
OAR Lib:

An Open Source Arc Routing Library

Oliver Lum

Department of Applied Mathematics and Scientific Computation
(AMSC), University of Maryland

oliver@math.umd.edu

Bruce Golden

Robert H. Smith School of Business, University of Maryland
bgolden@rhsmith.umd.edu

September 2013

Abstract

We seek to provide an efficient java implementation of solvers to some
of the most ubiquitous problems in the field of Arc Routing, (The Chinese
Postman Problem on undirected, directed, mixed, and windy graphs, as
well as the Rural Postman Problem on directed graphs). The project
is open source, and the code will be hosted at https://github.com/

Olibear/ArcRoutingLibrary.

1 Introduction

Broadly speaking, in the realm of vehicle routing, there are two classes of prob-
lems; node-routing problems, and arc-routing problems. In the former, the goal
is to visit some (sub)set of nodes in a graph while minimizing some cost (or
maximizing some reward) function. Likewise, in the latter, we seek to optimize
some objective function, but this time the requirement is that a (sub)set of edges
gets traversed. For example, the well-known Traveling Salesperson Problem is a
node-routing problem that requires the construction of a cycle of minimal cost
that visits every node in the graph, (with costs associated with the traversal
of each edge). Meanwhile, the analogous problem in arc-routing is the Chinese
Postman Problem (CPP), where a candidate cycle must traverse every edge in
the graph.

Unfortunately, the vast majority of outstanding network optimization prob-
lems have been shown to be outside of P, (the class of provably polynomial-time

1

https://github.com/Olibear/ArcRoutingLibrary
https://github.com/Olibear/ArcRoutingLibrary


solvable problems), which means that it is unlikely that they can be solved to
optimality in a computationally tractable manner. Still, since such problems
are nearly ubiquitous in industry, (with transportation / infrastructure net-
works, server topologies, and social networks all benefitting from advances in
the field), there exists a vast literature devoted primarily to devising efficient
(meta)heuristics that aim to get close to the optimum without prohibitive com-
putational effort. The virtues of a particular heuristic are usually presented via
an analysis of two factors: speed, and proximity to optimality. Of course, in
order to make meaningful comparisons, researchers typically present and solve
benchmark instances that showcase their algorithm’s performance relative to
that of an established alternative.

However, there is another element of variability that is less frequently ac-
counted for. Namely, differences in implementation of the same algorithm can
be responsible for discrepancies in results. Given that many of these heuristics
proceed by transforming the more complicated problem into an instance of an
easier problem, (and solving this simpler one to optimality using a known algo-
rithm), it is especially important to have standardization with respect to these
easier problems so that performance can be attributed solely to the merits of
the heuristics themselves.

2 Approach

To that end, we seek to create an open source code library that provides exactly
such functionality. More specifically, this library will feature solvers for the
following problems: the CPP on a directed graph (DCPP), the CPP on an
undirected graph (UCPP), the CPP on a mixed graph (MCPP), the CPP on an
undirected graph with directionally asymmetric costs (WPP for Windy Postman
Problem), and the Rural Postman Problem on a directed graph (where not all
arcs are required to be traversed in the solution). For each of these problems, if
it is not possible to efficiently solve it to optimality then we present two solvers;
one of the more well-known heuristics, and one that is closer to the state-of-the-
art. Obviously, if a problem is solvable in polynomial time, we shall implement
the exact algorithm precisely. For the details of each specific algorithm beyond
what follows, consult references [1] for the Directed CPP, [2] for the Undirected
CPP, [3] and [4] for the Mixed CPP, [5] for the WPP, and [6] and [7] for the
Directed RPP.

2.1 Definitions

A graph G is defined as a double (V,L) where V is a set of vertices (also
referred to here as nodes), and L a multiset of links. Typically, vertices are
indexed naively (i.e. 1,2,3, etc.) while a link is represented as an ordered pair
(i, j) where both i and j are members of the vertex set, (we shall not consider
hypergraphs here). We call a link an edge if it is undirected (that is, it can be
traversed from i to j, and from j to i). A link is called an arc if it is directed

2



(i.e. it can only be traversed from i to j). In the case of arcs, the first element
of the ordered pair is referred to as the tail, while the second is referred to as
the head. For clarity’s sake, an undirected graph is one in which all elements of
the link set are undirected, and is usually represented as (V,E). Accordingly,
a directed graph has only arcs (and is represented (V,A). We call a graph
mixed if it is allowed to have links of both types, and use the representation
(V,E,A). Finally, we refer to a graph as being windy if it is undirected, and
has asymmetric traversal costs, (i.e. the cost of going from vertex i to vertex j
6= the cost of going from vertex j to vertex i).

A graph has the property of being strongly connected if it’s possible to reach
any vertex from any other vertex, (more precisely, for any pair of vertices i and j,
it is possible to construct an ordered list of links (i0, j0), (j0, j1), (j1, j2)...(jk−1.jk)
where i0 = i and jk = j that constructs a valid path from vertex i to vertex j).

A graph is called Eulerian if and only if there exists an Eulerian cycle (a
path through the graph that traverses every link in the graph exactly once and
returns to its starting vertex). The various criteria for being Eulerian are as
follows:

• Undirected : A undirected graph is Eulerian ⇐⇒ every node has even
degree.

• Directed : A directed graph is Eulerian ⇐⇒ every node has in-degree =
out-degree (a property known as symmetry).

• Mixed : A mixed graph is Eulerian ⇐⇒ every node has even degree, and
the graph is balanced, (for any subset S of V , |number of arcs from S to
V \ S - number of arcs from V \ S to S| ≤ number of edges from S to
V \S). A sufficient condition to be Eulerian for a mixed graph is for every
node to have even degree, and in-degree = out-degree.

We call a graph G2 = (V2, L2) an augmentation of the graph G1 = (V1, L1)
if V1 ⊆ V2, L1 ⊆ L2, and ∀l2ij ∈ L2, (∃l1ij ∈ L1 & cost(l2ij) = cost(l1ij)).
Colloquially, this means that every link in the original graph appears in the
augmentation, and that the augmentation only includes copies of links in the
original graph.

Finally, we introduce, and distinguish between several notions of degree of
a vertex. In an undirected graph, the degree of a vertex is simply the number
of edges incident on the vertex. In a directed graph, the in-degree of a vertex
v is the number of arcs a ∈ A for which v is the head, and the out-degree of a
vertex v is the number of arcs for which v is the tail. Lastly, for a mixed graph,
our definition of in-degree and out-degree remains the same, (i.e. it only takes
into account arcs in the graph), while our definition of degree incorporates both
edges and arcs, (i.e. pretend as though all arcs were undirected).

The problems we intend to solve all fall under the following two categories:

• The Chinese Postman Problem: Given a graph G (either directed, undi-
rected, or mixed) and a set of costs cij (associated with traversing the link

3



(i, j)), the task is to find a closed path that traverses each link (edge or
arc) at least once and minimizes the total traversal cost. This problem is
solved in two steps: the first step (and the most computationally involved)
is finding an Eulerian augmentation of the original graph; the second step
is finding the Eulerian cycle in this augmented graph. The second step
can be performed easily and efficiently in polynomial time (Hierholzer’s
algorithm).

• The Rural Postman Problem: Given a graph G = (V,A) (in our case,
directed), a set of required arcs AR ⊆ A, and a set of costs cij (associ-
ated with traversing the arc (i, j)), the task is to find a closed path that
traverses each required arc at least once and minimizes the total traversal
cost. This problem is solved in two steps: the first step is finding an Eu-
lerian augmentation of the original graph; the second step is finding the
Eulerian cycle in this augmented graph. The second step can be performed
easily and efficiently in polynomial time (Hierholzer’s algorithm).

Other common notation includes:

• δ(v) = out-degree − in-degree

• D+ and D− are the set of vertices with δ(v) > 0 and δ(v) < 0.

• Z0
+ is the set of non-negative integers, (N).

2.2 Common Algorithms

In the course of developing the library, certain graph algorithms are fairly preva-
lent and useful to have split off and available for all solvers / users of the library
to have access to. Currently, these include:

• Floyd-Warshall All-Pairs Shortest Paths Algorithm

• Dijkstra’s Single-Source Shortest Paths Algorithm with Priority Queue
Implementation

• Min-Cost Flow Algorithms (Cycle-Cancelling, and Successive-Shortest Paths
now implemented).

We detail these algorithms in the following section.

2.2.1 The Cycle-Cancelling Min Cost Flow Algorithm

In order to obtain a minimum cost solution to the flow problem, we have sev-
eral options. Currently, we have included both a cycle-cancelling algorithm, as
well as a successive shortest paths algorithm. It is worth noting that our SSP
implementation significantly outperforms our cycle-cancelling implementation,
so while we shall review the algorithmic details of both here, only the latter is
currently called by our solvers.

4



The cycle-cancelling algorithm proceeds by forming residual graphs, detect-
ing the presence of negative cycles, and cancelling said cycles by pushing flow
around them. Before we may form the residual graph, though, we must first
find a feasible solution to the flow problem, (that is, find any acceptable flow
that satisfies the demands, irrespective of cost). Since the flow problem is usu-
ally formulated on capacitated graphs (where edges or arcs can only support
a finite amount of traffic), the well-known algorithms all take this into consid-
eration (Ford-Fulkerson is the classical algorithm for solving the min cost flow
problem). However, in all of these problems, we are working with uncapaci-
tated graphs, and so we may greedily construct a feasible path in the following
manner:

• Select any node with excess in-degree, call it u.

• Select any node with excess out-degree, call it v.

• Add min |δ(u)|, |δ(v)| shortest paths from u to v.

Assuming we have shortest paths (which we shall explain how to find later),
if we simply repeat this procedure until all nodes are symmetric, then we shall
have constructed a feasible solution to the flow problem.

Now, we must introduce the notion of a residual graph. Given a graph G,
and a feasible solution X to a flow problem, we may construct its residual graph
GX as follows:

• Every vertex in G is also a vertex of GX .

• For each arc (i, j) with capacity rij and cost cij in the original graph G,
add two arcs to GX : one arc (i, j) with capacity rij−fij and cost cij , and
one arc (j, i) with capacity fij and cost −cij . Here, fij is the amount of
flow pushed along the original arc in X.

Now, once we have the residual graph, we simply compute shortest paths
from a vertex to itself. If this value is negative, we know a negative cycle
exists. We then cancel this cycle by pushing as much flow as possible in the
opposite direction (this is trivial to find; it is simply the minimum capacity
along the cycle). Once no more negative cycles exist, the algorithm terminates,
and the directed graph we are left with represents a least cost solution to the
flow problem.

2.2.2 The Successive Shortest Paths Algorithm

The Successive Shortest Paths Algorithm proceeds by converting the problem
into a single-source, single-sink flow problem, and then repeatedly pushing flow
along the shortest possible path from the source to the sink. In order to perform
this conversion, a single source vertex, and a single sink vertex is added to the
network. Then, for each vertex vs with supply, a zero-cost arc is added from the
source vertex to vs. This arc has capacity equal to the supply of vs. Similarly,

5



Figure 1: A flow network on which we may run the Cycle-Cancelling algorithm.
For each arc, the numbers shown represent (current flow) / (arc capacity), (cost).
Meanwhile, the numbers in green represent the amount of supply that the as-
sociated vertex has, and the numbers in red indicate demand. Here we see an
initial, non-optimal feasible flow which cycle-cancelling will iteratively improve
upon.

Figure 2: The residual graph induced by the initial flow in the previous figure.
Here, we see (highlighted in red) the presence of a negative cycle, around which
we are entitled to push 1 flow around (restricted by the arc from vertex 1 to
vertex 2).

for each vertex with demand vd, a zero-cost arc is added from vd to the sink,
with capacity equal to the demand of vd.

From here, the process is conceptually simple; we calculate a shortest path
from source to sink using Dijkstra’s Algorithm for single-source shortest paths,
and then push as much flow as possible along that path. Just as in the Cycle-
Cancelling Algorithm, we then form the residual graph given our new flow, and
then repeat. The algorithm terminates when there are no more paths from
source to sink. At this point, we obtain our flow solution by simply removing
the source and sink vertex, (as well as all incident arcs).

6



Figure 3: The resulting residual graph after 1 flow has been pushed around the
negataive cycle in the previous figure.

The only complication that remains is to resolve a complication that arises to
limitations with Dijkstra’s Algorithm; namely, it’s inability to deal with negative
edge costs. Obviously, negative edge costs arise frequently in residual graphs, so
this concern is non-trivial. However, we avoid having negative costs by reducing
the arc costs at each iteration of the method in the following manner. Consider
an arc aij , with original cost cij . Then we set its cost to cij + dist(j)− dist(i)
where dist(j) is the shortest path distance from the source to vertex j.

Since we have to repeatedly call Dijkstra’s Algorithm at worst on the order
of O(nB) times, where B is an upper bound on the supply of any node, then
we can guarantee a complexity of O(n2B log n+ nmB)

Figure 4: A flow network on which we may run the Successive Shortest Paths
algorithm.

2.2.3 The Floyd-Warshall All-Pairs Shortest Paths Algorithm

There are variety of algorithms to calculate shortest paths, but because of our
choice of supporting algorithms (particularly the min cost flow algorithm), the
Floyd-Warshall algorithm (with path reconstruction) will be one of the ideal
ones to implement.

7



Figure 5: The modified flow network, where each vertex in the original flow
network that had positive supply has been connected to a new source vertex,
and each vertex in the original flow network that had positive demand has been
connected to the new sink vertex. These added connections all have zero cost,
and capacity equal to the supply/demand of the node in the original graph, (e.g.
the connection to vertex 1 has capacity 5).

The Floyd-Warshall algorithm proceeds very simply; we construct two |V |×
|V | matrices. The first matrix D, will store shortest path distances, where dij
will represent the shortest path cost of getting from vertex i to vertex j. The
second matrix P will store information about exactly what the path is; pij will
hold the next node in the shortest path from node i to node j.

initially, diagonal elements of D are set to 0, and for each edge (i.j) in the
graph, dij is set to cij , (we are assuming this is not a multigraph; otherwise,
we take the cheaper of the two). Every other entry in D is set to infinity (some
arbitrarily high number that is greater than the sum of the edge costs), while
every entry in P is set to some dummy value, (−1 will suffice). Finally, we
iterate through all vertex triples (i, j, k), and ask whether the dik + dkj < dij .
If so, the new, cheaper cost is stored in dij , and pij gets set to k to signify that,
in the shortest path from node i to node j, the next node in the walk is k.

Since all we are doing is traversing ordered triples (i, j, k) where each is
allowed to be any number from 1 to n, then clearly the asymptotic complexity
is O(n3).

2.2.4 Dijkstra’s Single-Source Shortest Paths Algorithm

Similarly to the Floyd-Warshall All-Pairs Shortest Paths Algorithm, Dijkstra’s
algorithm proceeds by maintaining an array of distances and path information
that we update by examining links in the graph. However, since we are only con-
cerned with a single vertex as the starting point, this cuts down the complexity
of the problem by a factor of roughly n.

More precisely, the algorithm begins by initializing all distances to infinity,
and then examining each of the neighbors of the starting vertex, and assigning
them distances equal to the cost of the edge between them and the starting
vertex. Each of these neighbors is then added to a list which contains vertices
left to be examined. The algorithm proceeds by choosing the vertex in the list

8



with the cheapest distance associated with it, and then repeats the process of
examining its neighbors and updating the distance and path arrays. Each of
these neighbors is added to our list, and when we have finished examining all of
a vertex’s neighbors, it is ejected from our list. The algorithm terminates when
all vertices have been exhausted.

Since the algorithm considers each edge once, and adds vertices to a priority
queue that requiresO(n log n), then we have that the algorithm isO(m+n log n).

Figure 6: An intermediate step of Dijkstra’s Algorithm, where vertex 1 is the
source vertex, and we have already assigned distances to nodes 2, 3, and 6. Once
we have examined all of 1’s neighbors, we then choose the vertex with the least
distance from the source (that hasn’t yet been interrogated), and repeat the
process. In this case, 2 was selected as the next node for interrogation, and the
algorithm is currently considering whether or not going from source → vertex
2 → vertex 3 beats the previously recorded best distance of 9. It does not, so
vertex 3 will retain its distance of 9.

2.3 The Directed Chinese Postman Problem

In light of the notion of an Eulerian graph, (as will be the strategy in general),
it suffices to find a least-cost way of augmenting the original graph in order to
make it Eulerian. Obviously, on the augmented graph, the Euler cycle (that
is guaranteed to exist) is an optimal solution to the CPP. With this in mind,
we formulate the problem as an integer program that attempts to minimize the
cost of the arcs we are adding.

9



Problem Statement:

minimize
∑

i or j∈{D+∪D−}

cijxij

subject to: ∑
j∈D+

xij = −δ(i), ∀i ∈ D− (1)

∑
i∈D−

xij = δ(j), ∀j ∈ D+ (2)

xij ∈ Z0
+ (3)

Intuitively, the variable xij represents the number of times we’ve added a
shortest path from node i to node j in the augmented graph (with cij is the
shortest path cost). Thus, the objective function is the total additional cost
incurred by the augmentation. Meanwhile, constraints (1) and (2) ensure that,
once we’ve added these shortest paths, the graph is completely symmetric.

Figure 7: An example of a directed graph, upon which the the Directed Chinese
Postman Problem may be solved.

2.3.1 An Exact Algorithm for the Directed Chinese Postman Prob-
lem (1)

Recall that for a directed graph, we require that, in order to be Eulerian, each
node must exhibit symmetry. To that end, we first identify the net degree of
each node in our graph (the sign convention is not so important, but we’ll define
it as δ(v) = out-degree − in-degree). This leaves us with three classes of nodes.
Those that originally have an excess of outgoing arcs, those that have an excess
of incoming arcs, and nodes that are already balanced. This last group of nodes
requires no additional consideration, since they are currently balanced, and any
paths we add to the graph from one unbalanced node to another will keep them
balanced. Thus, our goal is simply to find a least cost way to add a series of
paths to the graph from nodes with too many incoming arcs to one with too
many outgoing arcs at minimal cost.

10



To do this, we use a min cost flow algorithm to solve the emergent flow
problem. In a flow problem on a graph, each node is assigned a demand, (nega-
tive demand corresponds to supply), and a least cost way is sought of satisfying
these demands, (where edge costs reflect per unit transportation costs). In our
case, the demand of node v corresponds exactly to δ(v).

Finally, in order to actually obtain the tour, (and not simply its cost), we
use Hierholzer’s algorithm, which greedily moves from vertex to vertex on the
augmented graph, deleting edges once they have been traversed. We continue
until we return to the starting vertex, at which point our current solution con-
tains a cycle. Then, check to see if there are any remaining edges incident to
a previously visited vertex v. If not, then we are done; if so, then repeat the
process, with v as the new starting vertex. Once this process terminates, we
simply merge all the subcycles to get the full tour.

Figure 8: The solution to the DCPP on the previous graph. Blue nodes are
identified as belonging to D−, and red nodes to D+ in the initial phase of the
algorithm. Arcs added as part of the min-cost flow solution are shown in red.

2.3.2 Pseudocode

/*

* DCPP Solver

*

* Input:

* Graph G

* Set<Vertex> Dall - the set of all unbalanced vertices

* Output: Optimal Chinese Postman Tour

*

*/

public Path solve(Graph G, Set<Vertex> Dall)

{

//setup demands and supplies

foreach(Vertex v: Dall)

{

v.setDemand(v.getDelta());

}

11



//solve min cost flow

ArrayList<Path> flowSolution = SSPminCostFlow(G);

//add the flow solution

foreach (Path p: flowSolution)

{

G.add(p);

}

return Hierholzers(G);

}

2.4 The Undirected Chinese Postman Problem

Problem Statement:

minimize
∑

(i,j)∈E

cijxij

subject to: ∑
(i,j)∈Ev

(xij + 1) ≡ 0 mod 2,∀v ∈ V (4)

xij ∈ Z0
+ (5)

Here, xij represents the number of additional copies of edge (i, j) in our
augmented graph. As before, we wish to minimize the added cost, while ensuring
evenness of the augmented graph, (constraints (1) and (2) achieve this).

Figure 9: An example of a undirected graph, upon which the the Undirected
Chinese Postman Problem may be solved.

2.4.1 An Exact Algorithm For The Undirected Chinese Postman
Problem (2)

The algorithm for the Undirected Chinese Postman Problem is extremely similar
to that for the directed variant. We know that an Euler Tour must exist on an
undirected graph if every node has even degree, (intuitively, every time we enter

12



a node, we may exit it using a new edge). Thus, the only thing that changes
here is that, rather than worrying about in-degree and out-degree, we simply
seek to pair nodes of odd degree together in a least cost way (so rather than
solving a more complex flow problem, we may solve a min cost perfect matching
problem). It suffices to identify all of the odd-degree nodes, and carry out a
matching algorithm on those (trivially, there will be an even number of them,
so parity is not a concern) to solve the undirected Chinese Postman Problem.

Figure 10: The solution to the UCPP on the previous graph. Red nodes are
identified as odd in the initial phase of the algorithm. Edges added as part of
the matching solution are shown in red.

2.4.2 Pseudocode

/*

* UCPP Solver

*

* Input: Graph G

* Output: Optimal Chinese Postman Tour

*

*/

public Path solve(Graph G)

{

//form odd

Set odd;

foreach(Vertex v: V)

{

if(v.getDelta() % 2 == 1)

{

odd.add(v);

}

}

//compute shortest paths

int[][] shortestPathsMatrix = shortestPaths(odd, G);

//setup matching graph

Graph matchingGraph;

13



foreach(Vertex v1: V)

{

foreach(Vertex v2:V)

{

if(v1 == v2)

continue;

matchingGraph.addEdge(v1, v2, shortestPathsMatrix[v1][v2]);

}

}

//solve min cost matching

ArrayList<Pair> matchSolution = minCostMatching(matchingGraph);

//add the matching solution

foreach (Pair p: matchSolution)

{

G.addShortestPath(p.getFirst(), p.getSecond());

}

return Hierholzers(G);

}

2.5 The Mixed Chinese Postman Problem

Problem Statement:

minimize
∑

s∈{A∪Ê∪Ĕ}

csxs

subject to:

y′e + y′ẽ ≥ 1, ∀e ∈ E (6)

xs = y′s + ys, ∀s ∈ A ∪ Ê ∪ Ĕ (7)∑
s∈S+

v

xs −
∑
s∈S−

v

xs = 0, ∀v ∈ V (8)

y′a = 1, ∀a ∈ A (9)

y′e ∈ {0, 1}, ∀e ∈ Ê ∪ Ĕ (10)

ys ∈ Z0
+ (11)

First, some notation: y′s is 0 if link s is never traversed, and 1 if it is; ys is
the number of additional times link s is traversed. The set Ê contains edges e
that are traversed from i to j in the solution, while the set Ĕ contains edges
ẽ that are traversed from j to i. Thus, xs is the total number of times link s
is traversed, and so constraint (1) ensures that each edge is traversed at least
once, constraint (2) defines xs, constraint (3) ensures symmetry, constraint (4)

14



ensures that arcs are traversed at least once, and constraints (5) and (6) are the
binary constraint for y′s and the integrality constraint for the ys

Figure 11: An example of a mixed graph, upon which the the Mixed Chinese
Postman Problem may be solved.

2.5.1 Even-Symmetric-Even (3)

The first heuristic we plan to implement has the same intuitive motivation as
the exact algorithms for the DCPP and UCPP: namely, we try to augment the
graph to reach an Eulerian supergraph in which we know we may locate an
Euler tour. In order for a mixed graph to be Eulerian, it must fulfill both of the
following properties:

• Evenness: Each node as an even number of incident links.

• Balanced : For each subset of nodes V , the number of undirected arcs
between V and V \ S must be greater than or equal to the difference
between the number of arcs from V to V \S and the number of arcs from
V \S to V . (Intuitively, this second condition ensures that we cannot get
’stuck’ in a portion of the graph.)

Prima facie, it is difficult to see how one would easily verify the second prop-
erty, and so this particular heuristic instead aims to create an even, symmetric
graph, (which, in general, is guaranteed to be balanced).

The Even-Symmetric-Even heuristic has three eponymous phrases; in the
first, it achieves evenness by carrying out a min-cost matching among the odd-
vertices, in the second, it achieves symmetry by using a min-cost flow algorithm
on the asymmetric nodes, and in the third, it restores evenness by looking for
cycles that may be eliminated safely (because the consist ’mostly’ of links that
were added in the previous two phases).

1. Phase I, Even: Solve the UCPP on the original graph, treating all arcs as
edges. This will produce an augmented graph GE .

2. Phase II, Symmetric: Solve a min cost flow problem on GE , treating each
edge (u, v) as four arcs: the first two (u, v) and (v, u) with cost equal to
the original edge cost and infinite flow capacity; and two (u, v) and (v, u)

15



with zero cost, and flow capacity of 1. If the solution to the flow problem
singularly walks edge (u, v), (that is, in the flow solution, arc (u, v) is only
traversed once, or arc (v, u) is traversed only once), then we ’orient’ the
edge in that direction, otherwise it remains as an edge in our output graph
GS .

3. Phase III, Even: Greedily search for cycles that consist of paths between
any odd-degree nodes left in GS (if there are none, Phase III is unnec-
essary). Importantly these paths must alternate between only containing
arcs / oriented edges added in Phase II, and only containing edges left
undirected by Phase II. In this way, we ensure that only the parity of
the odd-degree nodes is changed, while also assigning a direction to all
remaining undirected edges. There is a chance that no such cycle exists,
and that there are still undirected edges, but the graph will be Eulerian
at this point, and so we are done. Once we find one of these alternating
paths, we orient it (either direction will be equivalent) and duplicate arc-
s/oriented edges along the path that follow the orientation, while deleting
arcs that are in the opposite direction. Meanwhile, for the sections of the
cycle that consist entirely of undirected edges, we simply orient them in
the direction we have chosen to orient the cycle.

Figure 12: The solution to the MCPP on the previous graph. The red arc (2, 5)
is added in the initial Even phase, while all other red links are added in the
Symmetric phase. The thicker red arrows are to indicate that the edges in the
original graph were oriented in the corresponding direction.

2.5.2 Pseudocode

/*

* MCPP Solver

*

* Input: Graph G

* Output: Optimal Chinese Postman Tour

*

*/

public Path solve(Graph G)

16



{

//Phase I: Even

//Solve the UCPP on G, ignoring link direction

Graph G_alt = G;

//make all edges undirected

foreach(Edge e : E_alt)

{

e.setType(Undirected);

}

ArrayList<Path> ucppAugmentation = UCPPAugment(G_alt);

//add the ucpp augmentation

foreach (Path p : ucppAugmentation)

{

G.add(p);

}

//Phase II: Symmetric

//Solve the DCPP on a modified digraph

Graph G_E = G;

//modify the graph to replace edges with four arcs, (two free

and artificial, but with capacity 1).

foreach(Edge e : E_E)

{

if(e.getType() == EDGE.UNDIRECTED)

{

G_E.remove(e);

G_E.add(new Arc(e.getFirst(), e.getSecond(),

e.getCost()));

G_E.add(new Arc(e.getSecond(), e.getFirst(),

e.getCost()));

G_E.add(new Arc(e.getFirst(), e.getSecond(),

0).setCapacity(1));

G_E.add(new Arc(e.getSecond(), e.getFirst(),

0).setCapacity(1));

}

}

//Solve the DCPP on the updated G, breaking edges up into two

arcs

ArrayList<Path> flowSolution = SSPminCostFlow(G_E);

//add the dcpp augmentation, and keep track of whether an edge

gets oriented

foreach (Path p: dcppAugmentation)

{

17



foreach (Arc e: p)

{

if(e.isArtificial())

{

e2 = e.getPartner();

//if we have flow along both artificial arcs,

then leave it undirected

if(p.contains(e2))

{

G.get(e).setType(EDGE.UNORIENTED_PERM);

p.remove(e2);

}

}

//add a copy of the non-artificial arc for each

time it appears in the flow solution

else

{

G.add(e);

}

}

}

//Phase III: Even

Set odd;

foreach (Vertex v : V)

{

if(v.getDegree() % 2 == 1)

{

odd.add(v);

}

}

while(!odd.isEmpty())

{

Vertex vs = odd.getFirst();

Vertex v = vs;

while (odd.contains(v))

{

odd.remove(v);

do

{

//here, added edges is the set of arcs

added in Phase II

addedEdges.remove(<v,w>)

if (<v,w>.getHead() == w )

{

G.add(<v,w>);

}

else

18



G.remove(<w,v>);

v = w;

} while (odd.contains(v))

odd.remove(v);

do

{

//here, unoriented is the set of still

unoriented edges

unoriented.remove((v,w));

G.add(v,w);

v = w;

} while (odd.contains(v) || v == vs)

}

}

return Hierholzers(G);

}

2.5.3 Shortest Additional Path (4)

While most other heuristics for the MCPP do roughly the same thing as Even-
Symmetric-Even, (and then sometimes implement an improvement procedure
on the generated solution), the Shortest Additional Path Heuristic (SAPH)
performs the bulk of its work on a graph that may not even contain a feasible
Euler tour, but manages to ensure that the final output does.

The initial step of SAPH is in fact identical to the second phase of the Even-
Symmetric-Even heuristic (where the graph is transformed into a symmetric
one). The heuristic then proceeds by exploiting two ideas: first, suppose that
an edge or arc was added to the original graph, and oriented from node A to
node B. Then, if the shortest path cost of going from node A to B is less than
the cost of traversing this added link, then we ought to replace said link with
the shortest path from A to B.

Figure 13: An example of the first SAPH idea, where we replace an added link
(red) with a cheaper shortest path.

19



Second, if an edge was oriented from node A to B, and the two shortest
paths have costs that sum to less than zero, then it’s advantageous to use
ShortestPath(A → B), (B → A), ShortestPath2(A → B). Although this sec-
ond case may seem like a bizarre one to investigate (since the shortest path costs
will generally be positive), it is an important one to consider for the SAPH be-
cause we may consider a path from A to B as traversing added arcs in the
opposite direction (which would correspond to deleting them) and incurring the
negative of its cost.

Figure 14: An example of the second SAPH idea, where we reverse the orienta-
tion of an edge and add two ’paths’ from node i to j which sum to a negative
cost.

Figure 15: Taken from (4). Edges and arcs in G must end up in one of the
following configurations in G∗:

••••••• If an edge remains undirected, it is of type a.

• If an edge gets directed, but not copied, it is of type b.

• If an edge gets directed and copied, but all copies are in the same direction,
then it is of type c.

• If an edge gets copied once, and oriented in the opposite direction as the
original, it is of type d.

• If an arc is not copied, it is of type e.

• If an arc is copied, it is of type f

20



1. Given a mixed graph G, generate a graph G∗ = (N,M,U) and set of
added arcs M∗ by solving Phase II of Even-Symmetric-Even on G. Also,
generate a graph GM = (N,E+EM , A+AM ) by solving Phase I of Even-
Symmetric-Even on G, where EM and AM are the sets of edges and arcs
added from the matching.

2. Choose a random edge/arc in G∗ of type a, c, d or f .

3. Initialize two graphs G1
ij = G and G2

ij = G

4. Perform Cost modification 1 on G1
ij .

5. Perform Cost modification 2 on G1
ij and G2

ij .

6. Apply the first shortest paths idea to the chosen edge/arc.

7. Repeat all steps until there are no more edges of type a, c, d or f .

8. Choose a random edge of type b.

9. Apply the second shortest paths idea to the chosen edge/arc.

10. Go back to Step 8 until there are no more edges of type b.

11. If we were at all able to apply the second shortest paths idea to make any
improvements, go back to step 1.

12. If there are any more edges (i, j) of type a left in G∗, orient it from i to
j, and add a copy (j, i)′ oriented in the opposite direction.

All that remains is to elaborate on exactly what these cost modification
procedures are, and what their objective is.

Cost modification 1 : This procedure tries to force our shortest paths algo-
rithm to traverse links from the matching solution.

1. Given a graph Gij , and GM , and a nonpositive number K, find all edges
(f, g) inGij that are also in EM , and, (inGij), set the costs cfg = cgf = K.

2. Locate in Gij , all arcs from AM . If they area of type f (in G∗), then set
the costs cfg = cgf = K. If the arc is of type e, then set cfg = 0, cgf =∞

Cost modification 2 : This procedure tries to force our shortest paths algo-
rithm to traverse links that will benefit from our two improvement procedures
at the same time as we examine our chosen link, (which may, for instance, get
eliminated as part of a shortest ’path’ from i to j).

1. Given graphs Gij , and G∗, find all edges (f, g) in G∗ that are of type a
or d. Also, let c∗fg denote the cost of link (f, g) in the original graph G.
Then, set the costs cfg and cgf in Gij to be −c∗fg and −c∗gf .

2. Locate in G∗ all links (f, g) of type c or f , and set the cost cgf in Gij to
−c∗fg

3. At whatever point in the process this procedure is being called, set the cost
of the selected link in Gij to∞ in both directions, (that is cfg = cgf =∞).

21



2.5.4 Pseudocode for SAPH Concepts

/*

* SAPH Concept 1

*

* Input: Graph G1, G2, G_star, link L

* Output: A modified G_star after applying SAPH Concept 1

*

*/

public Graph SAPH1(Graph G1, Graph G2, Link L, Graph G_Star)

{

Graph G_modified = G_Star;

int tempCost = L.getCost();

L.setCost(INFINITY);

Vertex v1 = L.getTail();

Vertex v2 = L.getHead();

Path[][] shortestPathsSolution = shortestPaths(G1);

L.setCost(tempCost); //reset the cost

int cost_ij = 0; //in G2

int cost_ji = 0;

foreach(Link L: shortestPathsSolution[i][j])

{

cost_ij += G2.getCost(L);

}

foreach(Link L: shortestPathsSolution[j][i])

{

cost_ji += G2.getCost(L);

}

if(cost_ij < tempCost && cost_ij < cost_ji)

{

G_modified.add(shortestPathsSolution[i][j]);

}

else if (cost_ji < tempCost && cost_ij > cost_ji)

{

G_modified.add(shortestPathsSolution[j][i]);

}

eliminateCycles(G_modified);

return G_modified;

}

/*

* SAPH Concept 2

*

* Input: Graph G, G_star, Edge e

* Output: A modified G_star after applying SAPH Concept 2

22



*

*/

public Graph SAPH2(Graph G, Edge e, Graph G_Star)

{

Graph G_modified = G_Star;

Graph G_temp = G_Star;

Graph G3 = new Graph(G);

Graph G4 = new Graph(G);

//cheapest path

costModify2(G3, G_Star); //the second cost modification

described later

Path[][] shortestPathsSolution3 = shortestPaths(G3);

G_temp.add(shortestPathsSolution3[i][j]);

//second cheapest path

costModify2(G4, G_modified);

Path[][] shortestPathsSolution4 = shortestPaths(G4);

//if sum of costs is negative, add them to the graph, and remove

the original added edge

if (shortestPathsSolution3[i][j].getCost() +

shortestPathsSolution4[i][j].getCost() < 0)

{

G_modified.add(shortestPathsSolution3[i][j]);

G_modified.add(shortestPathsSolution4[i][j]);

e.reverseOrientation();

}

eliminateCycles(G_modified);

return G_modified;

}

2.6 The Windy Postman Problem

Problem Statement:

23



minimize
∑

e+∈E+

ce+xe+ +
∑

e−∈E−

ce−xe−

subject to: ∑
e+∈E+

xe+ −
∑

e−∈E−

xe− = 0, ∀v ∈ V (12)

xe+ + xe− ≥ 1, ∀e ∈ E (13)

xe+ , xe− ∈ Z0
+, ∀e ∈ E (14)

As is to be expected, the formulation of the CPP on a windy graph bears
a close resemblance to the formulation of the CPP on an undirected graph.
This time, xe+ and xe− represent the number of times an edge e is traversed
in the forward direction, and in the reverse direction respectively. With this in
mind, constraint (1) enforces symmetry for each vertex (whenever we enter, we
must leave), while constraints (2) and (3) are the usual traversal and integrality
requirements.

Figure 16: An example of a windy graph, upon which the the Windy Postman
Problem may be solved. Notice that each of the edges now has two costs. As a
matter of convention here, the first one will be the cost of traversing the edge
from i to j where i < j, and the second is obviously the cost of traversing it in
the opposite direction.

2.6.1 Win’s Algorithm (5)

With the Windy Postman Problem, the strategy is a bit different than it has
been for the previous three cases. The reason is that, before, we could precisely
quantify a priori the cost of an augmentation. For instance, if we added edges
whose costs summed to 15, then if we could find an Eulerian augmentation
which added edges whose costs summed to 12, it would obviously be preferable.

24



Unfortunately, we don’t have that luxury here, since we aren’t sure which di-
rection the postman will traverse the edge in his tour, and so the cost of adding
an edge is more difficult to assess.

Win’s algorithm attempts to address this difficulty in the simplest way pos-
sible: it considers average costs. Thus, is solves the UCPP on the graph GĒ

which is identical to the input graph G except that it is undirected, with costs

c̄ij =
cij + cji

2
. Thus produces an Eulerian augmentation to the original graph.

Now, we run a polynomial time algorithm that determines the optimal tour on
this augmented graph:

1. Given the Eulerian graph G, form the digraph DG = (V,A) where the
vertex set is identical to that of G, and for each edge in G, if cij < cji,
then arc (i, j) is added to A. Otherwise, arc (j, i) is added to A.

2. Create a second digraph D′ = (V,A′) by, for each arc (i, j) ∈ A, adding 3
arcs to A′: one arc (i, j) with cost cij and infinite capacity, one arc (j, i)

with cost cji and infinite capacity, and one arc (j, i)′ with cost
cji − cij

2
and capacity 2. This last arc is referred to as being artificial.

3. Solve a min cost flow problem on D′, with demands calculated as they are
for the DCPP on DG.

4. Construct an Eulerian digraph D′′ = (V,A′′) in the following manner. If,
in the flow solution, there is 0 flow along the arc (j, i)′, then add 1 + xij
copies of arc (i, j) to A′′. Otherwise, add 1 +xji copies of arc (j, i) to A′′.
The Euler cycle on this digraph is an optimal solution to the WPP on G.

Figure 17: The solution to the WPP on the previous graph. The red arcs are
added as part of the flow solution.

25



2.6.2 Pseudocode

/*

* WPP Solver

*

* Input: Graph G

* Output: Approximate solution (path over the G) to the WPP.

*

*/

public Path solve(Graph G)

{

//solve the UCPP on a modified graph that has average costs.

Set E_Undir = new Set();

Graph G_Undir = (V, E_Undir);

//calculate average costs

foreach (Edge e : E)

{

E_Undir.add(new Edge(e.getFirst(), e.getSecond(), (c_ij +

c_ji / 2));

}

//form odd

Set odd;

foreach(Vertex v: V)

{

if(v.getDelta() % 2 == 1)

{

odd.add(v);

}

}

//compute shortest paths

int[][] shortestPathsMatrix = shortestPaths(odd, G);

//solve min cost matching

ArrayList<Path> matchSolution =

minCostMatching(shortestPathsMatrix, odd);

//add the flow solution

foreach (Path p: flowSolution)

{

G.add(p);

}

//Now run Win’s Algorithm to find the optimal WP Cycle on the

Eulerian Graph produced

//by our solution to the UCPP

Set A = new Set();

Set A_prime = new Set();

26



Set A_dprime = new Set();

Graph D_G = (V, A);

Graph D_prime = (V, A_prime);

//Add an arc in the direction of lesser cost for each edge in E

foreach (Vertex e : E)

{

if (c_ij < c_ji)

{

A.add(new Arc(i,j,e.getCost()));

//artificial arc in the high cost direction

A_prime.add(new Arc(j,i,(c_ji - c_ij) /

2).setFlow(2))

}

else

{

A.add(new Arc(j,i,e.getCost()));

//artificla arc in the high cost direction

A_prime.add(new Arc(i,j,(c_ij - c_ji) /

2).setFlow(2))

}

A_prime.add(new Arc(i,j,e.getCost()));

A_prime.add(new Arc(j,i,e.getCost()));

}

ArrayList<Path> minCostSolution = minCostFlow(D_prime);

int[][] flowSolution = new int[][]; //entry is amount of flow

pushed through the arc i,j in the flow solution

int[][] usedArtificial = new int[][]; //entry is 1 if we used

the artificial arc in the flow solution, 0 oth.

foreach(Path p: minCostSolution)

{

foreach(Arc a: p)

{

flowSolution[a.getTail()][a.getHead()] += 1;

//increment the guy in the flow solution matrix

if (a.isArtificial())

usedArtificial[a.getTail()][a.getHead()] =

1;

}

}

for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

//If the artificial guy appears in the flow

solution, then add 1 + x copies of the

opposite direction arc

27



if(usedArtificial[i][j] == 1)

{

for(k=0;k<=flowSolution[j][i];k++)

{

A_dprime.add(new Arc(j,i,c_ji));

}

}

else

{

for(k=0;k<=flowSolution[i][j];k++)

{

A_dprime.add)new Arc(i,j,c_ij);

}

}

}

}

Graph G_final = new Graph(V,A_dprime);

return Hierholzers(G_final);

}

2.6.3 Benavent’s H1 (6)

This algorithm is essentially an improvement over Win’s original algorithm in
that it attempts to anticipate the results of the min-cost flow problem earlier
in the process. In order to accomplish this, edge costs are modified before the
matching is solved (to produce an Eulerian undirected graph):

1. Given the original windy graph G = (V,E), calculate the average edge

cost for the whole graph (Ca =
1

2|E|
∑

(i,j)∈E cij + cji). Now, consider

edge set E1 = (i, j) ∈ E : {|cij − cji|} > K ∗Ca. Also, define E2 = E\E1.

2. Set up a digraph Gd
R = (V,A′), where, for each e ∈ E, add 2 arcs in A′,

(i, j) with cost cij and infinite capacity, and (j, i) with cost cji and infinite
capacity. Then, for each e ∈ E1, add an additional artificial arc (j, i) with

cost
cji − cij

2
and capacity 2.

3. Solve a min cost flow problem, with demands given by a reduced graph
G′ = (V,A) which contains an arc (i, j) for each edge (i, j) ∈ E1, (here
we assume cij < cji so that the arcs in A are in the direction of cheaper
traversal).

4. Compile a list L of edges such that:

• e ∈ E1 and, in the flow solution, there is positive flow across its
corresponding (non-artificial) arcs.

28



• e ∈ E2 and, in the flow solution, there is at least a flow of 2 across
its corresponding (non-artificial) arcs.

5. For each edge e ∈ L, set its cost to 0 in the original graph, and then
compute the min-cost matching, just as in Win’s algorithm. Then, set all
costs back to what they were in the original graph, and proceed normally
as in Win’s algorithm.

2.6.4 Pseudocode

/*

* WPP Solver2

* H1

*

* Input: Graph G

* Output: Approximate solution (path over the G) to the WPP.

*

*/

public Path solve(Graph G)

{

//compute average traversal cost

int sumCost;

foreach(Edge e: E)

{

sumCost += c_ij + c_ji;

}

double averageCost = sumCost / (2*E.getSize());

double cutOff = .2*averageCost;

//figure out the high disparity edges, and care for them first.

Set E_1, E_2;

foreach(Edge e: E)

{

if (abs(c_ji - c_ij) > cutOff)

{

E_1.add(e);

}

else

E_2.add(e);

}

Set A_prime;

Set A; //holds only arcs in E_1 (cheaper direction of the edge)

Graph G_Rd = (V, A_prime);

foreach(Edge e: E)

{

A_prime.add(new Arc(i,j,c_ij));

A_prime.add(new Arc(j,i,c_ji));

29



if(E_1.contains(e))

{

if(c_ij < c_ji)

{

A_prime.add(new Arc(i,j,c_ij).setFlow(2));

A.add(new Arc(i,j,c_ij);

}

else

{

A_prime.add(new Arc(j,i,c_ji).setFlow(2));

A.add(new Arc(j,i,c_ji);

}

}

}

//use demands from reduced graph

Graph G_E_1 = (V,A);

G_Rd.setDemands(G_E_1);

Set L;

ArrayList<Path> minCostFlowSolution = minCostFlow(G_Rd);

foreach(Path p: minCostFlowSolution)

{

foreach(Edge e: p)

{

if (E_1.contains(e) &&

minCostFlowSolution.contains(a_ij))

L.add(e);

else if(E_2.contains(e) &&

minCostFlowSolution.contains(a_ji))

L.add(e);

}

}

//solve a min cost flow on the reduced cost graph (produced by

solution to flow problem)

Set E_ReducedCost = E;

Graph G_ReducedCost = (V,E_ReducedCost);

foreach(Edge e: E_ReducedCost)

{

if(L.contains(e))

e.setCost(0);

}

ArrayList<Path> minCostMatchingSolution =

minCostMatching(G_ReducedCost);

foreach(Path p: minCostMatchingSolution)

{

G.add(p);

}

30



return WPPSolver(G);

}

2.7 The Directed Rural Postman Problem

Problem Statement:

minimize
∑
a∈A

caxa

subject to:

xa ≥ 1, ∀a ∈ AR (15)∑
{a∈A:hea=i}

xa −
∑

{a∈A:taa=i}

xa = 0 , ∀i ∈ V (16)

∑
{a∈A:taa∈S 63hea}

xa ≥ 1,∀ ∅ 6= S ⊂ V, |S| ≤ b
|V |
2
c (17)

xa ∈ Z0
+ (18)

This IP formulation is a bit more tricky: constraints (1), (2), and (4) should
look familiar by now; the first enforces traversal of required arcs, the second
enforces that our path is indeed a cycle, and the fourth demands integrality.
However, constraint (3) requires a bit more elaboration. This is a subtour
elimination constraint, that prevents a spurious solutions from consideration.
For example, suppose a vehicle must service two streets, one in the west end
of town, and one in the east. Then, it is unavoidable that this vehicle must
travel the east-west length of town. However, if we did not have constraint (3),
it would be considered feasible to have one small cycle in the west part of town,
and one in the east, but nothing connecting them. Obviously, this will likely be
cheaper than any valid route, but this is clearly not admissible as a candidate
circuit.

2.7.1 Christofides’ Algorithm (7)

Broadly speaking, Christofides’ algorithm begins by simplifying the original
graph (to discard a lot of the unrequired nodes and arcs), and connecting the
required connected components of the graph. It finally solves a min cost flow
problem over the remaining graph to obtain a feasible solution to the DRPP.

1. Given the input graph G = (V,AR ∪ ANR), define the vertex set VR to
be the set of nodes which have at least one required arc incident on them.
Then, consider the graph GR = (VR, AR). We form a modified graph
G′ = (VR, AR ∪ AS) by making it complete, connecting all vertices in VR
with arcs (i, j) that have cost equal to the shortest path in G between

31



Figure 18: An example of a directed graph, upon which the the Directed Rural
Postman Problem may be solved. Green arcs here are required, (i.e. our solution
must traverse them at least once) while black arcs are not. Also, link costs are
omitted for aesthetic reasons.

node i and node j, (these costs are finite because the graph is strongly
connected). These added arcs comprise the set AS . Now, remove from G′

any arc (i, j) ∈ AS that:

• Has cost cij = cik + ckj for some k ∈ VR.

• Is a duplicate of an arc in AR.

2. Now, starting with the digraph G′, collapse connected required compo-
nents into nodes, and solve the minimum spanning arborescence problem
on this collapsed graph. Add arcs found in this shortest spanning arbores-
cence to a set Tta to indicate that the SSA was rooted in the connected
component ta. Our choice of ta here is arbitrary.

3. Solve a min cost flow on the graph G′ with demands calculated as out −
degree− in− degree relative to the arc set AR ∪ Tta , where every arc has
infinite capacity. Let fij be the amount of flow through arc (i, j) in the
flow solution. Then, add fij copies of arc (i, j) to an arc set F . The final
feasible solution graph is given by GS = (VR, AR ∪ Tta ∪ F ).

It is worth mentioning two improvement procedures which we shall attempt
to implement: first, when we constructed the shortest spanning arborescence,
we fixed a root node, and so we may repeat the algorithm with k different SSA’s,
where k is the number of required components of the simplified graph G′, and
choose the best solution; second, once we have constructed our final augmented
graph GS , it’s possible that replacing two arcs (i, j) and (j, l) with the single
arc (i, l) (if this is a valid arc) would leave GS still strongly connected, and so
replacing the two arcs with this one would leave us feasible and at least as good
from a cost perspective.

2.7.2 Pseudocode

32



Figure 19: The solution to the DRPP on the previous graph. Notice that
node 7 has disappeared because of our simplification of the graph, however it
is important to note that c34 will be increased to c37 + c74, and an analogous
alteration will be made for c43.

/*

* DRPP

* Christofides

*

* Input: Graph G

* Output: Approximate solution (path over the G) to the WPP.

*

*/

public Path solve(Graph G)

{

//Set up the required graph

//the required items

Set A_R, V_R;

Graph G_R = (V_R,A_R);

foreach(Arc a: A)

{

if(a.isRequired())

{

A_R.add(a);

V_R.add(a.getTail());

V_R.add(a.getHead());

}

}

//the required strongly connected components

Set<Set<Vertex>> stronglyConnectedComponents =

G_R.getStronglyConnectedComponents();

//make it complete

Path[][] shortestPaths = computeShortestPaths(G,V_R);

for(int i=0;i<V_R.size();i++)

{

for(int j=0;j<=i;j++)

33



{

boolean skip = false;

//don’t add a path if it represents a redundancy

cost = shortestPaths[i][j].getCost();

foreach(Vertex v_k: V_R)

{

if(cost == shortestPaths[i][k].getCost() +

shortestPaths[k][j].getCost())

{

skip = true;

break;

}

}

if(skip)

continue;

//don’t add a copy of a required arc

if(shortestPaths[i][j] == a_ij &&

a_ij.isRequired())

continue;

G_R.add(shortestPaths[i][j]);

}

}

//form a graph on which we solve the minimum spanning

arborescence on

Set V_Collapsed, A_Collapsed;

Graph G_R_Collapsed = G_R.collapse(stronglyConnectedComponents);

Set<Arc> minimumSpanningArborescence = MSA(G_R_Collapsed);

//arc set A_R U minSpanningArborescence

Set A_demands = A_R;

A_demands.addAll(minimumSpanningArborescence);

G_R.setDemands(A_demands);

ArrayList<Path> minCostFLowSolution = minCostFlow(G_R);

foreach(Path p: minCostFLowSolution)

{

G_R.add(p);

}

return Hierholzers(G_final);

}

2.7.3 Benavent’s WRPP1 (8)

Although originally created to deal with the more general Windy Rural Postman
Problem, we may model the DRPP as an instance of the WRPP by assigning
infinite cost to traversing edges in the opposite direction of their corresponding

34



arc. Once we do this, the procedure is identical to Win’s algorithm for the Windy
Postman Problem, except that here, before we begin, we compute the connected
components of the graph induced by the required arcs GR, and connect them
with a shortest spanning arborescence. The arcs that are associated with this
SSA are added to the set of required arcs, forming a new required graph G′R on
which we run Win’s WPP algorithm.

2.7.4 Pseudocode

/*

* DRPP

* Benavent

*

* Input: Graph G

* Output: Approximate solution (path over the G) to the WPP.

*

*/

public Path solve(Graph G)

{

private static final INFINITY = INTEGER.MAX;

//Set up the required graph

//the required items

Set A_R, V_R;

Graph G_R = (V_R,A_R);

foreach(Arc a: A)

{

if(a.isRequired())

{

A_R.add(a);

V_R.add(a.getTail());

V_R.add(a.getHead());

}

}

//the required strongly connected components

Set<Set<Vertex>> stronglyConnectedComponents =

G_R.getStronglyConnectedComponents();

//form a graph on which we solve the minimum spanning

arborescence on

Set V_Collapsed, A_Collapsed;

Graph G_R_Collapsed = G_R.collapse(stronglyConnectedComponents);

Set<Arc> minimumSpanningArborescence = MSA(G_R_Collapsed);

//arc set A_R U minSpanningArborescence

Set A_demands = A_R;

A_demands.addAll(minimumSpanningArborescence);

35



G_R.setDemands(A_demands);

ArrayList<Path> minCostFLowSolution = minCostFlow(G_R);

foreach(Path p: minCostFLowSolution)

{

A_R.add(p);

}

Set E_Windy;

Graph G_W = (V_R, E_Windy);

//Now set up the Windy Graph

foreach(Arc a: A_R)

{

E_Windy.add(new

Edge(a.getTail(),a.getHead(),a.getCost(),INFINITY));

}

return WPP2Solve(G_W);

}

2.8 Results

In the following section, we present computational results for the current con-
tents of the library. All tests were performed on a MacBook Air(August 2012),
running an i5-3427u processor. Whenever possible, we test on publicly available
test instances modeled on real street networks, posted at http://www.uv.es/

corberan/instancias.htm. Our library contains a parser for the format pro-
vided therein which outputs a graph object that is used as input to our solvers.
For the UCPP and DCPP, and the subroutines shown here, we have written
a graph generator that randomly generates a graph given density, number of
vertices, and connectedness (boolean) as inputs.

As mentioned when the details of the algorithm were presented, the Floyd-
Warshall All-Pairs Shortest Paths algorithm ought to have an expected asymp-
totic complexity of O(n3), and indeed, we can see this borne out by our partic-
ular implementation.

Run times for our first attempt at implementing the Successive Shortest
Paths Min-Cost Flow algorithm. This algorithm was deemed necessary after
a cycle-cancelling algorithm produced run times that were prohibitively high.
Performance increased nearly an order of magnitude, even for graphs of rela-
tively small size. Obviously, since the algorithm has super-linear complexity,
this improvement is amplified for more complex instances. Still, an analysis
of the amount of time spent in each subroutine revealed an algorithmic ineffi-
ciency. Namely, an All-Pairs Shortest Paths when calculating the shortest path
along which to push flow, when a Single-Source Shortest Paths algorithm would
suffice (we are always pushing flow from the source to the sink). Thus, once
this correction was made, and Dijkstra’s algorithm was substituted, we achieved

36

http://www.uv.es/corberan/instancias.htm
http://www.uv.es/corberan/instancias.htm


Figure 20: Run times for our implementation of the Floyd-Warshall All-Pairs
Shortest Paths subroutine.

Figure 21: Run times for our implementation of the Successive Shortest Paths
Min-Cost Flow subroutine.

much better run times, as illustrated in Figure 17.
For the Directed and Undirected Chinese Postman Problems, the majority of

the work involved is simply obtaining the solution to the flow / matching prob-
lem induced by the original graph, and so for similar problem complexity, the
two have comparable performance. It is worth noting that in order to solve the
min cost perfect matching problem, we use the publicly available, and extremely
efficient C++ implementation of the Blossom algorithm presented in a paper
by Kolmogorov in 2009. To call this code from Java, we write a simple func-
tion wrapper, and use the Java Native Interface to communicate cross-platform.

37



Figure 22: Run times for our implementation of the Successive Shortest Paths
Min-Cost FLow subroutine (blue), and again after correcting for the algorithmic
inefficiency of using an All-Pairs Shortest Paths algorithm where a single-source
one would suffice.

Figure 23: Run times for our implementation of the Directed Chinese Postman
Problem Exact Solver.

This explains the seemingly sporadic nature of the UCPP Solver’s performance
on smaller problem instances, since in these instances it’s the overhead of calling
the function rather than the function itself that dominates the compute time.

The computational results for Frederickson’s MCPP Heuristic are actually
quite surprising. Seeing as the heuristic is, at the worst, a 5/3-approximation
(meaning we could at worst be 66% away from optimality), one might reasonably
expect to see solution quality vary over that range, (and indeed, it is theoretically

38



Figure 24: Run times for our implementation of the Undirected Chinese Post-
man Problem Exact Solver.

Figure 25: Run times for our implementation of Frederickson’s Mixed Chinese
Postman Problem Heuristic.

possible for this to be the case). However, on these instances, modeled after real-
world street networks, we see that the solution quality is actually quite good;
we never are worse than 3% away from optimality, and are frequently less than
1.5% away. Furthermore, the distance from optimality does not appear to grow
in any predictable way with problem size or complexity, which is encouraging
in terms of generalizing these results.

39



Figure 26: An illustration of the solution quality of Frederickson’s MCPP
Heuristic.

Figure 27: The percent away from optimality that Frederickson’s MCPP Heuris-
tic achieves. As a rule of thumb, the instances grow in complexity as a function
of their instance number.

2.9 Remarks

Furthermore, since we fully intend for this library to be used in circumstances
beyond the context of our own endeavors, if time permits, we shall attempts to
include several useful utilities. These include, but are not necessarily limited
to the following: the capability to use existing software to visualize graphs
created using our library (currently Gephi seems to be the 3rd party software of
choice); the ability to easily exchange problem instances by allowing export to
the prevailing industry standard graphml format; and the option to make calls

40



to CPLEX and Gurobi in solvers.
Ultimately, upon completion of this code base, we seek to extend the work

done by Benjamin Dussault et al. on the variant of the Windy Postman Problem
with precedence discussed in [8]. In this work, an additional complication to the
standard WPP is thrown in: an edge has reduced cost upon repeat traversal (of
course, the costs are still asymmetric). This is meant to reflect a scenario where
some impediment to progress is removed during the first traversal, and so any
further traversal takes less resources. The paper presents a method of producing
a good initial feasible solution, and then details an improvement procedure
that involves permuting cycles found in the original solution. However, these
permutations are essentially arrived at randomly. We hope to devise a more
systematic way of choosing which permutations tend to yield better solutions,
and use this knowledge to refine the local search procedure.

3 Implementation

The library is written in Java, which exposes an interface that allows C++
code to be run in the event that performance concerns necessitate that certain
portions to be sped up. The code will be hosted, (both during development, and
upon completion) as a repository on my personal github at https://github.

com/Olibear/ArcRoutingLibrary.
We choose Java for several reasons. First, it appears as though the general

developer industry is moving towards adopting Java as the de facto standard for
most modern projects. Second, as has already been mentioned, Java provides
ways to interface with its main competitor C++, and so concerns over loss
of flexibility may be eschewed. Third, libraries in the field of combinatorial
optimization (e.g. LEMON, Boost, etc.) have traditionally been written in
C++, and so we hope that ours will help fill the void of Java-based graph
libraries.

Git provides convenient means of synchronizing, sharing, and storing code.
Github also tracks accesses to the repository so that we may collect meaningful
metrics on dissemination of the project.

4 Databases

In order to test the performance and accuracy of our library, we shall run our
solvers on a collection of benchmark instances that have known solutions and
are publicly available. For the the directed and undirected Chinese postman
problem, we shall simply generate our own test instances, (since these algorithms
are old, exact, and polynomial, test instances aren’t prevalent in the literature).
Furthermore, we shall do the same for the Directed Rural Postman, since there
do not seem to be public instances available for this particular variant.

The procedure for generating test instances for the DCPP and UCPP will
simply be to randomly generate a graph, (consider all pairs (i, j) and add them

41

https://github.com/Olibear/ArcRoutingLibrary
https://github.com/Olibear/ArcRoutingLibrary


to the graph with probability p1, and then connect components of the graph
arbitrarily). We generate instances to the DRPP the same way we get instances
to the DCPP, and then just pick a subset of required arcs with probability p2.
If time permits, we shall investigate the effect that these have on performance.

For the Mixed and Windy Postman, we shall use the test instances made
public by Dr. Angel Corberan at his website (http://www.uv.es/corberan/
instancias.htm) which have documented solutions available at the same place.

5 Validation

Broadly speaking, there are two types of components to the project that need
validation: the subroutines, and the solvers themselves (therefore, the high-
level algorithm that makes use of the subroutines). For the former, we compare
the output of our implementations to those given in (10). For both the flow
algorithms and the shortest path calculations, we compare only the costs, as
the specific flow / shortest path solutions are liable to be different if multiple
exist with the same objective value, but none of the solvers in which these
subroutines are invoked specify any particular type of tie-breaking mechanism
as preferable, so we do not worry about any such discrepancies. All we note
here, is that, for our own implementations, so long as the ordering of the vertices
and arcs is the same, we get identical results on consecutive runs.

For the DCPP and UCPP, we simply ensure that we are reaching the optimal
solution, as well as that the run time of the algorithm scales polynomially (just
by recording runtime as a function of the problem size of the test instances). We
do so by making calls to the Gurobi Java API and setting up Integer Program
formulations for each of the problems, and then comparing the optimal objective
value to our own.

For each of the NP-Hard problems we shall attempts to solve, we attempt
to validate our efforts by performing Wilcoxon’s Signed Rank Test. Wilcoxon’s
Signed Rank Test proceeds by considering both the distance between paired
observations, and the sign of the distance. The null hypothesis will be that our
results are identical to the results provided in the papers in which the heuristics
are proposed. Although our test instances will be different from the instances
used in the paper, a common metric in the literature is to consider percent from
optimality which is exactly the metric we shall use in order to determine the
test statistic.

6 Testing

In addition to running our heuristics on several more complex benchmark in-
stances taken from our data sources, we shall run our solvers on several simple,
small-sized instances that are constructed to be solvable to optimality by in-
spection, as well as several non-trivial instances that we solve in CPLEX and
Gurobi to optimality. In this way, we can ensure that the algorithm is executing

42

http://www.uv.es/corberan/instancias.htm
http://www.uv.es/corberan/instancias.htm


Number Of Vertices % from Opt. (Paper) % From Opt. (Us)

100 2.4 2.7
200 6.3 5.7
300 7.9 8.6
400 9.7 8.9
500 12.5 15

Table 1: An Example of Using the Wilcoxon Signed-Rank Test: The largest
difference between observations would be considered first, (here, the largest
difference is between 12.5 and 15). It is the first in the list, and so it has weight
1. The next greatest difference is between 6.3 and 5.7, and so this receives a
weight of -2, etc. The test statistic is then the weighted sum of these differences
(i.e. W = 1 - 2 + 3 - 4 + 5 = 3). For N > 10, there is a way of computing a
z-score directly from this W , but here, since we only have 3 pairs of data, we
may simply use a reference table with a standard α = .05, and conclude that
since W > Wcrit = 1, then these are unacceptable results.

in the way that we expect it to, while also testing scalability on more complex
problems.

7 Project Schedule

Although the initial plan was to designate time for integration of the Gurobi and
its associated solvers, this had to be completed earlier for validation of the exact
solvers for the DCPP and UCPP. To this end, we have removed this piece from
the end of the schedule. In addition, the last month was originally supposed to
be used for some work on new research that extends the functionality contained
within the library. However, this was an optional component to the project,
and will simply be delayed until the completion of the class. With each of these
pieces either integrated into the existing steps, or eliminated from the schedule,
we have some additional time to implement our heuristic solvers.

• October: Complete proposal, begin exact solvers for DCPP, and UCPP,
and finalize graph architecture.

• November: Complete and validate exact solvers for DCPP, and UCPP.

• December: Complete and validate heuristic solvers for MCPP, begin
CPLEX & Gurobi support.

• January: Complete and validate heuristic solvers for WPP, complete
CPLEX & Gurobi support.

43



• February - March: Complete and validate heuristic solvers for DRPP.

• April: Performance Optimization & Visualization

• May: Final Report

8 Milestones

At the conclusion of each month, solvers that ought to be completed should
have test cases ready to benchmark performance, and verify the validity of
the solutions produced by the library. For instance, by the end of October,
(assuming all goes according to plan), we hope to be able to set up a test
instance, run our DCPP or UCPP solver on it, and collect metrics like run
time, solution feasibility, etc.

9 Deliverables

By the conclusion of the year, we hope to have compiled an easily accessible,
easily usable, easily extensible library of code designed to solve the aforemen-
tioned problems. In addition, if time allows, we also hope to be able to integrate
benchmarking and visualization utilities into the library (as opposed to simply
cobbled together for our own use). The mid-year and final reports, as well as
documentation (including a readme, and tutorials/examples) and all of the test
instances (both generated and taken from Corberan) will be available on the
central github page.

References

[1] Thimbleby, Harold. ”The directed chinese postman problem.” Software:
Practice and Experience 33.11 (2003): 1081-1096.

[2] http://www.ise.ncsu.edu/fangroup/or766.dir/or766_ch9.pdf

[3] Frederickson, Greg N. ”Approximation algorithms for some postman prob-
lems.” Journal of the ACM (JACM) 26.3 (1979): 538-554.

[4] Yaoyuenyong, Kriangchai, Peerayuth Charnsethikul, and Vira Chankong.
”A heuristic algorithm for the mixed Chinese postman problem.” Optimiza-
tion and Engineering 3.2 (2002): 157-187.

[5] Win, Zaw. ”On the windy postman problem on Eulerian graphs.” Mathe-
matical Programming 44.1-3 (1989): 97-112.

44

http://www.ise.ncsu.edu/fangroup/or766.dir/or766_ch9.pdf


[6] Benavent, Enrique, et al. ”New heuristic algorithms for the windy rural
postman problem.” Computers & operations research 32.12 (2005): 3111-
3128.

[7] Eiselt, Horst A., Michel Gendreau, and Gilbert Laporte. ”Arc routing prob-
lems, part II: The rural postman problem.” Operations Research 43.3 (1995):
399-414.

[8] Campos, V., and J. V. Savall. ”A computational study of several heuristics
for the DRPP.” Computational Optimization and Applications 4.1 (1995):
67-77. (Replace this with Carmine’s paper when I get it).

[9] Dussault, Benjamin, et al. ”Plowing with precedence: A variant of the windy
postman problem.” Computers & Operations Research (2012).

[10] Lau, Hang T. A Java library of graph algorithms and optimization. CRC
Press, 2010.

[11] Derigs, Ulrich. Optimization and operations research. Eolss Publishers
Company Limited, 2009.

[12] http://en.wikipedia.org/wiki/Dijkstra’s_algorithm

[13] http://community.topcoder.com/tc?module=Static&d1=

tutorials&d2=minimumCostFlow2

45

http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2
http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow2

	Introduction
	Approach
	Definitions
	Common Algorithms
	The Cycle-Cancelling Min Cost Flow Algorithm
	The Successive Shortest Paths Algorithm
	The Floyd-Warshall All-Pairs Shortest Paths Algorithm
	Dijkstra's Single-Source Shortest Paths Algorithm

	The Directed Chinese Postman Problem
	An Exact Algorithm for the Directed Chinese Postman Problem dcpp
	Pseudocode

	The Undirected Chinese Postman Problem
	An Exact Algorithm For The Undirected Chinese Postman Problem ucpp
	Pseudocode

	The Mixed Chinese Postman Problem
	Even-Symmetric-Even mcpp1
	Pseudocode
	Shortest Additional Path mcpp2
	Pseudocode for SAPH Concepts

	The Windy Postman Problem
	Win's Algorithm wpp1
	Pseudocode
	Benavent's H1 wpp2
	Pseudocode

	The Directed Rural Postman Problem
	Christofides' Algorithm drpp1
	Pseudocode
	Benavent's WRPP1 drpp2
	Pseudocode

	Results
	Remarks

	Implementation
	Databases
	Validation
	Testing
	Project Schedule
	Milestones
	Deliverables

