then 0 ∈ sgn(x∗)+λg(x∗) and vice versa. Thus establishing the
equivalence between the fixed point of (21) and a minimizer of (9) through the signum equation.

Let ρmax be the maximum eigenvalue of the Hessian of f(x), namely H(x) = A∗A. As it is
shown in [6], we have to maintain η ∈ (0, 2

ρmax
)6 in order to have convergence results. Under this

setting, [6] proposes the following algorithm:

Algorithm 3 Solve sgn(x) + λg(x) = 0

Require: A, b, λ, pick x0, set µ̄ = λ;
Ensure: x;

Select: 0 < µ1 < µ2 < · · · < µL = ū;
for µ = µ1, µ2, · · · , µL do

while A convergence test is not satisfied do
Select η and set ξ = η

µ

x← sξ ◦ h(x);
end while

end for

Although the fixed point iteration is simple, the algorithm depends on a suitable choice of η and
an appropriate sequence of µi’s and an initial guess x0, and even the stopping criteria is problem
dependent. All of these requirement makes the algorithm harder to apply to general problems.

6To have faster convergence, we have to have η ∈ [ 1
ρmax

, 2
ρmax

)
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3.3 Implementation Platform and Memory Allocation
Codes will be written in Matlab for GPSR, FPC, and the whole HD algorithm. When time permits,
parallel codes will be written in C. The version of the Matlab running on my personal computer
is: 7.12.0.635(R2011a). It is installed on a copy of the Windows 7 Home Premium operating
system (64 bit). Validations and testing of GPSR and FPC will be run on my personal computer
with AMD PhenomTMN950 Quad-Core processor (clocked at 2.10 GHZ) and 4.00 GB (DDR3)
memory. If the test problems are big enough, clusters at the CSCAMM will be used. Ax and
A∗x can be defined as function calls instead of direct matrix-vector multiplication in order to save
memory allocation.

4 Selection of Databases
Databases are not needed for this stage of testing yet.

5 Validation Principles
If x is a solution of (9), then x and A∗(b−Ax) form an extremal pair ([14]). They satisfy (7) and
(8).

6 Testing

6.1 Compressed Sensing Cases
As it is suggested in [4], we are to test the code using m = 1024, n = 4096, and the original signal
xtrue has 160 randomly placed ±1 spikes, and the matrix A is generated first by being filled with
independent samples of a standard Gaussian distrubtion and then orthonormalizing the rows. The
paper also suggested a initial τ = 0.1||A∗b||∞, and the measurement vector b is corrupted with
noise, hence b = Axtrue + ζ , where ζ is a white Gaussian noise of variance σ2 with σ2 = 10−4. In
the case of Compressed Sensing testing, we can have some pre-processing information about the
parameters as suggested in [6]. Let δ = m

n
and γ = k

m
, where k stands for the number of non-zero

elements in the original signal xtrue. Then we can pick η = min{1 + 1.665(1− δ), 1.999}, x0 =
ηA∗Mb, µ1 = θ||x0||∞ (where 0 < θ < 1 is a user-defined constant), set µi = min{µ1ω

i−1, µ̄}
(where ω > 1 and L is the first integer i such that µi = ū)7. And we can test the solutions with the
following convergence test:

||xk+1 − xk||2
max{||xk||2, 1}

< xtol and µi||g(xk)||∞ − 1 < gtol (22)

As it was done in [6], we will takextol = 10−4 and gtol = 10−2. We will also try the algorithm
with A being either a DCT or FFT transform matrix.

7[6] also suggests θ = 0.99 and ω = 4 or θ = 0.9 and ω = 2
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6.2 Image Deconvolution, Deblurring
Plans with Image Processing experiments will be developed later after a better understanding of
the vector representation of images is achieved, as well as the convolution operator.

7 Project Phases and Time lines
The following table provides specified time line for my project:

Phase I 08/29/2012 to 10/05/2012 Project Background Research, Project Proposal Pre-
sentation and Report

Phase II 10/06/2012 to 11/21/2012 Implementation of the GPSR algorithm and valida-
tion by theorem 1.2

Phase III 11/22/2012 to 12/20/2012 Implementation of the FPC algorithm and prepara-
tion for mid-year presentation and report

Phase IV 12/21/2012 to 01/22/2013 Validation of the FPC algorithm by theorem 1.2
Phase V 01/23/2013 to 02/22/2013 Implementation of the whole HD algorithm
Phase VI 02/23/2013 to 03/16/2013 Validation of the HD algorithm by theorem 1.2
Phase VII 03/17/2013 to 05/20/2013 Final Testing phase and preparation for end-of-year

presentation and report

8 Milestones
Here are major milestones about the project:

Phase I Presentation given on 10/02/2012 and Project Proposal written on 10/05/2012
Phase II Implementation of the GPSR algorithm starts on 10/06/2012

9 Deliverables
Matlab codes, presentation slides (proposal presentation, mid-year presentation, end-of-year pre-
sentation), the complete project document, test databases (if any), and test results (both in text file
and/or figures) will be delivered at the end of this year long sequence.
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