Proposal

M. Zhong

The l1-Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Background

A Solver for th

Minimization

Summary

Solving ℓ_1 Regularized Least Square Problems with Hierarchical Decomposition

M. Zhong¹

mzhong1@umd.edu

¹AMSC and CSCAMM University of Maryland College Park

Project Proposal for AMSC 663 October 2nd, 2012

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition

The Algorithm A Solver for the ℓ_1 -Regularized

Summary

1 The ℓ_1 -Regularized Problem

- Motivation
- Alternative Formulations
- Issues
- 2 Hierarchical Decomposition
 - Background
 - The Algorithm
 - A Solver for the ℓ_1 -Regularized Minimization

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Proposal

M. Zhong

The ℓ₁-Regularize Problem

Motivation

Alternative Formulations Issues

Hierarchical Decomposition

The Algorithm A Solver for th

ℓ₁-Regularized Minimization

Summary

The ℓ₁-Regularized Problem Motivation

Alternative Formulations

Issues

Hierarchical Decomposition

- Background
- The Algorithm
- A Solver for the ℓ_1 -Regularized Minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Background Compressed Sensing

Proposal

M. Zhong

The ℓ_1 -Regularized Problem

Motivation

Alternative Formulations Issues

Hierarchical Decomposition Background

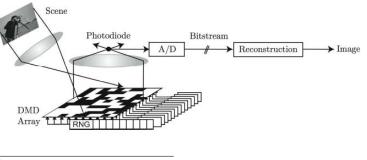
The Algorithm A Solver for the L -Begularized

Minimization

Summary

Example (A Sparse Signal in Compress Sensing)

How to encode a large sparse signal using a relatively small number of linear measurements?



1

¹http://dsp.rice.edu/cscamera

A Formulation An Intuitive Approach

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative

Formulatio Issues

Hierarchical Decomposition Background

A Solver for the

Minimization

Summary

Problem (The Original One)

$$\min_{x \in \mathbf{R}^n} \{ ||x||_0 | Ax = b \}$$
(1)

- Where the || · ||₀ norm means the number of non-zero elements in a vector, A ∈ ℝ^{m×n}, b ∈ ℝ^m, and m ≪ n (under-determined system).
 - The || · ||₀ problem is solved mainly using combinatorial optimization, and thus it is NP hard².
- The || · ||₀ is not convex, one can convexify the problem by using either ℓ₁ or ℓ₂ norm, and then (1) can be solved using convex optimization techniques (namely linear programming).

²B.K.Natarajan, 95

A Better Formulation $\ln \|\cdot\|_1$

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations

Hierarchical Decomposition Background The Algorithm A Solver for the

A Solver for the ℓ_1 -Regularized Minimization

Summary

We'll use $|| \cdot ||_{\rho}$ in instead of $|| \cdot ||_{\ell_{\rho}}$.

Problem (The better one)

$$\min_{x \in \mathbf{R}^n} \{ ||x||_p | Ax = b \}$$
(2)

- Ax = b has infinitely many solutions.
- When p = 2, $x = A^*(AA^*)^{-1}b$ is the global minimizer³, however it is not sparse, due to the limitation of ℓ_2 norm.
- When p = 1, it can induce sparsity; and under the Robust Uncertainty Principles⁴, one can recover the minimizer of p = 0 problem from solving (2) with p = 1.

³proof in my report

⁴E.J.Candes & T.Tao, 05

Proposal

M. Zhong

The ℓ_1 -Regularized Problem

Alternative Formulations

Hierarchical Decomposition Background

A Solver for the ℓ_1 -Regularized

Summary

1 The ℓ₁-Regularized Problem ■ Motivation

Alternative Formulations

Issues

Hierarchical Decomposition

- Background
- The Algorithm
- A Solver for the ℓ₁-Regularized Minimization

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Unconstrained Optimization With parameter λ

Proposal

M. Zhong

The l₁-Regularized Problem Motivation Alternative Formulations

Issues Hieraro

Decomposition Background The Algorithm

A Solver for the ℓ_1 -Regularized Minimization

Summary

With p = 1 and a regularization parameter, we have:

Problem (Unconstrained with parameter λ)

$$\min_{\mathbf{x}\in\mathbf{R}^{n}}\{||\mathbf{x}||_{1}+\frac{\lambda}{2}||\mathbf{b}-\mathbf{A}\mathbf{x}||_{2}^{2}\}$$
(3)

• $\lambda > \frac{1}{||A^*b||_{\infty}}$ in order to have non-zero optimizer ⁵.

• As λ increases, x tends to be sparser ⁶.

- A is used to reduce overfitting, and it also adds bias to the problem (more emphasis on the least square part).
- Similar formulation appears in Signal Processing (BDN), Statistics (LASSO), Geophysics, etc.

⁵J.J.Fuchs, 2004 ⁶R. Tibshirani, 1996

Alternative Formulations Nonlinear Equation

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations

Hierarchical Decomposition Background The Algorithm A Solver for the ℓ_1 -Regularized Minimization

Summary

Solving (3) is also equivalent to solve this following problem:

Problem (Signum Equation)

$$sgn(x) + \lambda(A^*b - A^*Ax) = 0$$
(4)

■ $sgn(a) = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$ for scalars, component wise for vectors.

- It's derived using calculus of variation.
- It's a nonlinear equation, and no closed form solution is found so far.
- It can be solved busing "A Fixed-Point Continuation Method"⁷.

⁷Elaine T. Hale, et al, 07

1

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations

Issues

Hierarchical Decomposition Background The Algorithm

A Solver for the ℓ_1 -Regularize Minimization

Summary

The $\ell_1\text{-}Regularized$ Problem

Motivation

Alternative Formulations

Issues

- Hierarchical Decomposition
 - Background
 - The Algorithm
 - A Solver for the ℓ₁-Regularized Minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Disadvantages We try to address them all

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Background The Algorithm A Solver for the ℓ_1 -Regularized

Summary

(2) can be defined more generally as:

$$\min_{x \in \mathbf{R}^n} \{ J(x) | Ax = b \}$$
(5)

Where J(x) is continuous and convex.

- When *J*(*x*) is coercive, the set of solutions of (5) is nonempty and convex.
- When J(x) is strictly or strongly convex, then solution of (5) is unique.
- However $J(x) = ||x||_1$ is not strictly convex.
- The solutions of (3) and (4) depend on some wise choice of the parameter λ.

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition

Background

The Algorithm A Solver for the ℓ_1 -Regularized Minimization

Summary

The *l*₁-Regularized Problem

- Motivation
- Alternative Formulations
- Issues
- 2 Hierarchical Decomposition
 - Background
 - The Algorithm
 - A Solver for the ℓ_1 -Regularized Minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

History On Image Processing

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition

Background

The Algorithm A Solver for the ℓ_1 -Regularized Minimization

Summary

A Hierarchical Decomposition is used to solve the following problem:

$$\min_{\mathbf{x}\in\mathbf{R}^n}\{||\mathbf{x}||_U+\frac{\lambda}{2}||\mathbf{b}-\mathbf{T}\mathbf{x}||_W^p\}$$
(6)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Where λ just represents different scales.

- The first 2 papers were published with U = BV, $W = \ell_2$, p = 2, and $T = I.^8$
- 3 more papers were published with T being a differential operator.⁹
- 2 more papers afterward with emphasis on $T = \nabla$.¹⁰
- We'll do it with $U = \ell_1$, $W = \ell_2$, p = 2, and T = A.

- ⁹E. Tadmor & P. Athavale, 09, 10, and 11
- ¹⁰E. Tadmor & C. Tan, 10 and preprint

⁸E. Tadmor, S. Nezzar & L. Vese, 04 and 08

Theorems Guidelines for Validation

Theorem (Validation Principles)

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchica Decomposi tion

Background

The Algorithm A Solver for the ℓ_1 -Regularized Minimization

Summary

$$< x, T^{*}(b - Tx) > = ||x||_{U} \cdot ||T^{*}(b - Tx)||_{U^{*}}$$

 $||T^{*}(b - Tx)||_{U^{*}} = \frac{1}{\lambda}$ (7)

iff x solves (6)

- λ is the regularization parameter in (3).
- $\langle \cdot, \cdot \rangle$ is an inner product, and U^* is the dual space of U.
- An initial λ₀ is also found as long as it satisfies:

$$\frac{1}{2} < \lambda_0 || T^* b ||_{U^*} \le 1$$
 (8)

An optimal stopping λ_J is also found.¹¹

¹¹S.Osher, et al. 05

●●● 単則 《田》《田》《田》《日》

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition

Background The Algorithm

A Solver for the ℓ_1 -Regularized

Summary

The ℓ_1 -Regularized Problem

- Motivation
- Alternative Formulations
- Issues

2 Hierarchical Decomposition

- Background
- The Algorithm
- A Solver for the ℓ₁-Regularized Minimization

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Hierarchical Decomposition *l*₁-Regularized Least Square

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Background

The Algorithm

A Solver for the ℓ_1 -Regularized Minimization

Summary

Data: A and b, pick
$$\lambda_0(from(8))$$

Result: $x = \sum_{j=0}^{J} x_j$
Initialize: $r_0 = b$, and $j = 0$;
while A certain λ_J is not found do

$$\begin{vmatrix} x_j(\lambda_j, r_j) \coloneqq \arg\min_{x \in \mathbf{R}^n} \{||x||_1 + \frac{\lambda_j}{2} ||r_j - Ax||_2^2 \}; \\ r_{j+1} = r_j - Ax_j; \\ \lambda_{j+1} = 2 * \lambda_j; \\ j = j + 1; \end{vmatrix}$$
end

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

b =
$$A(\sum_{j=0}^{J} x_j) + r_{J+1}$$
.
By (7), $||A^*r_{J+1}||_{\infty} = \frac{1}{\lambda_{J+1}}$.

Examples Numerical Results¹²

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Backoround

The Algorithm

A Solver for the ℓ_1 -Regularized Minimization

Summary

Figure: Increase in the details with successive increment of scales

¹²E. Tadmor, S. Nezzar & L. Vese, 08

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition

The Algorithm A Solver for the

 ℓ_1 -Regularized Minimization

Summary

The *l*₁-Regularized Problem

- Motivation
- Alternative Formulations
- Issues

2 Hierarchical Decomposition

- Background
- The Algorithm
- A Solver for the ℓ_1 -Regularized Minimization

ロ> ・</li

Gradient Projection for Sparse Reconstruction(GPSR)

The Setup

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Background The Algorithm A Solver for the

 ℓ_1 -Regularized Minimization

Summary

We'll solve
$$\min_{x \in \mathbf{R}^n} \{\tau ||x||_1 + \frac{1}{2} ||b - Ax||_2^2 \}^{13}$$
 with the following transformation:
• $(a)_+ = \begin{cases} a, & a \ge 0\\ 0, & \text{otherwise} \end{cases}$
• $u = (x)_+, v = (-x)_+, \text{ and } z = \begin{bmatrix} u\\ v \end{bmatrix}.$
• $y = A^*b \text{ and } c = \tau \mathbf{1}_{2n} + \begin{bmatrix} -y\\ y \end{bmatrix}.$
• $B = \begin{bmatrix} A^*A & -A^*A\\ -A^*A & A^*A \end{bmatrix}.$

Then it becomes: $\min_{z \in \mathbf{R}^{2n}} \{ c^* z + \frac{1}{2} z^* B z \equiv F(z) | z \ge 0 \}.$

$$^{13}\tau = \frac{1}{\lambda}$$

GPSR The Algorithm

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Background The Algorithm A Solver for the

 ℓ_1 -Regularized Minimization

Summary

Data: *A*, *b*, τ , and $z^{(0)}$, pick $\beta \in (0, 1)^a$ and $\mu \in (0, 1/2)^b$ **Result**: $z^{(K)}(\tau) := \min_{z \in \mathbf{R}^{2n}} \{ c^* z + \frac{1}{2} z^* B z | z \ge 0 \}$ Initialize: k = 0: while A convergence test is not satisfied do Compute $\alpha_0 = \arg \min F(z^{(k)} - \alpha g^{(k)})^c$; Let $\alpha^{(k)}$ be the first in the sequence $\alpha_0, \beta \alpha_0, \beta^2 \alpha_0, \ldots$, such that $F((z^{(k)} - \alpha^{(k)} \nabla F(z^{(k)}))_{\perp}) <$ $F(z^{(k)}) - \mu \nabla F(z^{(k)})^* (z^{(k)} - (z^{(k)} - \alpha^{(k)} \nabla F(z^{(k)}))_+)$ and set $z^{(k+1)} = (z^{(k)} - \alpha^{(k)} \nabla F(z^{(k)}))_+$: k = k + 1;end

 ${}^{a}\beta$ is controlling the step length α_{0} .

 ${}^{b}\mu$ is making sure $F(\cdot)$ is decreased sufficiently from Armijo Rule.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

 $^{c}g^{(k)}$ is a projected gradient.

GPSR Convergence And Computational Efficiency

Proposal

M. Zhong

The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues

Hierarchical Decomposition Background The Algorithm A Solver for the

A Solver for the ℓ_1 -Regularized Minimization

Summary

- The convergence of the algorithm is already shown.¹⁴
- It is more robust than IST, ℓ₁_ℓ_s, ℓ₁-magic toolbox, and the homotopy method.
- The Description of the algorithms is clear and easy to implement.

$$Bz = \begin{bmatrix} A^*A(u-v) \\ -A^*A(u-v) \end{bmatrix} \text{ and } c^*z = \tau \mathbf{1}_n^*(u+v) - y^*(u-v)$$

•
$$z^*Bz = ||A(u - v)||_2$$
 and $\nabla F(z) = c + Bz$

- Hence the 2n × 2n system can be computed as a n × n system.
- Ax and A*x can be defined as function calls instead of direct matrix-vector multiplication in order to save memory allocation.

¹⁴M.A.T. Figueiredo, et al, 2007

Milestones Things that I'm working on and will do

Proposal

M. Zhong

- The ℓ_1 -Regularized Problem Motivation Alternative Formulations Issues
- Hierarchical Decomposition Background The Algorithm A Solver for the ℓ_1 -Regularized

Summary

- Implement and Validate the GPSR by the end of October of 2012.
- Implement A Fixed-Point Continuation Method by early December of 2012.
- Validate A Fixed-Point Continuation Method by the end of January of 2013.
- Implement the whole Hierarchical Decomposition algorithm by the end of February of 2013.
- Validate the whole Hierarchical Decomposition code by the end of March of 2013.
- Codes will be implemented in Matlab, and validations are provided by (7).
- Deliverables: Matlab codes, presentation slides, complete project,

For Further Reading I

For Further Reading II

M. Zhong

Appendix For Further Reading Mario A. T. Figueiredo, Roberg D. Nowak, Stephen J. Wright Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems.

2007.

Elaine T. Hal, Wotao Yin, and Yin Zhang A Fixed-Point Continuation Method for l₁-Regularized Minimization with Applications to Compressed Sensing. 2007.

For Further Reading III

