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Abstract

We provide a flexible graph architecture, and an implementation of solvers to some of the most ubiqui-
tous problems in the field of Arc Routing, (The Chinese Postman Problem on undirected, directed, mixed,
and windy graphs, as well as the Rural Postman Problem on directed and windy graphs). The project is
completed in java, is open source, and is hosted at https://github.com/Olibear/ArcRoutingLibrary.

1 Introduction

Broadly speaking, in the realm of vehicle routing,
there are two classes of problems; node routing prob-
lems, and arc routing problems. In the former, the
goal is to visit some (sub)set of nodes in a graph while
minimizing some cost (or maximizing some reward)
function. Likewise, in the latter, we seek to optimize
some objective function, but this time the require-
ment is that a (sub)set of edges gets traversed. For
example, the well-known Traveling Salesperson Prob-
lem is a node routing problem that requires the con-
struction of a cycle of minimal cost that visits every
node in the graph, (with costs associated with the
traversal of each edge). Meanwhile, the analogous
problem in arc-routing is the Chinese Postman Prob-
lem (CPP), where a candidate cycle must traverse
every edge in the graph.

Unfortunately, the vast majority of outstanding
network optimization problems have been shown to
be outside of P, (the class of provably polynomial-
time solvable problems), which means that it is un-
likely that they can be solved to optimality in a com-
putationally tractable manner. Still, since such prob-
lems are nearly ubiquitous in industry, (with trans-

portation / infrastructure networks, server topolo-
gies, and social networks all benefitting from ad-
vances in the field), there exists a vast literature de-
voted primarily to devising efficient (meta)heuristics
that aim to get close to the optimum without pro-
hibitive computational effort. The virtues of a par-
ticular heuristic are usually presented via an analysis
of two factors: speed, and proximity to optimality.
Of course, in order to make meaningful comparisons,
researchers typically present and solve benchmark in-
stances that showcase their algorithm’s performance
relative to that of an established alternative.

However, there is another element of variability
that is less frequently accounted for. Namely, differ-
ences in implementation of the same algorithm can
be responsible for discrepancies in results. Given that
many of these heuristics proceed by decomposing the
more complicated problem into a series of instances
of easier problems, (and solving these simpler ones
to optimality using a known algorithm), it is espe-
cially important to have standardization with respect
to these easier problems so that performance can be
attributed solely to the merits of the heuristics them-
selves.
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2 Approach

To that end, we have created an open source code li-
brary that provides exactly such functionality. More
specifically, this library will feature solvers for the
following problems: the CPP on a directed graph
(DCPP), the CPP on an undirected graph (UCPP),
the CPP on a mixed graph (MCPP), the CPP on an
undirected graph with directionally asymmetric costs
(WPP for Windy Postman Problem), and the Ru-
ral Postman Problem on directed and windy graph
(where not all arcs are required to be traversed in
the solution). For each of these problems, if it is
not possible to efficiently solve it to optimality, then
we present two solvers; one of the more well-known
heuristics, and one that is closer to the state-of-the-
art. Obviously, if a problem is solvable in polyno-
mial time, we implement the exact algorithm pre-
cisely. For the details of each specific algorithm be-
yond what follows, consult references (15) for the Di-
rected CPP, (4) for the Undirected CPP, (9) and (17)
for the Mixed CPP, (16) and (10) for the WPP, (2)
for the Directed RPP, and (1) for both Windy RPP
heuristics.

2.1 Definitions

A graph G is defined as a double (V,L) where V is
a set of vertices (also referred to here as nodes), and
L a multiset of links. Typically, vertices are indexed
naively (i.e. 1,2,3, etc.) while a link is represented as
an ordered pair (i, j) where both i and j are members
of the vertex set, (we do not consider hypergraphs
here). We call a link an edge if it is undirected (that
is, it can be traversed from i to j, and from j to i), and
an arc if it is directed (i.e. it can only be traversed
from i to j). In the case of arcs, the first element of
the ordered pair is referred to as the tail, while the
second is referred to as the head. For clarity’s sake,
an undirected graph is one in which all elements of
the link set are undirected, and is usually represented
as (V,E). Accordingly, a directed graph has only arcs
(and is represented (V,A). We call a graph mixed if
it is allowed to have links of both types, and use the
representation (V,E,A). Finally, we refer to a graph
as being windy if it is undirected, and has asymmet-
ric traversal costs, (i.e. it is not necessarily the case
that the cost of going from vertex i to vertex j = the
cost of going from vertex j to vertex i).

It is important to notice that a windy graph is,
for all practical purposes, capable of modelling ev-
ery other type of graph in the following manner: for
undirected graphs, simply set cij = cji for every
edge; for directed graphs, set cWij = cAij and cWji = N

where N is some prohibitively high value (certainly
>>

∑
a∈A aij ); for mixed graphs, it follows directly.

Thus, any reasonably good method applicable to the
windy cases of the problems we are investigating is
immediately applicable to all other types of graphs as
well. We have to caveat reasonably good because oth-
erwise the method could theoretically traverse edges
representing arcs in the wrong direction, but this
would naively be able to be improved by replacing
these infeasible moves with shortest paths given our
assumption about the prohibitively high costs.

A graph has the property of being strongly con-
nected if it’s possible to reach any vertex from any
other vertex, (more precisely, for any pair of vertices
i and j, it is possible to construct an ordered list of
links (i0, j0), (j0, j1), (j1, j2)...(jk−1.jk) where i0 = i
and jk = j that constructs a valid path from vertex
i to vertex j).

A graph is called Eulerian if and only if there ex-
ists an Eulerian cycle (a path through the graph that
traverses every link in the graph exactly once and re-
turns to its starting vertex). The various criteria for
being Eulerian are as follows:

• Undirected : A undirected graph is Eulerian
⇐⇒ every node has even degree.

• Directed : A directed graph is Eulerian ⇐⇒
every node has in-degree = out-degree (a prop-
erty known as symmetry).

• Mixed : A mixed graph is Eulerian ⇐⇒ ev-
ery node has even degree, and the graph is bal-
anced, (for any subset S of V , |number of arcs
from S to V \ S - number of arcs from V \ S
to S| ≤ number of edges from S to V \ S). A
sufficient condition to be Eulerian for a mixed
graph is for every node to have even degree, and
in-degree = out-degree.

We call a graph G2 = (V2, L2) an augmentation
of the graph G1 = (V1, L1) if V1 ⊆ V2, L1 ⊆ L2,
and ∀l2ij ∈ L2, (∃ l1ij ∈ L1 & cost(l2ij) = cost(l1ij)).
Colloquially, this means that every link in the origi-
nal graph appears in the augmentation, and that the
augmentation only includes copies of links in the orig-
inal graph.

Finally, we introduce, and distinguish between
several notions of degree of a vertex. In an undirected
graph, the degree of a vertex is simply the number of
edges incident on the vertex. In a directed graph, the
in-degree of a vertex v is the number of arcs a ∈ A
for which v is the head, and the out-degree of a ver-
tex v is the number of arcs for which v is the tail.
Lastly, for a mixed graph, our definition of in-degree
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and out-degree remains the same, (i.e. it only takes
into account arcs in the graph), while our definition
of degree incorporates both edges and arcs, (i.e. pre-
tend as though all arcs were undirected).

The problems we intend to solve all fall under the
following two categories:

• The Chinese Postman Problem: Given a graph
G (either directed, undirected, mixed, or
windy) and a set of costs cij (associated with
traversing the link (i, j)), the task is to find
a closed path that traverses each link (edge
or arc) at least once and minimizes the total
traversal cost. This problem is solved in two
steps: the first step (and the most computa-
tionally involved) is that of finding an Eulerian
augmentation of the original graph; the second
step is finding the Eulerian cycle in this aug-
mented graph. The second step can be per-
formed easily and efficiently in polynomial time
(Hierholzer’s algorithm) (11).

• The Rural Postman Problem: Given a graph G
(in our case, directed, or windy), a set of re-
quired links LR ⊆ L, and a set of costs cij (as-
sociated with traversing the link (i, j)), the task
is to find a closed path that traverses each re-
quired arc at least once and minimizes the total
traversal cost. This problem is solved in two
steps: the first step is that of finding an Eu-
lerian augmentation of the original graph; the
second step is finding the Eulerian cycle in this
augmented graph. The second step can be per-
formed easily and efficiently in polynomial time
(Hierholzer’s algorithm).

Other common notation includes:

• δ(v) = out-degree − in-degree

• D+ and D− are the set of vertices with δ(v) > 0
and δ(v) < 0.

• Z0
+ is the set of non-negative integers, (N).

2.2 Common Algorithms

In the course of developing the library, certain graph
algorithms are fairly prevalent and useful to have split
off and available for all solvers / users of the library
to have access to. Currently, these include:

• Floyd-Warshall All-Pairs Shortest Paths Algo-
rithm (2.2.3)

• Dijkstra’s Single-Source Shortest Paths Al-
gorithm with Priority Queue Implementation
(2.2.4)

• Min-Cost Flow Algorithms (Cycle-Cancelling,
and Successive-Shortest Paths now imple-
mented) (2.2.1, 2.2.2)

We detail these algorithms in the following sec-
tion.

2.2.1 The Cycle-Cancelling Min Cost Flow
Algorithm

In order to obtain a minimum cost solution to the
flow problem, we have several options. Currently,
we have included both a cycle-cancelling algorithm,
as well as a successive shortest paths algorithm. It
is worth noting that our Shortest Successive Paths
(SSP) implementation significantly outperforms our
cycle-cancelling implementation, so while we review
the algorithmic details of both here, only the latter
is currently called by our solvers.

The cycle-cancelling algorithm proceeds by form-
ing residual graphs, detecting the presence of neg-
ative cycles, and cancelling said cycles by pushing
flow around them. Before we may form the resid-
ual graph, though, we must first find a feasible solu-
tion to the flow problem, (that is, find any accept-
able flow that satisfies the demands, irrespective of
cost, as in Figure 1). Since the flow problem is usu-
ally formulated on capacitated graphs (where edges
or arcs can only support a finite amount of traffic),
the well-known algorithms all take this into consid-
eration (Ford-Fulkerson is the classical algorithm for
solving the min cost flow problem). However, in all
of these problems, we are working with uncapacitated
graphs, and so we may greedily construct a feasible
path in the following manner:

• Select any node with excess in-degree, call it u.

• Select any node with excess out-degree, call it
v.

• Add min |δ(u)|, |δ(v)| shortest paths from u to
v.

Assuming we have shortest paths (which we shall
explain how to find later), if we simply repeat this
procedure until all nodes are symmetric, then we shall
have constructed a feasible solution to the flow prob-
lem.

Now, we must introduce the notion of a residual
graph (Figure 2). Given a graph G, and a feasible
solution X to a flow problem, we may construct its
residual graph GX as follows:

• Every vertex in G is also a vertex of GX .
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• For each arc (i, j) with capacity rij and cost cij
in the original graph G, add two arcs to GX :
one arc (i, j) with capacity rij − fij and cost
cij , and one arc (j, i) with capacity fij and cost
−cij . Here, fij is the amount of flow pushed
along the original arc in X.

Now, once we have the residual graph, we sim-
ply compute shortest paths from a vertex to itself. If
this value is negative, we know a negative cycle ex-
ists. We then cancel this cycle by pushing as much
flow as possible in the opposite direction (this is triv-
ial to find; it is simply the minimum capacity along
the cycle). Once no more negative cycles exist, the
algorithm terminates, and the directed graph we are
left with represents a least cost solution to the flow
problem (Figure 3).

2.2.2 The Successive Shortest Paths Algo-
rithm

The Successive Shortest Paths Algorithm proceeds by
converting the problem into a single-source, single-
sink flow problem, and then repeatedly pushing flow
along the shortest possible path from the source to
the sink. In order to perform this conversion, a sin-
gle source vertex, and a single sink vertex is added to
the network. Then, for each vertex vs with supply, a
zero-cost arc is added from the source vertex to vs.
This arc has capacity equal to the supply of vs. Simi-
larly, for each vertex with demand vd, a zero-cost arc
is added from vd to the sink, with capacity equal to
the demand of vd.

From here, the process is conceptually simple; we
calculate a shortest path from source to sink using
Dijkstra’s Algorithm for single-source shortest paths,
and then push as much flow as possible along that
path. Just as in the Cycle-Cancelling Algorithm, we
then form the residual graph given our new flow, and
then repeat. The algorithm terminates when there
are no more paths from source to sink. At this point,
we obtain our flow solution by simply removing the
source and sink vertex, (as well as all incident arcs).
Figures 4 and 5 illustrate one iteration of the process.

The only complication that remains is to resolve
a complication that arises to limitations with Dijk-
stra’s Algorithm; namely, it’s inability to deal with
negative edge costs. Obviously, negative edge costs
arise frequently in residual graphs, so this concern
is non-trivial. However, we avoid having negative
costs by reducing the arc costs at each iteration of
the method in the following manner. Consider an arc
aij , with original cost cij . Then we set its cost to
cij + dist(j) − dist(i) where dist(j) is the shortest
path distance from the source to vertex j.

Since we have to repeatedly call Dijkstra’s Algo-
rithm at worst on the order of O(nB) times, where B
is an upper bound on the supply of any node, then we
can guarantee a complexity of O(n2B log n+ nmB)

2.2.3 The Floyd-Warshall All-Pairs Shortest
Paths Algorithm

There are variety of algorithms to calculate shortest
paths, but because of our choice of supporting algo-
rithms (particularly the min cost flow algorithm), the
Floyd-Warshall algorithm (with path reconstruction)
will be one of the ideal ones to implement.

The Floyd-Warshall algorithm proceeds very sim-
ply; we construct two |V | × |V | matrices. The first
matrix D, will store shortest path distances, where
dij will represent the shortest path cost of getting
from vertex i to vertex j. The second matrix P will
store information about exactly what the path is; pij
will hold the next node in the shortest path from node
i to node j.

initially, diagonal elements of D are set to 0, and
for each edge (i.j) in the graph, dij is set to cij , (we
are assuming this is not a multigraph; otherwise, we
take the cheaper of the two). Every other entry in D
is set to infinity (some arbitrarily high number that
is greater than the sum of the edge costs), while ev-
ery entry in P is set to some dummy value, (−1 will
suffice). Finally, we iterate through all vertex triples
(i, j, k), and ask whether the dik + dkj < dij . If so,
the new, cheaper cost is stored in dij , and pij gets set
to k to signify that, in the shortest path from node i
to node j, the next node in the walk is k.

Since all we are doing is traversing ordered triples
(i, j, k) where each is allowed to be any number from 1
to n, then clearly the asymptotic complexity is O(n3).

2.2.4 Dijkstra’s Single-Source Shortest Paths
Algorithm

Similarly to the Floyd-Warshall All-Pairs Shortest
Paths Algorithm, Dijkstra’s algorithm proceeds by
maintaining an array of distances and path informa-
tion that we update by examining links in the graph.
However, since we are only concerned with a single
vertex as the starting point, this cuts down the com-
plexity of the problem by a factor of roughly n.

More precisely, the algorithm begins by initializ-
ing all distances to infinity, and then examining each
of the neighbors of the starting vertex, and assigning
them distances equal to the cost of the edge between
them and the starting vertex. Each of these neigh-
bors is then added to a list which contains vertices left
to be examined. The algorithm proceeds by choos-
ing the vertex in the list with the cheapest distance
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Figure 1: A flow network on which we may run the Cycle-Cancelling algorithm. For each arc, the numbers
shown represent (current flow) / (arc capacity), (cost). Meanwhile, the numbers in green represent the
amount of supply that the associated vertex has, and the numbers in red indicate demand. Here we see an
initial, non-optimal feasible flow which cycle-cancelling will iteratively improve upon.

Figure 2: The residual graph induced by the initial flow in the previous figure. Here, we see (highlighted in
red) the presence of a negative cycle, around which we are entitled to push 1 flow around (restricted by the
arc from vertex 1 to vertex 2).

Figure 3: The resulting residual graph after 1 flow has been pushed around the negataive cycle in the previous
figure.
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Figure 4: A flow network on which we may run the Successive Shortest Paths algorithm.

Figure 5: The modified flow network, where each vertex in the original flow network that had positive supply
has been connected to a new source vertex, and each vertex in the original flow network that had positive
demand has been connected to the new sink vertex. These added connections all have zero cost, and capacity
equal to the supply/demand of the node in the original graph, (e.g. the connection to vertex 1 has capacity
5).

associated with it, and then repeats the process of
examining its neighbors and updating the distance
and path arrays. Each of these neighbors is added to
our list, and when we have finished examining all of
a vertex’s neighbors, it is ejected from our list. The
algorithm terminates when all vertices have been ex-
hausted.

Since the algorithm considers each edge once,
and adds vertices to a priority queue that requires
O(n log n), then we have that the algorithm is O(m+
n log n). This process is depicted in Figure 6.

3 Problem Setting and Algo-
rithms

Armed with the utility functions specified in Section
2, we now describe the solvers implemented in the li-
brary for the aforementioned fundamental problems
in arc routing.

3.1 The Directed Chinese Postman
Problem

In light of the notion of an Eulerian graph, (as will
be the strategy in general), it suffices to find a least-

cost way of augmenting the original graph in order
to make it Eulerian. Obviously, on the augmented
graph, the Euler cycle (that is guaranteed to exist) is
an optimal solution to the CPP. With this in mind, we
formulate the problem as an integer program that at-
tempts to minimize the cost of the arcs we are adding.

Problem Statement:

minimize
∑

i or j∈{D+∪D−}

cijxij

subject to: ∑
j∈D+

xij = −δ(i),∀i ∈ D− (1)

∑
i∈D−

xij = δ(j),∀j ∈ D+ (2)

xij ∈ Z0
+ (3)

Intuitively, the variable xij represents the num-
ber of times we’ve added a shortest path from node
i to node j in the augmented graph (with cij is the
shortest path cost). Thus, the objective function is
the total additional cost incurred by the augmenta-
tion. Meanwhile, constraints (1) and (2) ensure that,
once we’ve added these shortest paths, the graph is
completely symmetric.
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Figure 6: An intermediate step of Dijkstra’s Algorithm, where vertex 1 is the source vertex, and we have
already assigned distances to nodes 2, 3, and 6. Once we have examined all of 1’s neighbors, we then choose
the vertex with the least distance from the source (that hasn’t yet been interrogated), and repeat the process.
In this case, 2 was selected as the next node for interrogation, and the algorithm is currently considering
whether or not going from source → vertex 2 → vertex 3 beats the previously recorded best distance of 9.
It does not, so vertex 3 will retain its distance of 9.

Figure 7: An example of a directed graph, upon which the the Directed Chinese Postman Problem may be
solved.
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3.1.1 An Exact Algorithm for the Directed
Chinese Postman Problem (15)

Recall that for a directed graph, we require that, in
order to be Eulerian, each node must exhibit symme-
try. To that end, we first identify the net degree of
each node in our graph (the sign convention is not
so important, but we’ll define it as δ(v) = out-degree
− in-degree). This leaves us with three classes of
nodes. Those that originally have an excess of outgo-
ing arcs, those that have an excess of incoming arcs,
and nodes that are already balanced. This last group
of nodes requires no additional consideration, since
they are currently balanced, and any paths we add
to the graph from one unbalanced node to another
will keep them balanced. Thus, our goal is simply
to find a least cost way to add a series of paths to
the graph from nodes with too many incoming arcs
to one with too many outgoing arcs at minimal cost.
To do this, we use a min cost flow algorithm to solve
the emergent flow problem. In a flow problem on a
graph, each node is assigned a demand, (negative de-
mand corresponds to supply), and a least cost way is
sought of satisfying these demands, (where edge costs
reflect per unit transportation costs). In our case, the
demand of node v corresponds exactly to δ(v).

Finally, in order to actually obtain the tour, (and
not simply its cost), we use Hierholzer’s algorithm,
which greedily moves from vertex to vertex on the
augmented graph, deleting edges once they have been
traversed. We continue until we return to the starting
vertex, at which point our current solution contains
a cycle. Then, check to see if there are any remain-
ing edges incident to a previously visited vertex v. If
not, then we are done; if so, then repeat the process,
with v as the new starting vertex. Once this process
terminates, we simply merge all the subcycles to get
the full tour. Figures 7 and 8 depict the process.

3.1.2 Pseudocode

Result: An optimal directed postman tour
over the input graph G.

1 foreach vertex v ∈ V do
2 δ(v)← in-degree − out-degree;
3 supply(v)← δ

4 end
5 Solve a min-cost flow over G;
6 for i← 1to|E| do
7 for j ← 1toflow(ei) do
8 Add copy of ei to G;
9 end

10 end
11 Return Hierholzers(G);

3.2 The Undirected Chinese Postman
Problem

Problem Statement:

minimize
∑

(i,j)∈E

cijxij

subject to: ∑
(i,j)∈Ev

(xij + 1) ≡ 0 mod 2,∀v ∈ V (4)

xij ∈ Z0
+ (5)

Here, xij represents the number of additional
copies of edge (i, j) in our augmented graph. As be-
fore, we wish to minimize the added cost, while en-
suring evenness of the augmented graph, (constraints
(1) and (2) achieve this).

3.2.1 An Exact Algorithm For The Undi-
rected Chinese Postman Problem (4)

The algorithm for the Undirected Chinese Postman
Problem is extremely similar to that for the directed
variant. We know that an Euler Tour must exist
on an undirected graph if every node has even de-
gree, (intuitively, every time we enter a node, we may
exit it using a new edge). Thus, the only thing that
changes here is that, rather than worrying about in-
degree and out-degree, we simply seek to pair nodes of
odd degree together in a least cost way (so rather than
solving a more complex flow problem, we may solve
a min cost perfect matching problem). It suffices to
identify all of the odd-degree nodes, and carry out a
matching algorithm on those (trivially, there will be
an even number of them, so parity is not a concern)
to solve the undirected Chinese Postman Problem.

3.2.2 Pseudocode

Result: An optimal undirected postman tour
over the input graph G.

1 Vmatching ← Vodd;
2 Ematching ← ∅;
3 for i ∈ Vodd do
4 for j ∈ Vodd do
5 Add eij to Ematching with cij = spij ;
6 end

7 end
8 Let Gmatching = (Vmatching, Ematching);
9 Solve a min-cost matching over Gmatching;

10 for eij ∈ matching do
11 Add copy of eij to G;
12 end
13 Return Hierholzers(G);
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Figure 8: The solution to the DCPP on the previous graph. Blue nodes are identified as belonging to D−,
and red nodes to D+ in the initial phase of the algorithm. Arcs added as part of the min-cost flow solution
are shown in red.

Figure 9: An example of a undirected graph, upon which the the Undirected Chinese Postman Problem may
be solved.

Figure 10: The solution to the UCPP on the previous graph. Red nodes are identified as odd in the initial
phase of the algorithm. Edges added as part of the matching solution are shown in red.
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Figures 7 and 8 depict this process.

3.3 The Mixed Chinese Postman
Problem

Problem Statement:

minimize
∑

s∈{A∪Ê∪Ĕ}

csxs

subject to:

y′e + y′ẽ ≥ 1,∀e ∈ E (6)

xs = y′s + ys,∀s ∈ A ∪ Ê ∪ Ĕ (7)∑
s∈S+

v

xs −
∑
s∈S−

v

xs = 0, ∀v ∈ V (8)

y′a = 1, ∀a ∈ A (9)

y′e ∈ {0, 1}, ∀e ∈ Ê ∪ Ĕ (10)

ys ∈ Z0
+ (11)

First, some notation: y′s is 0 if link s is never tra-
versed, and 1 if it is; ys is the number of additional
times link s is traversed. The set Ê contains edges e
that are traversed from i to j in the solution, while
the set Ĕ contains edges ẽ that are traversed from j to
i. Thus, xs is the total number of times link s is tra-
versed, and so constraint (1) ensures that each edge is
traversed at least once, constraint (2) defines xs, con-
straint (3) ensures symmetry, constraint (4) ensures
that arcs are traversed at least once, and constraints
(5) and (6) are the binary constraint for y′s and the
integrality constraint for the ys

3.3.1 Even-Symmetric-Even (9)

The first heuristic we plan to implement has the same
intuitive motivation as the exact algorithms for the
DCPP and UCPP: namely, we try to augment the
graph to reach an Eulerian supergraph in which we
know we may locate an Euler tour. In order for a
mixed graph to be Eulerian, it must fulfill both of
the following properties:

• Evenness: Each node as an even number of in-
cident links.

• Balanced : For each subset of nodes V , the num-
ber of undirected arcs between V and V \ S
must be greater than or equal to the difference
between the number of arcs from V to V \ S
and the number of arcs from V \ S to V . (In-
tuitively, this second condition ensures that we
cannot get ’stuck’ in a portion of the graph.)

Prima facie, it is difficult to see how one would
easily verify the second property, and so this partic-
ular heuristic instead aims to create an even, sym-
metric graph, (which, in general, is guaranteed to be
balanced).

The Even-Symmetric-Even heuristic has three
eponymous phrases; in the first, it achieves evenness
by carrying out a min-cost matching among the odd-
vertices, in the second, it achieves symmetry by using
a min-cost flow algorithm on the asymmetric nodes,
and in the third, it restores evenness by looking for
cycles that may be eliminated safely (because the
consist ’mostly’ of links that were added in the previ-
ous two phases). This process is depicted in Figures
11 and 12.

1. Phase I, Even: Solve the UCPP on the original
graph, treating all arcs as edges. This produces
an augmented graph GE .

2. Phase II, Symmetric: Solve a min cost flow
problem on GE , treating each edge (u, v) as
four arcs: the first two (u, v) and (v, u) with
cost equal to the original edge cost and infinite
flow capacity; and two (u, v) and (v, u) with
zero cost, and flow capacity of 1. If the solu-
tion to the flow problem singularly walks edge
(u, v), (that is, in the flow solution, arc (u, v)
is only traversed once, or arc (v, u) is traversed
only once), then we ’orient’ the edge in that di-
rection, otherwise it remains as an edge in our
output graph GS .

3. Phase III, Even: Greedily search for cycles
that consist of paths between any odd-degree
nodes left in GS (if there are none, Phase III
is unnecessary). Importantly these paths must
alternate between only containing arcs / ori-
ented edges added in Phase II, and only con-
taining edges left undirected by Phase II. In this
way, we ensure that only the parity of the odd-
degree nodes is changed, while also assigning
a direction to all remaining undirected edges.
There is a chance that no such cycle exists, and
that there are still undirected edges, but the
graph will be Eulerian at this point, and so we
are done. Once we find one of these alternat-
ing paths, we orient it (either direction will be
equivalent) and duplicate arcs/oriented edges
along the path that follow the orientation, while
deleting arcs that are in the opposite direction.
Meanwhile, for the sections of the cycle that
consist entirely of undirected edges, we simply
orient them in the direction we have chosen to
orient the cycle.
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Figure 11: An example of a mixed graph, upon which the the Mixed Chinese Postman Problem may be
solved.

Figure 12: The solution to the MCPP on the previous graph. The red arc (2, 5) is added in the initial Even
phase, while all other red links are added in the Symmetric phase. The thicker red arrows are to indicate
that the edges in the original graph were oriented in the corresponding direction.

3.3.2 Pseudocode

Result: An approximately optimal mixed
postman tour over the input graph G.

1 Geven ← EvenDegree(G);
2 Gsymm ← Symmetric(Geven);
3 Gfinal ← EvenParity(Gsymm);
4 Return Hierholzers(Gfinal);

3.3.3 Shortest Additional Path (17)

While most other heuristics for the MCPP do roughly
the same thing as Even-Symmetric-Even, (and then
sometimes implement an improvement procedure on
the generated solution), the Shortest Additional Path
Heuristic (SAPH) performs the bulk of its work on a
graph that may not even contain a feasible Euler tour,
but manages to ensure that the final output does.

The initial step of SAPH is in fact identical to the
second phase of the Even-Symmetric-Even heuristic
(where the graph is transformed into a symmetric
one). The heuristic then proceeds by exploiting two
ideas: first, suppose that an edge or arc was added
to the original graph, and oriented from node A to
node B. Then, if the shortest path cost of going from
node A to B is less than the cost of traversing this
added link, then we ought to replace said link with
the shortest path from A to B (Figure 13).

Second, if an edge was oriented from node

A to B, and the two shortest paths have costs
that sum to less than zero, then it’s advan-
tageous to use ShortestPath(A → B), (B →
A), ShortestPath2(A → B). Although this second
case may seem like a bizarre one to investigate (since
the shortest path costs will generally be positive), it is
an important one to consider for the SAPH because
we may consider a path from A to B as traversing
added arcs in the opposite direction (which would cor-
respond to deleting them) and incurring the negative
of its cost (Figure 14).

1. Given a mixed graph G, generate a graph G∗ =
(N,M,U) and set of added arcs M∗ by solving
Phase II of Even-Symmetric-Even on G. Also,
generate a graph GM = (N,E + EM , A+AM )
by solving Phase I of Even-Symmetric-Even on
G, where EM and AM are the sets of edges and
arcs added from the matching.

2. Choose a random edge/arc in G∗ of type a, c, d
or f .

3. Initialize two graphs G1
ij = G and G2

ij = G

4. Perform Cost modification 1 on G1
ij .

5. Perform Cost modification 2 on G1
ij and G2

ij .

6. Apply the first shortest paths idea to the chosen
edge/arc.

11



Figure 13: An example of the first SAPH idea, where we replace an added link (red) with a cheaper shortest
path.

Figure 14: An example of the second SAPH idea, where we reverse the orientation of an edge and add two
’paths’ from node i to j which sum to a negative cost.

Figure 15: Taken from (17). Edges and arcs in G must end up in one of the following configurations in G∗:

••••••• If an edge remains undirected, it is of type a.

• If an edge gets directed, but not copied, it is of type b.

• If an edge gets directed and copied, but all copies are in the same direction, then it is of type c.

• If an edge gets copied once, and oriented in the opposite direction as the original, it is of type d.

• If an arc is not copied, it is of type e.

• If an arc is copied, it is of type f

12



7. Repeat all steps until there are no more edges
of type a, c, d or f .

8. Choose a random edge of type b.

9. Apply the second shortest paths idea to the cho-
sen edge/arc.

10. Go back to Step 8 until there are no more edges
of type b.

11. If we were at all able to apply the second short-
est paths idea to make any improvements, go
back to step 1.

12. If there are any more edges (i, j) of type a left
in G∗, orient it from i to j, and add a copy
(j, i)′ oriented in the opposite direction.

All that remains is to elaborate on exactly what
these cost modification procedures are, and what
their objective is.

Cost modification 1 : This procedure tries to force
our shortest paths algorithm to traverse links from
the matching solution.

1. Given a graph Gij , and GM , and a nonposi-
tive number K, find all edges (f, g) in Gij that
are also in EM , and, (in Gij), set the costs
cfg = cgf = K.

2. Locate in Gij , all arcs from AM . If they area
of type f (in G∗), then set the costs cfg =
cgf = K. If the arc is of type e, then set
cfg = 0, cgf =∞

Cost modification 2 : This procedure tries to force
our shortest paths algorithm to traverse links that
will benefit from our two improvement procedures at
the same time as we examine our chosen link, (which
may, for instance, get eliminated as part of a shortest
’path’ from i to j).

1. Given graphs Gij , and G∗, find all edges (f, g)
in G∗ that are of type a or d. Also, let c∗fg de-
note the cost of link (f, g) in the original graph
G. Then, set the costs cfg and cgf in Gij to be
−c∗fg and −c∗gf .

2. Locate in G∗ all links (f, g) of type c or f , and
set the cost cgf in Gij to −c∗fg

3. At whatever point in the process this proce-
dure is being called, set the cost of the selected
link in Gij to ∞ in both directions, (that is
cfg = cgf =∞).

3.3.4 Pseudocode for SAPH Concepts

Result: The input graph with modified costs.
input : An added arc aij ∈ G

1 cij ←∞;
2 Cost modify G;
3 Calculate shortest path from i to j;

4 if spij < corigij then

5 Delete a copy of aij in G;
6 Add a copy of spij to G;

7 end

Result: The input graph with modified costs.
input : A oriented edge eij ∈ G

1 Cost modify G;
2 Calculate two shortest paths from i to j, sp1

ij

and sp2
ij ;

3 if sp1
ij + sp2

ij < cij then
4 Change the orientation of eij in G;
5 Add a copy of sp1

ij and sp2
ij to G;

6 end

3.4 The Windy Postman Problem

Problem Statement:

minimize
∑

e+∈E+

ce+xe+ +
∑

e−∈E−

ce−xe−

subject to: ∑
e+∈E+

xe+ −
∑

e−∈E−

xe− = 0,∀v ∈ V (12)

xe+ + xe− ≥ 1,∀e ∈ E (13)

xe+ , xe− ∈ Z0
+,∀e ∈ E (14)

As is to be expected, the formulation of the CPP
on a windy graph bears a close resemblance to the for-
mulation of the CPP on an undirected graph. This
time, xe+ and xe− represent the number of times an
edge e is traversed in the forward direction, and in the
reverse direction respectively. With this in mind, con-
straint (1) enforces symmetry for each vertex (when-
ever we enter, we must leave), while constraints (2)
and (3) are the usual traversal and integrality require-
ments.

3.4.1 Win’s Algorithm (16)

With the Windy Postman Problem, the strategy is a
bit different than it has been for the previous three
cases. The reason is that, before, we could precisely
quantify a priori the cost of an augmentation. For in-
stance, if we added edges whose costs summed to 15,
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Figure 16: An example of a windy graph, upon which the the Windy Postman Problem may be solved.
Notice that each of the edges now has two costs. As a matter of convention here, the first one will be the
cost of traversing the edge from i to j where i < j, and the second is obviously the cost of traversing it in
the opposite direction.

then if we could find an Eulerian augmentation which
added edges whose costs summed to 12, it would ob-
viously be preferable. Unfortunately, we don’t have
that luxury here, since we aren’t sure which direction
the postman will traverse the edge in his tour, and so
the cost of adding an edge is more difficult to assess.

Win’s algorithm attempts to address this diffi-
culty in the simplest way possible: it considers av-
erage costs. Thus, is solves the UCPP on the graph
GĒ with costs c̄ij = min (spij + spji) (Figures 16 and
17). Thus produces an Eulerian augmentation to the
original graph. Now, we run a polynomial time algo-
rithm that determines the optimal tour on this aug-
mented graph:

1. Given the Eulerian graph G, form the digraph
DG = (V,A) where the vertex set is identical to
that of G, and for each edge in G, if cij < cji,
then arc (i, j) is added to A. Otherwise, arc
(j, i) is added to A.

2. Create a second digraph D′ = (V,A′) by, for
each arc (i, j) ∈ A, adding 3 arcs to A′: one
arc (i, j) with cost cij and infinite capacity, one
arc (j, i) with cost cji and infinite capacity, and

one arc (j, i)′ with cost
cji − cij

2
and capacity

2. This last arc is referred to as being artificial.

3. Solve a min cost flow problem on D′, with de-
mands calculated as they are for the DCPP on
DG.

4. Construct an Eulerian digraph D′′ = (V,A′′) in
the following manner. If, in the flow solution,
there is 0 flow along the arc (j, i)′, then add
1 + xij copies of arc (i, j) to A′′. Otherwise,
add 1 +xji copies of arc (j, i) to A′′. The Euler
cycle on this digraph is an optimal solution to
the WPP on G.

3.4.2 Pseudocode
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Figure 17: The solution to the WPP on the previous graph. The red arcs are added as part of the flow
solution.

Result: An approximately optimal windy postman tour over the input graph G.
1 Vmatching ← V ;
2 Ematching ← ∅;
3 foreach vi ∈ Vodd do
4 foreach vj ∈ Vodd do

5 Add eij to Ematching with cmatching
ij = min (spavgij , spavgji );

6 end

7 end
8 Gmatching = (Vmatching, Ematching);
9 Solve a min-cost matching on Gmatching;

10 Add a copy of each edge in the matching to G;
11 Vflow ← V ;
12 Aflow ← ∅;
13 foreach Windy edge wij ∈ E do

14 Let corigij < corigji ;

15 Add aij to Aflow with cost cij ;
16 Add aji to Aflow with cost cji;

17 Add an artificial aji to Aflow with cost
cji − cij

2
and flow capacity 2;

18 end
19 Gflow = (Vflow, Aflow);
20 Solve a min-cost flow on Gflow;
21 Vans ← V ;
22 Aans ← ∅;
23 foreach Windy edge wij ∈ E do
24 if flow along aij = 0 then
25 Add x+ 1 copies of aij to Aans;
26 else
27 Add x+ 1 copies of aji to Aans;
28 end

29 end
30 Gans = (Vans, Aans);
31 Return Hierholzers(Gans);
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3.4.3 Benavent’s H1 (1)

This algorithm is essentially an improvement over
Win’s original algorithm in that it attempts to antic-
ipate the results of the min-cost flow problem solved
to obtain the optimal windy tour. In order to ac-
complish this, edge costs are modified before the
matching is solved (to produce an Eulerian undi-
rected graph):

1. Given the original windy graph G = (V,E), cal-
culate the average edge cost for the whole graph

(Ca =
1

2|E|
∑

(i,j)∈E cij + cji). Now, consider

edge set E1 = (i, j) ∈ E : {|cij−cji|} > K ∗Ca.
Also, define E2 = E\E1.

2. Set up a digraph Gd
R = (V,A′), where, for each

e ∈ E, add 2 arcs in A′, (i, j) with cost cij and
infinite capacity, and (j, i) with cost cji and in-
finite capacity. Then, for each e ∈ E1, add an

additional artificial arc (j, i) with cost
cji − cij

2
and capacity 2.

3. Solve a min cost flow problem, with demands
given by a reduced graph G′ = (V,A) which
contains an arc (i, j) for each edge (i, j) ∈ E1,
(here we assume cij < cji so that the arcs in A
are in the direction of cheaper traversal).

4. Compile a list L of edges such that:

• e ∈ E1 and, in the flow solution, there
is positive flow across its corresponding
(non-artificial) arcs.

• e ∈ E2 and, in the flow solution, there is
at least a flow of 2 across its corresponding
(non-artificial) arcs.

5. For each edge e ∈ L, set its cost to 0 in the
original graph, and then compute the min-cost
matching, just as in Win’s algorithm. Then,
set all costs back to what they were in the orig-
inal graph, and proceed normally as in Win’s
algorithm.

3.4.4 Pseudocode

Result: An approximately optimal windy
postman tour over the input graph G.

1 Ca ← avg. cost of traversal in G;
2 E1 ← ∅;
3 E2 ← ∅;
4 foreach Windy edge wij ∈ E do
5 if |cij − cji| > K ∗ Ca then
6 Add w to E1;
7 else
8 Add w to E2;
9 end

10 end
11 A′ = ∅;
12 foreach Windy edge wij ∈ E do

13 Let corigij < corigji ;

14 Add aij to Aflow with cost cij ;
15 Add aji to Aflow with cost cji;
16 if wij ∈ E1 then
17 Add an artificial aji to Aflow with cost

cji − cij
2

and flow capacity 2;

18 end

19 end

20 Gd
R = (V,A′);

21 Solve a min-cost flow problem on Gd
R;

22 L← ∅;
23 foreach Windy edge wij ∈ E do
24 if wij ∈ E1 and flow(aij) + flow(aji) ¿ 0

then
25 Add wij to L;
26 end
27 if wij ∈ E2 and flow(aij) + flow(aji) ¿ 1

then
28 Add wij to L;
29 end

30 end
31 foreach Windy edge wij ∈ L do
32 Set cij = cji = 0;
33 end
34 Perform avg. min-cost matching over G;
35 Add a copy of each edge included in the

matching;
36 Reset all costs back to original;
37 Construct the optimal windy tour on G;

3.5 The Directed Rural Postman
Problem

Problem Statement:
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minimize
∑
a∈A

caxa

subject to:

xa ≥ 1, ∀a ∈ AR (15)∑
{a∈A:hea=i}

xa −
∑

{a∈A:taa=i}

xa = 0 , ∀i ∈ V (16)

∑
{a∈A:taa∈S 63hea}

xa ≥ 1,∀∅ 6= S ⊂ V, |S| ≤ b
|V |
2
c

(17)

xa ∈ Z0
+ (18)

This IP formulation is a bit more tricky: con-
straints (1), (2), and (4) should look familiar by now;
the first enforces traversal of required arcs, the sec-
ond enforces that our path is indeed a cycle, and the
fourth demands integrality. However, constraint (3)
requires a bit more elaboration. This is a subtour
elimination constraint, that prevents a spurious so-
lutions from consideration. For example, suppose a
vehicle must service two streets, one in the west end
of town, and one in the east. Then, it is unavoidable
that this vehicle must travel the east-west length of
town. However, if we did not have constraint (3), it
would be considered feasible to have one small cycle
in the west part of town, and one in the east, but
nothing connecting them. Obviously, this will likely
be cheaper than any valid route, but this is clearly
not admissible as a candidate circuit.

3.5.1 Christofides’ Algorithm (5)

Broadly speaking, Christofides’ algorithm begins by
simplifying the original graph (to discard a lot of the
unrequired nodes and arcs), and connecting the re-
quired connected components of the graph. It finally
solves a min cost flow problem over the remaining
graph to obtain a feasible solution to the DRPP.

1. Given the input graph G = (V,AR ∪ANR), de-
fine the vertex set VR to be the set of nodes
which have at least one required arc incident
on them. Then, consider the graph GR =
(VR, AR). We form a modified graph G′ =
(VR, AR ∪AS) by making it complete, connect-
ing all vertices in VR with arcs (i, j) that have
cost equal to the shortest path in G between
node i and node j, (these costs are finite be-
cause the graph is strongly connected). These
added arcs comprise the set AS . Now, remove
from G′ any arc (i, j) ∈ AS that:

• Has cost cij = cik + ckj for some k ∈ VR.

• Is a duplicate of an arc in AR.

2. Now, starting with the digraph G′, collapse
connected required components into nodes,
and solve the minimum spanning arborescence
problem on this collapsed graph. Add arcs
found in this shortest spanning arborescence to
a set Tta to indicate that the SSA was rooted
in the connected component ta. Our choice of
ta here is arbitrary.

3. Solve a min cost flow on the graph G′ with de-
mands calculated as out− degree− in− degree
relative to the arc set AR ∪ Tta , where every
arc has infinite capacity. Let fij be the amount
of flow through arc (i, j) in the flow solution.
Then, add fij copies of arc (i, j) to an arc set
F . The final feasible solution graph is given by
GS = (VR, AR ∪ Tta ∪ F ).

It is worth mentioning an improvement proce-
dures which we implement: when we constructed the
shortest spanning arborescence, we fixed a root node,
and so we may repeat the algorithm with k different
SSA’s, where k is the number of required components
of the simplified graph G′, and choose the best solu-
tion. This process is depicted in Figures 18 and 19.

3.5.2 Pseudocode

Result: An approximately optimal directed
postman tour over the input graph G.

1 GR ← (V,AR) C = C1, C2, ... =connected
components of GR;

2 VArb ← ∅;
3 AArb ← ∅;
4 foreach Component ci ∈ C do
5 Add vi to VArb;
6 end
7 foreach Arc aij ∈ A do
8 if vi ∈ Ci and vj ∈ Cj and i 6= j then
9 Add aij to AArb;

10 end

11 end
12 GArb = (VArb, AArb);
13 Solve a Minimum Spanning Arborescence over

GArb;
14 foreach Arc a ∈ MSA do
15 Set a to required in G;
16 end
17 Solve a DCPP over G where supplies and

demands given by GR;
18 Return Hierholzers(G);
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Figure 18: An example of a directed graph, upon which the the Directed Rural Postman Problem may be
solved. Green arcs here are required, (i.e. our solution must traverse them at least once) while black arcs
are not. Also, link costs are omitted for aesthetic reasons.

Figure 19: The solution to the DRPP on the previous graph. Notice that node 7 has disappeared because
of our simplification of the graph, however it is important to note that c34 will be increased to c37 + c74, and
an analogous alteration will be made for c43.

3.6 The Windy Rural Postman Prob-
lem

Problem Statement:

minimize
∑

e+∈E+

ce+xe+ +
∑

e−∈E−

ce−xe−

subject to: ∑
e+∈E+

xe+ −
∑

e−∈E−

xe− = 0,∀v ∈ V (19)

xe+ + xe− ≥ 1,∀e ∈ ER (20)

xe+ , xe− ∈ Z0
+,∀e ∈ E (21)

3.6.1 Benavent’s WRPP1 and Benavent’s
H1(2)

The procedures are identical to their counterparts for
solving the WPP, (WRPP1 corresponds to Win’s al-
gorithm), except that an initially minimum spanning
tree problem must be solved to connect the required
components of the graph. The procedure for this is
as follows:

1. Compute the connected components
C1, C2, C3, ... of the graph GR, which is the
graph induced by the required edges in the
original problem graph G.

2. Construct the graph GC , where the vertex set
VC contains one vertex for each connected com-
ponent in GR.

3. Complete GC by adding edges eij with costs
cij = min (cavg(spij), cavg(spji)).

4. Solve the minimum spanning tree (MST) prob-
lem on GC .

5. If eij was included in the MST, then set each
edge in the shortest path represented by eij to
be ’required.’
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3.6.2 Pseudocode

Result: An approximately optimal windy
postman tour over the input graph G.

1 GR ← (V,ER) C = C1, C2, ... =connected
components of GR;

2 VMST ← ∅;
3 EMST ← ∅;
4 foreach Component ci ∈ C do
5 Add vi to VMST ;
6 end
7 foreach Windy edge eij ∈ E do
8 if vi ∈ Ci and vj ∈ Cj and i 6= j then
9 Add eij to EMST with

cij = min (cavg(spij), cavg(spji);

10 end

11 end
12 GMST = (VMST , AMST );
13 Solve a Minimum Spanning Tree over GMST ;
14 foreach Windy edge e ∈ MST do
15 Set e to required in G;
16 end
17 Solve a WPP over G where degree is

determined in GR;
18 Return Hierholzers(G);

4 Implementation

The library is written in Java, which exposes an inter-
face that allows C++ code to be run in the event that
performance concerns necessitate that certain por-
tions to be sped up. The code is hosted, (both dur-
ing development, and upon completion) as a reposi-
tory on my personal github at https://github.com/
Olibear/ArcRoutingLibrary.

We choose Java for several reasons. First, it ap-
pears as though the general developer industry is
moving towards adopting Java as the de facto stan-
dard for most modern projects, (e.g. Google has
backed Java as the backend for Android, and megas-
cale parallelization technologies like Hadoop are na-
tively compliant). Second, as has already been men-
tioned, Java provides ways to interface with its main
competitor C++, and so concerns over loss of flexi-
bility may be eschewed. Third, libraries in the field
of combinatorial optimization (e.g. LEMON, Boost,
etc.) have traditionally been written in C++, and so
we hope that ours manages to fill the void of Java-
based graph libraries.

Git provides convenient means of synchronizing,
sharing, and storing code. Github also tracks accesses
to the repository so that we may collect meaningful
metrics on dissemination of the project.

5 Databases

In order to test the performance and accuracy of our
library, we ran our solvers on a collection of bench-
mark instances that have known solutions and are
publicly available. For the the directed and undi-
rected Chinese postman problem, we simply gener-
ated our own test instances, (since these algorithms
are old, exact, and polynomial, test instances aren’t
prevalent in the literature). Furthermore, for the Di-
rected Rural Postman, we used the test instances
used to benchmark DRPP solvers in Campos’ com-
putational study(2).

The procedure for generating test instances for
the DCPP and UCPP is simply be to randomly gen-
erate a graph, (consider all pairs (i, j) and add them
to the graph with probability p1, and then connect
components of the graph arbitrarily). We generate
instances to the DRPP the same way we get instances
to the DCPP, and then just pick a subset of required
arcs with probability p2.

For the Mixed and Windy Postman problems, we
used the test instances made public by Dr. An-
gel Corberan at his website (http://www.uv.es/
corberan/instancias.htm) which have documented
solutions available at the same place. Additionally,
we validated our mixed solvers on the test instances
used in Yaoyuenyong’s paper where he presents a
computational comparison of his own method against
Frederickson’s (17).

6 Validation and Testing

Broadly speaking, there are two types of components
to the project that need validation: the subroutines,
and the solvers themselves (therefore, the high-level
algorithm that makes use of the subroutines). For
the former, we compare the output of our implemen-
tations to those given in (12). For both the flow al-
gorithms and the shortest path calculations, we com-
pare only the costs, as the specific flow / shortest
path solutions are liable to be different if multiple
exist with the same objective value, but none of the
solvers in which these subroutines are invoked spec-
ify any particular type of tie-breaking mechanism as
preferable, so we do not worry about any such dis-
crepancies. All we note here, is that, for our own
implementations, so long as the ordering of the ver-
tices and arcs is the same, we get identical results on
consecutive runs.

For the DCPP and UCPP, we simply ensure that
we are reaching the optimal solution, as well as that
the run time of the algorithm scales polynomially
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(just by recording runtime as a function of the prob-
lem size of the test instances). We do so by making
calls to the Gurobi Java API and setting up Integer
Program formulations for each of the problems, and
then comparing the optimal objective value to our
own.

For the MCPP, we validated our solvers by re-
producing the results contained in the table given in
Yaoyuenyong’s paper (17) which were obtained by
running our suite of MCPP solvers on test instances
generated by the author. We contacted the author
and were able to procure these instances for our own
purposes.

For the WPP, we validated our solvers indirectly
by validating the more general WRPP solvers (since
they are the same, except with an connection step
that does not get carried out for a WPP instance). In
order to validate the WRPP Solvers, we reproduced
the results from Benavent’s paper (1) (which presents
both the WRPP1 and H1 heuristics) and got an aver-
age deviation of 4.24% for WRPP1 and 4.2% for H1.
However, given that these results are very close to-
gether, we implement three improvement procedures
mentioned in the paper, after which the average %
deviations drop to 3.45 and 3.04 respectively, simi-
lar to the results presented in the paper (which gives
a percent deviation before and after applying these
procedures).

Similarly for the DRPP, we validated our solver by
reproducing results presented in the paper by Cam-
pos (2), the test instances for which were graciously
provided by the author. Note that here we do not
present any solution quality results because no opti-
mal solutions are presented in the paper, so it is not
clear what the optimal objective value is for these
test instances. We merely use proximity to the tour
costs reported in the paper in order to validate.

For testing, in the instances where our validation
was performed on large test instances ( > 1000 links),
we consider the same instances to be our test in-
stances, as they are able to test the computational
limits of the algorithms. However, for the MCPP
solvers, and WPP solvers, we test on the correspond-
ing Albaida Madrigueras instances (provided on Cor-
beran’s website).

7 Results

In the following section, we present computational re-
sults for the current contents of the library. All tests
were performed on a MacBook Air(August 2012),
running an i5-3427u processor. Whenever possible,
we test on publicly available test instances mod-

eled on real street networks, posted at http://www.

uv.es/corberan/instancias.htm. Our library con-
tains a parser for the format provided therein which
outputs a graph object that is used as input to our
solvers. For the UCPP and DCPP, and the subrou-
tines shown here, we have written a graph genera-
tor that randomly generates a graph given density,
number of vertices, and connectedness (boolean) as
inputs.

As mentioned when the details of the algorithm
were presented, the Floyd-Warshall All-Pairs Short-
est Paths algorithm ought to have an expected
asymptotic complexity of O(n3), and indeed, we can
see this borne out by our particular implementation.

Run times for our first attempt at implementing
the Successive Shortest Paths Min-Cost Flow algo-
rithm. This algorithm was deemed necessary after
a cycle-cancelling algorithm produced run times that
were prohibitively high (Figure 22). Performance in-
creased nearly an order of magnitude, even for graphs
of relatively small size. Obviously, since the algo-
rithm has super-linear complexity, this improvement
is amplified for more complex instances. Still, an
analysis of the amount of time spent in each subrou-
tine revealed an algorithmic inefficiency. Namely, an
All-Pairs Shortest Paths when calculating the short-
est path along which to push flow, when a Single-
Source Shortest Paths algorithm would suffice (we
are always pushing flow from the source to the sink).
Thus, once this correction was made, and Dijkstra’s
algorithm was substituted, we achieved much better
run times, as illustrated in Figure 17.

For the Directed and Undirected Chinese Post-
man Problems, the majority of the work involved is
simply obtaining the solution to the flow / matching
problem induced by the original graph, and so for
similar problem complexity, the two have compara-
ble performance. It is worth noting that in order to
solve the min cost perfect matching problem, we use
the publicly available, and extremely efficient C++
implementation of the Blossom algorithm presented
in a paper by Kolmogorov in 2009. To call this code
from Java, we write a simple function wrapper, and
use the Java Native Interface to communicate cross-
platform. This explains the seemingly sporadic na-
ture of the UCPP Solver’s performance on smaller
problem instances, since in these instances it’s the
overhead of calling the function rather than the func-
tion itself that dominates the compute time.

The computational results for Frederickson’s
MCPP Heuristic are actually quite surprising. Seeing
as the heuristic is, at the worst, a 5/3-approximation
(meaning we could at worst be 66% away from opti-
mality), one might reasonably expect to see solution
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Figure 20: Run times for our implementation of the Floyd-Warshall All-Pairs Shortest Paths subroutine.

Figure 21: Run times for our implementation of the Successive Shortest Paths Min-Cost Flow subroutine.

Figure 22: Run times for our implementation of the Successive Shortest Paths Min-Cost FLow subrou-
tine (blue), and again after correcting for the algorithmic inefficiency of using an All-Pairs Shortest Paths
algorithm where a single-source one would suffice.
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Figure 23: Run times for our implementation of the Directed Chinese Postman Problem Exact Solver.

Figure 24: Run times for our implementation of the Undirected Chinese Postman Problem Exact Solver.

Figure 25: Run times for our implementation of Frederickson’s (blue) and Yaoyuenyong’s (green) Mixed
Chinese Postman Problem heuristics.
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Figure 26: An illustration of the solution quality of Frederickson’s (red) MCPP Heuristic compared with the
optimal objective value (blue).

Figure 27: The percent away from optimality that Frederickson’s (blue) and Yaoyuenyong’s (red) MCPP
Heuristics achieves. As a rule of thumb, the instances grow in complexity as a function of their instance
number.
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quality vary over that range, (and indeed, it is the-
oretically possible for this to be the case). However,
on these instances, modeled after real-world street
networks, we see that the solution quality is actually
quite good; we never are worse than 3% away from
optimality, and are frequently less than 1.5% away
(Figure 27). Furthermore, the distance from opti-
mality does not appear to grow in any predictable
way with problem size or complexity, which is en-
couraging in terms of generalizing these results. As
expected, we see that Yaoyuenyong’s heuristic always
does at least as well as Frederickson’s heuristic, and
almost always better. Unfortunately, the run times
are drastically higher, so for instances much larger
than the ones we validated on, it may be impractical
to use (Figure 25).

The computational results for the two W(R)PP
heuristics are more in line with expectation. As we
can see, the variation in the solution quality varies a
good deal. However, it is worth mentioning that the
performance is, on average, still quite close to opti-
mality. Over the 144 test instances for the WRPP,
the average % deviation was 3.45 for Win’s algorithm,
and 3.04 for Benavent’s (Figure 29). Again we see a
time penalty paid for the improved solution quality
(Figure 28), but the growth in time is more com-
mensurate than in the mixed case. Additionally, test
instances for rural variants tend to be much smaller
in size (i.e. fewer vertices and edges; for example, the
144 WRPP instances had a max of 320 links in the
graph, as opposed to the 9000 in the largest wpp in-
stances), but in order to get a more complete idea of
the scalability of the code, we ran the rural solvers on
the WPP instances for timing purposes. This means
that both heuristics are capable of solving instances
far larger than they were originally tested on.

8 Project Schedule

Although the initial plan was to designate an iso-
lated, consecutive block of time for integration of
Gurobi and its associated solvers, this had to be com-
pleted earlier for validation of the exact solvers for
the DCPP and UCPP. To this end, we have removed
this piece from the end of the schedule. In addition,
the last month was originally supposed to be used for
some work on new research that extends the func-
tionality contained within the library. However, this
was an optional component to the project, and was
simply delayed until after the completion of the class.
With each of these pieces either integrated into the
existing steps, or eliminated from the schedule, we
were able to implement our heuristic solvers.

• October: Complete proposal, begin exact
solvers for DCPP, and UCPP, and finalize
graph architecture.

• November: Complete and validate exact
solvers for DCPP, and UCPP.

• December: Complete and validate heuristic
solvers for MCPP.

• January: Complete and validate heuristic
solvers for WPP.

• February - March: Complete and validate
heuristic solvers for DRPP.

• April: Modify WPP solvers to deal with rural
instances, and validate the new solvers. Add
Gurobi solvers for the MCPP and WPP.

• May: Final Report

9 Deliverables

We have compiled an easily accessible, easily usable,
easily extensible library of code designed to solve
the aforementioned problems. The mid-year and fi-
nal reports, as well as documentation (including a
readme, and tutorials/examples) and all of the test
instances (both generated, and taken from Corberan,
Yaoyuenyong, and Campos) are available on the cen-
tral github page.

10 Conclusions and Future
Work

Ultimately, we hope that this work will form the ba-
sis for many future operations researchers in the field
of routing and scheduling. While we fully concede
that the particular solver implmentations contained
in the library currently aren’t necessarily optimal
(from a coding standpoint), we have sought to leave
the possibility open for contributors who find per-
formance unsatisfactory to extend our abstractions
and write their own specific implmentations. As we
have proved, the architecture is flexible enough to
solve a host of different problems, and will continue
to evolve as we encounter complexities that cannot
be addressed given the current state of the library.
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Figure 28: Run times for our implementation of Win’s (blue) and Benavent’s (green) Windy Postman
heuristics.

Figure 29: The percent away from optimality that Win’s (blue) and Benavent’s (red) WRPP Heuristic
achieves. As a rule of thumb, the instances grow in size and complexity as a function of their instance
number.
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Although not necessarily realistic, it would be
ideal if this work could form the beginnings of sup-
port for the open source movement from the Vehicle
Routing community, as the irony of the inherent re-
dundancy required by the current process is decidedly
significant.

In terms of future work, we hope to incorporate
visualization utilities in order to automate the illus-
tration process, and hopefully provide an elegant way
of presenting even large graphs that are traditionally
not presented in the literature due their considerable
complexity. In order to do so, we plan to leverage
other existing technologies, and integrating them into
our library (e.g. Gephi).

Furthermore, over the summer, we shall incor-
porate partitionining code to be able to transition
from solving uncapacitated, single-vehicle arc rout-
ing variants to capacitated, multi-vehicle problems.
Although it is unlikely that these solvers will out-
perform the state-of-the-art, it will be interesting to
see how close we may get with such a rudimentary
structural approach.

Finally, we are always looking to expand the util-
ity of the library by incorporating more formats and
representations into our IO architecture. One of
these, (OSM), is especially promising because it offers
an opportunity to generate real-world test instances
with relative ease.
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