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Application: Audio Processing 

 Employs the use of an audio signals 

spectrogram 

 Spectrogram- time-frequency representation of 

an audio signal 

Useful in the processing and manipulation of audio 

signals 

Does not carry phase information 

 Would like to recover an audio signal after 

processing its spectrogram 



Example Spectrogram 

created using spek 0.8.2 



Transformation 𝑐 = 𝑇 𝑥  

 Weighted Discrete Fourier Transform 

 
𝐵𝑗 = 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
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Approach 

Algorithm 
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Element by element 
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x 𝜖 ℂ𝑛 𝛼 𝜖 ℝ𝑚 

𝑦 = 𝛼 + σ ⋅ ν, σ ⋅ ν: 𝑛𝑜𝑖𝑠𝑒 
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Algorithm Initialization 
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𝑓𝑘  is kth frame vector from transformation T(x) 
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Algorithm Initialization (cont.) 

 Find Principal Eigenvector of 𝑄+ = 𝑄 + 𝑞 ⋅ 𝐼 
𝐼 is identity matrix 

𝑞 = 𝑦 ∞ a positive constant to ensure positive-
definiteness of 𝑄 

 Use Power Iteration Method 

– Initialize 𝑒𝑘
(0)

~𝑁 0,1 , 𝑓𝑜𝑟 𝑘 = 1, 𝑛  

Repeat: 

• 𝑒(𝑡+1) = 𝑄+⋅𝑒(𝑡)

𝑄+⋅𝑒(𝑡)
 

• If 𝑒(𝑡+1) − 𝑒(𝑡) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, end repeat 

 
 

 



Algorithm Initialization (cont.) 

𝑥 (0) = 𝑒
1 − 𝜌 ⋅ 𝑎

 𝑒, 𝑓𝑘
4𝑚

𝑘=1

 

𝑒: 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑄+  

𝑎: 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  

𝜌: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0, 1   

[4] 

𝜇0 = 𝜆0 = 𝜌 ⋅ 𝑎 
[4] 



Algorithm Iteration 
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 Work in Real space 

 𝜉 =
𝑟𝑒𝑎𝑙(𝑥 )
𝑖𝑚𝑎𝑔(𝑥 )

 

 Solve linear system 𝐴𝜉 𝑡+1 = 𝑏, where 
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Algorithm Iteration (cont.) 

 Update 𝜆, 𝜇 

𝜆𝑡+1 = 𝛾𝜆𝑡+1, 𝜇𝑡+1 = max 𝛾𝜇𝑡 , 𝜇
𝑚𝑖𝑛 , where 0 < 𝛾 < 1  

 Stopping criterion 

 𝑦𝑘 − 𝑥(𝑡), 𝑓𝑘
2 2

≤  𝜅𝑚𝜎2, 𝑤ℎ𝑒𝑟𝑒 𝜅 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 1
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Conjugate Gradient 

 Iterative solver for linear systems that are 
symmetric and positive definite 

 Travel towards solution along mutually 
conjugate directions 

Vectors 𝑝1𝑎𝑛𝑑 𝑝2 are conjugate if 𝑝1𝑇
𝐴𝑝2 = 0 

 For a matrix in ℝ𝑛 there are 𝑛 different 
conjugate directions, forming a complete basis 

 Traveling along each of the 𝑛 directions should 
converge to the true solution 



Conjugate Gradient 

𝑟(𝑘) = 𝑏 − 𝐴𝑥 (𝑘) 

𝑟(𝑘) ∶ residual at kth iteration 

𝑥 (𝑘) ∶ approximate solution at kth iteration 

𝑝(0) = 𝑟(0)  

𝑝(𝑘+1) =  𝑟(𝑘+1) + 𝑝(𝑘)
𝑟(𝑘+1), 𝑟(𝑘+1)

𝑟(𝑘), 𝑟(𝑘)
 

𝛼 =  
𝑟(𝑘), 𝑟(𝑘)

𝑝(𝑘)𝑇𝐴𝑝(𝑘)
 

𝑟(𝑘+1) =  𝑟(𝑘) − 𝛼𝐴𝑝(𝑘) 

Repeat until 𝑟(𝑘) 2
< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

𝑥 𝑘+1 = 𝑥 𝑘 + 𝛼𝑝 𝑘  



Implementation 

 MATLAB 

Will use fft() function for Fourier Transform 

 

 As memory efficient as possible 

Avoid allocating memory for entire linear system 

• Linear system is 2n x 2n 

• n is large 

• Compute each vector component as it is needed 

 



Data Construction 

 Input data synthetically generated 

 𝑛~10,000, 𝑅 = 8,𝑚 = 𝑅 ⋅ 𝑛 

 10 realizations of signal sample 𝑥 

𝑥𝑘~𝑁 0,1 + 𝑖𝑁 0,1 , 𝑓𝑜𝑟 𝑘 [1, 𝑛] 

 10 realizations of 𝑤(1:𝑅) 

𝑤𝑘
𝑗
~𝑁 0,1 + 𝑖𝑁 0,1 , 𝑓𝑜𝑟 𝑘 1, 𝑛 , 𝑗 [1 𝑅] 

 10,000 realizations of noise ν 

ν 𝑘~𝑁 0,1 , 𝑓𝑜𝑟 𝑘 [1,𝑚] 

 



Testing 

 𝑦 = 𝛼 + σ ⋅ ν 

 For each ν, vary 𝜎 to achieve desired SNR 

 SNR [-30 dB, 30 dB] increments of 5 

𝑆𝑁𝑅𝑑𝐵 = 10 ⋅ log10
 𝑐𝑘

2𝑚
𝑘=1

𝜎2  𝜈𝑘
2𝑚

𝑘=1
 

 Obtain 10,000 output values for each input y at 

each SNR 



Post Processing 

 For each SNR level of each input, calculate 

mean(𝑥 ) 

Variance(𝑥 ) 

MSE(𝑥 ) 

 Study trend of each output vs SNR level 



Metrics 

 Memory usage 

 Scaling of numerical complexity with problem 

size 

 Time efficiency of algorithm 

 Accuracy vs SNR 



Validation 

 Power Iteration 

Validate using Matlab’s eigenvalue solver, eig() 

 Conjugate Gradient 

Validate on small sample input using exact 

solution from decomposition (Matlab’s mldivide()) 

Compare output with conjugate gradient’s 

complete convergence 

 Validate complete system by proximity to true 

solution 



Schedule 

October 
 Post processing framework 

 Database generation 

November 
 MATLAB implementation of iterative recursive least squares 

algorithm 

December  Validate modules written so far 

February 
 Implement power iteration method 

 Implement conjugate gradient 

By March 15  Validate power iteration and conjugate gradient 

March 15 – 

April 15 

 Test on synthetic databases 

 Extract metrics 

April 15 – 

end of 

semester 

 Write final report 



Deliverables 

 Presentations 

 Proposal 

 Final Report 

 Program 

 Input data 

 Output data 

 Output charts and graphs 



References 
[1] R. Balan, On Signal Reconstruction from Its Spectrogram, 
 Proceedings of the CISS Conference, Princeton, NJ, May 2010. 
[2] R. Balan, P. Casazza, D. Edidin, On signal  reconstruction 
 without phase,  Appl.Comput.Harmon.Anal. 20 (2006), 345-
 356. 

[3] R. Balan, Reconstruction of signals from magnitudes of 
 redundant representations. 2012. 

[4] R. Balan, Reconstruction of signals from magnitudes of 
 redundant representations: the complex case. 2013. 
[5] Christensen, Ole. "Frames in Finite-dimensional Inner 
 Product Spaces."Frames and Bases. Birkhäuser Boston,  2008. 
 1-32. 
[6] Allaire, Grâegoire, and Sidi Mahmoud Kaber. Numerical 
 linear  algebra. Springer, 2008. 
[7] Shewchuk, Jonathan Richard. "An introduction to the 
 conjugate gradient method without the agonizing pain." 
 (1994). 

 


