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Background
Compressed Sensing

Example (A Sparse Signal in Compress Sensing)

How to encode a large sparse signal using a relatively small
number of linear measurements?

1

1http://dsp.rice.edu/cscamera



Proposal

M. Zhong

The `1-
Regularized
Problem
Motivation

Alternative
Formulations

Issues

Hierarchical
Decomposi-
tion
Background

The Algorithm

A Solver for the
`1 -Regularized
Minimization

Summary

A Formulation
An Intuitive Approach

Problem (The Original One)

min
x∈Rn
{||x ||0|Ax = b} (1)

Where the || · ||0 norm means the number of non-zero
elements in a vector, A ∈ Rm×n, b ∈ Rm, and m� n
(under-determined system).
The || · ||0 problem is solved mainly using combinatorial
optimization, and thus it is NP hard2.
The || · ||0 is not convex, one can convexify the problem
by using either `1 or `2 norm, and then (1) can be
solved using convex optimization techniques (namely
linear programming).

2B.K.Natarajan, 95
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A Better Formulation
In || · ||1

We’ll use || · ||p in instead of || · ||`p .

Problem (The better one)

min
x∈Rn
{||x ||p|Ax = b} (2)

Ax = b has infinitely many solutions.
When p = 2, x = A∗(AA∗)−1b is the global minimizer3,
however it is not sparse, due to the limitation of `2 norm.
When p = 1, it can induce sparsity; and under the
Robust Uncertainty Principles4, one can recover the
minimizer of p = 0 problem from solving (2) with p = 1.

3proof in my report
4E.J.Candes & T.Tao, 05
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Unconstrained Optimization
With parameter λ

With p = 1 and a regularization parameter, we have:

Problem (Unconstrained with parameter λ)

min
x∈Rn
{||x ||1 +

λ

2
||b − Ax ||22} (3)

λ > 1
||A∗b||∞ in order to have non-zero optimizer 5.

As λ increases, x tends to be sparser 6.
λ is used to reduce overfitting, and it also adds bias to
the problem (more emphasis on the least square part).
Similar formulation appears in Signal Processing
(BDN), Statistics (LASSO), Geophysics, etc.

5J.J.Fuchs, 2004
6R. Tibshirani, 1996
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Alternative Formulations
Nonlinear Equation

Solving (3) is also equivalent to solve this following problem:

Problem (Signum Equation)

sgn(x) + λ(A∗b − A∗Ax) = 0 (4)

sgn(a) =
{

1, a > 0
−1, a < 0

for scalars, component wise

for vectors.
It’s derived using calculus of variation.
It’s a nonlinear equation, and no closed form solution is
found so far.
It can be solved busing "A Fixed-Point Continuation
Method"7.

7Elaine T. Hale, et al, 07
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Disadvantages
We try to address them all

(2) can be defined more generally as:

min
x∈Rn
{J(x)|Ax = b} (5)

Where J(x) is continuous and convex.
When J(x) is coercive, the set of solutions of (5) is
nonempty and convex.
When J(x) is strictly or strongly convex, then solution of
(5) is unique.
However J(x) = ||x ||1 is not strictly convex.
The solutions of (3) and (4) depend on some wise
choice of the parameter λ.
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History
On Image Processing

A Hierarchical Decomposition is used to solve the following
problem:

min
x∈Rn
{||x ||U +

λ

2
||b − Tx ||pW} (6)

Where λ just represents different scales.
The first 2 papers were published with U = BV ,
W = `2, p = 2, and T = I.8

3 more papers were published with T being a
differential operator.9

2 more papers afterward with emphasis on T = ∇.10

We’ll do it with U = `1, W = `2, p = 2, and T = A.

8E. Tadmor, S. Nezzar & L. Vese, 04 and 08
9E. Tadmor & P. Athavale, 09, 10, and 11

10E. Tadmor & C. Tan, 10 and preprint
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Theorems
Guidelines for Validation

Theorem (Validation Principles)

< x ,T ∗(b − Tx) > = ||x ||U · ||T ∗(b − Tx)||U∗

||T ∗(b − Tx)||U∗ =
1
λ

(7)

iff x solves (6)

λ is the regularization parameter in (3).
〈·, ·〉 is an inner product, and U∗ is the dual space of U.
An initial λ0 is also found as long as it satisfies:

1
2
< λ0||T ∗b||U∗ ≤ 1 (8)

An optimal stopping λJ is also found.11

11S.Osher, et al. 05
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Hierarchical Decomposition
`1-Regularized Least Square

Data: A and b, pick λ0(from(8))

Result: x =
J∑

j=0

xj

Initialize: r0 = b, and j = 0;
while A certain λJ is not found do

xj(λj , rj) := arg min
x∈Rn
{||x ||1 +

λj

2
||rj − Ax ||22};

rj+1 = rj − Axj ;
λj+1 = 2 ∗ λj ;
j = j + 1;

end

b = A(
∑J

j=0 xj) + rJ+1.

By (7), ||A∗rJ+1||∞ = 1
λJ+1

.
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Examples
Numerical Results12

Figure: Increase in the details with successive increment of scales

12E. Tadmor, S. Nezzar & L. Vese, 08
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Gradient Projection for Sparse
Reconstruction(GPSR)
The Setup

We’ll solve min
x∈Rn
{τ ||x ||1 +

1
2
||b − Ax ||22}13 with the following

transformation:

(a)+ =

{
a, a ≥ 0
0, otherwise

u = (x)+, v = (−x)+, and z =

[
u
v

]
.

y = A∗b and c = τ12n +

[
−y
y

]
.

B =

[
A∗A −A∗A
−A∗A A∗A

]
.

Then it becomes: min
z∈R2n

{c∗z +
1
2

z∗Bz ≡ F (z)|z ≥ 0}.

13τ = 1
λ
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GPSR
The Algorithm

Data: A, b, τ , and z(0), pick β ∈ (0,1)a and µ ∈ (0,1/2)b

Result: z(K )(τ) := min
z∈R2n

{c∗z +
1
2

z∗Bz|z ≥ 0}

Initialize: k = 0;
while A convergence test is not satisfied do

Compute α0 = arg min
α

F (z(k) − αg(k))c;

Let α(k) be the first in the sequence α0, βα0, β2α0, . . . ,
such that F ((z(k) − α(k)∇F (z(k)))+) ≤
F (z(k))− µ∇F (z(k))∗(z(k) − (z(k) − α(k)∇F (z(k)))+)
and set z(k+1) = (z(k) − α(k)∇F (z(k)))+;
k = k + 1;

end

aβ is controlling the step length α0.
bµ is making sure F (·) is decreased sufficiently from Armijo Rule.
cg(k) is a projected gradient.



Proposal

M. Zhong

The `1-
Regularized
Problem
Motivation

Alternative
Formulations

Issues

Hierarchical
Decomposi-
tion
Background

The Algorithm

A Solver for the
`1 -Regularized
Minimization

Summary

GPSR
Convergence And Computational Efficiency

The convergence of the algorithm is already shown.14

It is more robust than IST, `1_`s, `1-magic toolbox, and
the homotopy method.
The Description of the algorithms is clear and easy to
implement.

Bz =

[
A∗A(u − v)
−A∗A(u − v)

]
and c∗z = τ1∗n(u + v)− y∗(u − v)

z∗Bz = ||A(u − v)||2 and ∇F (z) = c + Bz
Hence the 2n × 2n system can be computed as a n × n
system.
Ax and A∗x can be defined as function calls instead of
direct matrix-vector multiplication in order to save
memory allocation.

14M.A.T. Figueiredo, et al, 2007
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Milestones
Things that I’m working on and will do

Implement and Validate the GPSR by the end of
October of 2012.
Implement A Fixed-Point Continuation Method by early
December of 2012.
Validate A Fixed-Point Continuation Method by the end
of January of 2013.
Implement the whole Hierarchical Decomposition
algorithm by the end of February of 2013.
Validate the whole Hierarchical Decomposition code by
the end of March of 2013.
Codes will be implemented in Matlab, and validations
are provided by (7).
Deliverables: Matlab codes, presentation slides,
complete project,
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For Further Reading I

Eitan Tadmor, Suzanne Nezzar, and Luminita Vese
A Multiscale Image Representation Using Hierarchical
(BV, L2) Decompositions.
2004.

Eitan Tadmor, Suzanne Nezzar, and Luminita Vese
Multiscale Hierarchical Decomposition of Images with
Applications to Deblurring, Denoising and
Segmentation.
2008.
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For Further Reading II

Mario A. T. Figueiredo, Roberg D. Nowak, Stephen J.
Wright
Gradient Projection for Sparse Reconstruction:
Application to Compressed Sensing and Other Inverse
Problems.
2007.

Elaine T. Hal, Wotao Yin, and Yin Zhang
A Fixed-Point Continuation Method for `1-Regularized
Minimization with Applications to Compressed Sensing.
2007.
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For Further Reading III

Seung-Jean Kim, K. Koh, M. Lustig, Stephen Boyd, and
Dimitry Gorinevsky
An Interior-Point Method for Large Scale `1-Regularized
Least Squares.
2007.

Stanley Osher, Yu Mao, Bin Dong, Wotao Yin
Fast Linearized Bregman Iteration for Compressive
Sensing and Sparse Denoising.
2008.
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