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Abstract

Numerical lagrangian analysis of the Chesapeake Bay can reveal dynamical features not ob-
tainable through analytical means. These features can indicate coherent structures within
the Bay, revealing neighboring regions of fluid that have very different behaviors. Give the
model-based discrete velocity data of the Bay, obtained through the use of the Regional
Ocean Modeling System (ROMS), we will implement bilinear and bicubic spatial interpo-
lation methods and a 3rd order lagrangian polynomial to interpolate in time. This inter-
polation then allows us to calculate trajectories of ∼1 million initial conditions, using a 5th

order Runge Kutta Fehlberg method and a 4th order Runge Kutta method (for comparison).
From these trajectories, we will apply a qualitative analysis method along with a quantitative
probabalistic approach to the lagrangian analysis.
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1 Introduction

Studying the dynamics of the earth’s oceans is of great concern to many fields of study. The
water systems store and transport particles and energy around the globe affecting the lives of
everyone living on this planet. [1] It is therefore important to understand how the positions
of a set of particles might evolve over time, given that all of the particles originated from
some enclosed region.

To do this, we must start thinking in terms of langrangian dynamics. This is a very
intuitive perspective to take, as it is the perspective of a person if they were to follow some
parcel of particles (air or water) through space and time. Using this approach to the dynam-
ics allows us to study individual particles as well as how individual particles move together.

Particles that move together and share similar dynamical properties are called coherent
sets and are separated by what we will call manifolds. [2] Examples of these coherent sets
are hurricanes and jet streams. The problem that we plan to address in this project is how
to identify these structures. Locally it is clear that one of the important waterways that
affects the Maryland area is the Chesapeake Bay. Therefore we will be focused on analyzing
data from this particular region.

If we are given some discrete velocity field for the Bay, we would like to be able to in-
tegrate the velocity field from some initial time t0 to some final time tf and calculate the
position of some particle at any time in this interval, given its initial position. Due to the
discrete nature of the data, if we integrate from time ti to tj our velocity field may not
be defined on the point (xj, yj) making it impossible to move forward with the integration.
That is, unless we find some way to estimate that value of the velocity at (xj, yj). We do this
using interpolation methods that will be discussed in §2.1.1. These interpolation techniques
allow us to calculate the trajectories that are necessary to perform our langrangian analysis.

Once we have trajectories (§2.1.2), we will analyze the dynamics of the Chesapeake Bay
data using a qualitative method [1] (§2.2.1) and then with a more quantitative probablistic
method [3] (§2.2.2).

2



2 Approach and algorithms

This project is split into two parts. The first part consists of computing trajectories by
numerically integrating dx

dt
= u(x, y, t) and dy

dt
= v(x, y, t). u and v are given on a grid and

therefore any time integration of dx
dt

and dy
dt

requires that we be able to interpolate u and v.

The second part consists of implementing lagrangian analysis methods (§2.2.1 and §2.2.2)
based on the trajectories calculated in part 1.

2.1 Part 1. Trajectory computation

We will see in this section that in order to calculate trajectories we need to integrate in
time. For our data this will also require interpolation in both time and space (Figure 1).
We discuss these three components of trajectory calculation (integration, time interpolation,
and spatial interpolation) in reverse order. This build up allows us to see the connections
between all three.

Time	  Integration	  

Time	  Interpolation	  

Spatial	  Interpolation	  

Figure 1: Time integration requires that we interpolate in time, which in turn requires that we
implement a spatial interpolation method.

2.1.1 Spatial Interpolation

Given a velocity field given as a data set that is discrete in space and time we need to be
able to interpolate any off-grid velocity in order to properly calculate trajectories. To do
this, we will be implementing a bilinear spatial interpolation method, as well as a bicubic
spatial interpolation method. We also have a time ’dimension’ which will be interpolated
using a 3rd order Lagrange polynomial in time. The interpolation of u (x-directed velocity)
and v (y-directed velocity) will be done separately. This means the interpolation of one will
not depend on the interpolation of the other. [4]

Bilinear interpolation of some point requires 4 nearest points and the velocity values
at those 4 points to interpolate. Using these four points we create some surface u(x, y) =
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a0 + a1x+ a2y + a3xy to approximate u(x,y) (at constant time) within the grid cell created
by the 4 nearest points. [5][7]


1 xi yj xi ∗ yj
1 xi+1 yj xi+1 ∗ yj
1 xi yj+1 xi ∗ yj+1

1 xi+1 yj+1 xi+1 ∗ yj+1

 ∗

a0
a1
a2
a3

 =


u(xi, yj)
u(xi+1, yj)
u(xi, yj+1)
u(xi+1, yj+1)

 (2.1)

To create that surface, we solve Equation 2.1 for the coefficients (a values) and then
evaluate our point (x, y) on the surface, u(x, y).

Bicubic interpolation on the otherhand requires velocity values as well as derivatives of
the velocity at each of the 4 nearest points to interpolate one velocity value. [7][8] For
each of these 4 nearest neighboring point (xi, yj) we need u(xi, yj), ux(xi, yj), uy(xi, yj), and
uxy(xi, yj). This is a total of 16 pieces of data required to interpolate each velocity value.
To do this we will be approximating the derivative and cross derivatives with second order
central difference schemes (Equation 2.2).

∂u

∂x
=
u(xi+1, yj)− u(xi−1, yj)

2∆x
∂u

∂y
=
u(xi, yj+1)− u(xi, yj−1)

2∆y

∂2u

∂x∂y
=
u(xi+1, yj+1)− u(xi+1, yj−1)− u(xi−1, yj+1) + u(xi−1, yj−1)

4∆x∆y

(2.2)

u(x, y) = b00 + b10x+ b01y + b11xy + b20x
2 + b02y

2 + b21x
2y + b12xy

2 + b22x
2y2

+ b30x
3 + b03y

3 + b31x
3y + b13xy

3 + b32x
3y2 + b23x

2y3 + b33x
3y3

(2.3)

This interpoltion creates the surface in Equation 2.3 where the 16 bij coefficients need
to be determined. To determine these 16 bij values we need to solve a 16 by 16 system of
equations, determined by the velocity values and the 3 derivatives (Equation 2.2) at each of
the 4 nearest points.

For the purposes of the analysis of the Chesapeake Bay data we will be using bilinear
interpolation, provided the bilinear method is not unreliable for interpolation of the velocity
field given by Equation 3.1. The use of bilinear (instead of bicubic) is preferred due to the
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computational expense of bicubic. We can forsee a difference in computational time simply
from observing that we need 4 times as many function and function derivative values for
bicubic as we do for bilinear. If the accuracy does not suffer too greatly on the velocity field
of Equation 3.1 then bilinear will certainly be used.

2.1.2 Time interpolation

Time interpolation is done using Lagrange polynomials. For some time t ∈ (ti, ti+1) the
polynomial will go through time values ti−1, ti, ti+1, and ti+2.

u(t) =
(t− ti)(t− ti+1)(t− ti+2)

(ti−1 − ti)(ti−1 − ti+1)(ti−1 − ti+2)
u(ti−1)

+
(t− ti−1)(t− ti+1)(t− ti+2)

(ti − ti−1)(ti − ti+1)(ti − ti+2)
u(ti)

+
(t− ti−1)(t− ti)(t− ti+2)

(ti+1 − ti−1)(ti+1 − ti)(ti+1 − ti+2)
u(ti+1)

+
(t− ti−1)(t− ti)(t− ti+1)

(ti+2 − ti−1)(ti+2 − ti)(ti+2 − ti+1)
u(ti+2)

(2.4)

In the event that our time value is between t0and t1 we use the interpolating polynomial
that goes through t0, t1, t2, and t3. Similarly, if tf is the final value of time at which we
have velocity values, then for some time in the interval [tf−1, tf ] we interpolate using the
polynomial that goes through the times tf−3, tf−2, tf−1, and tf .

Time permitting, I will use Matlab to speed up the interpolation and trajectory calcula-
tions through parallelization.

2.1.3 Time integration

To calculate the trajectories, I will be using two methods. First I will use a simple 4th order
Runge Kutta method (RK4) (Equation 2.5) and then secondly the Runge Kutta Fehlberg
method (RKF) (Equations 2.6 through 2.8). RKF is a 5th order method. [6][9]

In Equation 2.5 the ~k term is a 2 by 1 vector for x and y. ~V (1) = u and ~V (2) = v
calculated at times in the interval [tn, tn+1]. We then use a weighted average of these k
values to determine the final value of (xn+1, yn+1). h is the fixed time step used.
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~k1 = ~V (tn, ~xn)

~k2 = ~V (tn + h/2, ~xn + h~k1/2)

~k3 = ~V (tn + h/2, ~xn + h~k2/2)

~k4 = ~V (tn+1, ~xn + h~k3)

~k =
~k1 + 2~k2 + 2~k3 + ~k4

6

~xn+1 = ~xn + h~k

(2.5)

For the Runge Kutta Fehlberg method, we use a 4th order Runge Kutta method and a
5th order Runge Kutta method in combination to create an adaptive time step method.

The set up is shown in Equation 2.6. Similar to RK4 we have a set of values that
represent weighted function evaluations between tn and tn+1.

~k1 = u(tn, ~xn)

~k2 = u(tn +
h

4
, ~xn +

~k1
4

)

~k3 = u(tn +
3h

8
, ~xn +

3~k1
32

+
9~k2
32

)

~k4 = u(tn +
12h

13
, ~xn +

1932

2197
~k1 −

7200

2197
~k2 +

7296

2197
~k3)

~k5 = u(tn + h, ~xn +
439

216
~k1 − 8k2 +

3680

513
~k3 −

845

4104
~k4)

~k6 = u(tn +
h

2
, ~xn −

8

27
~k1 + 2~k2 −

3544

2565
~k3 +

1859

4104
~k4 −

11

40
~k5)

(2.6)

Let ~x
[4]
n+1 be the solution to the 4th order solution produced by Runge Kutta Fehlberg at

time step n+ 1 and ~x
[5]
n+1 be the 5th order solution of the Runge Kutta Fehlberg method at

time step n+ 1. We calculate both solutions in Equation 2.7.

~x
[4]
n+1 = ~xn +

(
25

216
~k1 +

1408

2565
~k3 +

2197

4104
~k4 −

1

5
~k5

)
(2.7a)

~x
[5]
n+1 = ~xn +

(
16

135
~k1 +

6656

12825
~k3 +

28561

56430
~k4 −

9

50
~k5 +

2

55
~k6

)
(2.7b)
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We then calculate the difference in solutions. Let’s define ε ≡ |~x[5]n+1 − ~x
[4]
n+1|. If the

maximum component of ε is greater than some tolerance, tol, we must decrease the time
step and implement Equations 2.6 and 2.7 again to get a more accurate value for (xn+1, yn+1).

The method for refining the time step is given in Equation 2.8. The power of 1/4 is due
to the 4th order accuracy of the least accurate of the two solutions (4th order). The factor
of 2 on the bottom of the fraction is usually used to ensure the new time step is small enough.

hnew = hold

(
tol

2ε

)1/4

(2.8)

We may also like to be able to increase the time step if the εx and εy are both smaller
than some value, tolmin. To do this, we can double the time step for the next iteration
through the RKF method. This means that we accept the solution (xn+1, yn+1) of the 5th
order Runge Kutta method (2.4c and 2.4d) and use hnew = 2hold to calculate (xn+2, yn+2).

For RK4 we end up with a solution that is O(h4) accurate while we end up with a solution
of O(h5) accurate for RKF because we use the 5th order solution (after accepting the time
step size for each iteration).

2.2 Part 2. Lagrangian Analysis

In this section, we will talk about two methods: one deterministic and the other probabalistic.

With the deterministic model we know the state of the particle given its initial condition
and the velocity field. It requires much computation to obtain the final state of all of the
particles.

With the probabalistic model, we may know the initial state of the system (distribution
of particles) and we know the probability that some particle will end up in a certain location
in the final state of the system, but we do not know for certain where any individual particle
will be at that later time. This means we can predict what the system might look like at
some later time without knowing exactly how individual particles will behave.
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2.2.1 Deterministic method: Lagrangian descriptor

One way to analyze the lagrangian behavior of the Bay is the use the M Function described
in [1], as shown in Equation 2.9. For this analysis, we will be using a two dimensional system
(x and y). Therfore, Equation 2.9 becomes Equation 2.10, which is simply the distance a
particle travels during some time 2τ .

d~x

dt
= ~V (~x, t) (2.9a)

M(~x0, t0)~V ,τ =

∫ t0+τ

t0−τ

[
n∑
i=1

(
dxi(t)

dt

)2
]1/2

dt (2.9b)

M(~x0, t0)~V ,τ =

∫ t0+τ

t0−τ

√
u(t)2 + v(t)2 dt (2.10)

To calculate the distance each particle is traveling we initially set M = 0, and then at
each iteration of the time integration we update M by adding the old value to M to the
distance just traveled from (xn, yn) to (xn+1, yn+1). This means that instead of updating just
x and y at each iteration we are also updating this third variable M . The updating process
is given in Equation 2.11.

xn+1 = update x using either RK4 or RKF method (2.11a)

yn+1 = update y using either RK4 or RKF method (2.11b)

Mn+1 = update M using either RK4 or RKF method (2.11c)

The idea behind this equation is that we can compare the M value of a group of nearby
particles to determine where the coherent structures are and where we would expect to find
a manifold within our system. We do this by plotting the M values on some color scale, as
a function of the initial condition of the corresponding trajectory.
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Figure 2: The M Function applied to the Kuroshio Current (May 2, 2003) with τ = 15 days between
longitudes 148◦E − 168◦E and latitudes 30◦N − 41.5◦N . The color represents the total distance
a particle traveled (plotted at the initial condition) with red being the greatest distance and blue
the shortest distance. Same colored regions indicate regions of particles traveling approximately
the same distance. The contrast between blue and red regions indicate a difference between two
different coherent structures. It is the regions with sharp changes in color that we are interested
in, as these are the regions we expect to find a manifold separating two dynamically different
regions.[4]1

Particles from a coherent set should appear to be of the same color, as we would expect
them to be traveling roughly the same distance. Any place we see sharp changes in color
indicates a manifold between two structures.

Figure 2 shows the M Function being computed for the Kuroshio Current (τ = 15 days),
as an example of what we might expect to see from our own analysis. Relative to one another
the red regions are the set of particles that traveled the farther and the particles in the blue
regions traveled the shortest distance. The sharp change in color between a blue region and a
red region indicates that there must be some manifold inbetween the two regions of particles.

2.2.2 Probabalistic method: Coherent set

Instead of the method described in §3.2.1 we might want to use a more quantitative method.
One such method would be the probabalistic method proposed in [3] where we have some
domain partitioned into different cells and we analyze the probabilities of particles from some
cell α moving into cell β over some time interval.

We first partition the domain at time i and at time j, as in Figure 3. This image rep-
resents the initial domain Di (left) with a set of distributed initial conditions and the same
domain Dj (right) at some later time j.

1Mancho A. M., Mendoza C. Hidden Geometry of Ocean Flows, Physical Review Letters, 105(3) (2010)
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Figure 3: Here we see some initial domain, Di (left) and the same domain at some later time
Dj (right). We can turn these 2D domains into matrices whose values represent the number of
particles in the given cell. This Matrix can then be transformed into a 1D vector. In Equation 2.12
we see Di being multiplied by some transition matrix T whose values represent the probability that
a particle in some cell α will end up in cell β, which is equal to the final domain, Dj .

We then take the 2D domain and transform it into matrix whose values correspond to
the number of particles in each cell. Each cell initially contains approximately 100 particles.
The Matrix then is transformed into a vector. This new vector is shown in Equation 2.12.
This equation represents DiT = Dj where Di and Dj are the domain at the initial time and
the final time, respectively. T is a Transition matrix, whose elements Tα→β represent the
probability that a particle initially in cell α will end up in cell β.

(
ai bi · · · hi ki

)

Ta→a Ta→b · · · Ta→k
Tb→a Tb→b · · · Tb→k

...
...

. . .
...

Tk→a Tk→b · · · Tk→k

 =
(
aj bj · · · hj kj

)
(2.12)

We can calculate the transition matrix, T relatively easily, as we have the trajectories
of each initial condition and therefore we know the initial and final cell locations of each
particle we initialized.

From this transition matrix, we want to compute the single value decomposition of the
matrix to obtain the eigenvalues and eigenvectors of T . This will be done with Matlab’s
SVD command, which will compute the eigenvalues T. We know from the Perron-Frobenius
Theorem that our transition matrix T will have a largest eigenvalue of 1, where all other
eigenvalues are less than 1. We can exploit this by using the largest eigenvalue (and its
corresponding eigenvector) to reconstruct the dominating dynamics of the Chesapeake Bay
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(as is done for image reconstruction).

3 Validation

3.1 Part 1: Trajectory computation

3.1.1 Spatial Interpolation

To validate the interpolation methods, I will be applying my interpolation code to the known
velocity field shown in Equation 3.1. [4]

dx

dt
= −Aπ

k
cos(πy) (sin(kx) + εkcos(ωt)cos(kx)) (3.1a)

dy

dt
= Asin(πy) (cos(kx)− εkcos(ωt)sin(kx)) (3.1b)

This velocity field, given A = 0.1, k = 1, ω = 0.6, and ε = 10, exhibits chaotic behaviors,
similar to what we might expect in the Bay. By sampling this function on a uniform grid
we can verify that the interpolation methods developed in this project do indeed interpolate
off grid velocity values. Using these functions we can also compare the accuracy of the dif-
ferent interpolation methods. This will provide a better understanding of the limitations of
certain lower order interplation methods (bilinear) as compared to the higher order methods
(bicubic) as well as the limitations of the Lagrange polynomial time interpolation.

3.1.2 Time Integration

To verify the time integration methods we calculate the trajectories for a given system with
a known solution. For the Chesapeake Bay, the ROMS database also calculates trajectories
which can be compared to the calculation of the trajectories from this project.

3.2 Interpolation and integration validation results

First starting with spatial interpolation, one of the interpolated u(x, y) surfaces is shown in
Figure 4. The time dependence of the velocity is dealt with by setting t = 1.0. This plot
shows the velocity (dx

dt
) given in Equation 3.1a interpolated using the Bilinear interpolation

method.
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The blue grid points are uniformly distributed true values of the velocity where dx =
dy = 0.02. On the same surface is 10,000 randomly chosen (x, y) pairs in red at which the
velocity was interpolated. The light blue (cyan) dots that appear to be on the u = 0 surface
are the error (uinterpolated−uexact) values of the interpolated velocities. This provides us with
at least a visual confirmation that the function is indeed interpolating the velocites properly.

Figure 5 shows the L1, L2, and L for the bilinear interpolation. We see that the L1

norm follows the O(∆x2) line, indicating that bilinear interpolation is a second order ac-
curacy method. In addition, the L∞ norm follows the O(∆x) line, confirming convergence.
For this plot t = π, dx and dy changed together at the same rate (neither was held constant).

Figure 6 shows the errors associated with the time interpolation. We see in the top panel
that the error of the interpolation as a function of dt. dx and dy also change at the same rate
as dt in this top panel. In the bottom panel it is only dt that changes. In the bottom panel
the error at approximately 0.02 is associated with dx = dy = 0.1 while the error around
0.0003 is associated with dx = dy = 0.01. This shows that for constant spatial step size, the
error doesn’t change. It is only for the top plot when the spatial step size is changed along
with the time step size that we see a decrease in the error. This suggests that the error
due to the time interpolation is smaller than the error that arrises from the use of spatial
interpolation.

0
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−0.8
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y

Bilinear Interpolation at time = 1.0

x

u 
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e

Figure 4: A plot showing the velocity given in Equation 3.1a interpolated by the bilinear method.
The blue dots are the uniformly sampled grid (data) and the red dots that follow the same surface
are the 10,000 randomly chose (x, y) pairs at which u was interpolated. The light blue (cyan)
dots are the error values for each of the red interpolated values. This allows us to visualize the
magnitude of the error for such a surface. For this interpolation, t = 1.0 and dx = dy = 0.02.
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Figure 6: We see in the top panel that the error of the interpolation as a function of dt. dx and dy
also change at the same rate as dt in this top panel. In the bottom panel it is only dt that changes.
In the bottom panel the error at approximately 0.02 is associated with dx = dy = 0.1 while the
error around 0.0003 is associated with dx = dy = 0.01. This shows that for constant spatial step
size, the error doesn’t change.
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Figure 5: This plot shows dependence of the L1, L2 and L norms of the absolute error on the
spatial step size (dx and dy). The top plot shows the L1 norm to be of order ∆x2. This tells
us that this is a second order accuracy method. The L norm follows the O(∆x) line, confirming
convergence. For this plot t = π, dx and dy changed together (neither was held constant).
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Figure 7: Trajectories calculated for both the 4th order Runge Kutta method (left panels) and
the Runge Kutta Fehlberg method (right panels) from t = 0 to t = 20. dx = dy = 0.1 and
dtgrid = 0.5. The true trajectories are marked by blue circles and the numerical trajectory is
marked by red squares. The top panels are trajectories where dt = 1.0 and the bottom are where
dt = 0.1. Trajectories for RKF are visibly better than those of RK4 for the same time step size, as
is expected.

Figure 7 shows trajectories calculated for both the 4th order Runge Kutta method (left
panels) and the Runge Kutta Fehlberg method (right panels) from t = 0 to t = 20.
dx = dy = 0.1 and dtgrid = 0.5. The true trajectories are marked by blue circles and
the numerical trajectory is marked by red squares. The top panels are trajectories where
dt = 1.0 and the bottom are where dt = 0.1.

It is clear that for dt = 1.0 (Top left panel) RK4 is not sufficient for computing the
solution but the accuracy becomes better for smaller dt (Bottom left panel). For RKF, it is
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clear that while the solution for dt = 0.1 (Top right panel) is better than that of RK4, we
also can detect an improvement for dt = 0.1 (Bottom right panel).

Figure 8 shows the error of both time integration methods. From these plots it is clear
that the RK4 method is a forth order method and RKF is a fifth order method, as was
expected.
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Figure 8: For 20 trajectories, the maximum error of all trajectories is plotting, alongside the
average of the maximum of each trajectory. Parameters are the same as those in Figure 7. RKF is
not time adaptive for these plots, dt is fixed to allow for a proper comparison. For RK4 (top panel)
both lines follow the O(h4) while for RKF (bottom panel) follows the O(h5) line. This confirms
that the RK4 is a forth order approximation while the RKF method is a fifth order approximation.
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Figure 9 shows an example of the MATLAB profiler applied to the RK4 method (top
panel) and the RKF method (bottom panel). Both runs are done for 50 trajectories. For
both integration methods, approximately 75% of the time is spent in the time interpolation
function, TimeInterp.m, or the bilinear interpolation function, BilinearInt.m. For RKF we
recall that we calculate a 4th order solution and a 5th order solution using 6 function evalua-
tions (or time interpolations in our work) instead of 4 for the 4th order and 5 for the 5th order
for a total of 9 function evaluations. For these 50 trajectories calculated, the code took 13
seconds, 9 of which was spent interpolating. This is a savings of 4.5 seconds because we only
need to call the time interpolation function 6 times per iteration of the trajectory calculation.

Figure 9: Image of the MATLAB profiler for RK4 (top panel) and RKF (bottom panel). Both
runs are done for 50 trajectories. For both integration methods, approximately 75% of the time
is spent in the time interpolation function, TimeInterp.m, or the bilinear interpolation function,
BilinearInt.m.

3.3 Part 2: Lagrangian Analysis

3.3.1 Deterministic method: Lagrangian descriptor

Validation of the deterministic method will be done by applying the method to a well-studied
systems with known unstable and stable manifolds. One such system is the double-well
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Duffing equation, seen in Equation 3.2. [11]

d2x

dt2
− x− x3 = 0 (3.2)

There is not much concern with debugging this piece of the code because we are just
adding another variable into our time integration code. Once the time integration method
is working, we should not encounter much trouble with extending the code to suit our De-
terministic Lagrangian descriptor method.

3.3.2 Probabalistic method: Coherent set

As mentioned in §3.2.1 we can verify this probabalistic method against a well studied method
(possible the Duffing equation (Equation 3.2)). This system should lend itself to the verifi-
cation of the probabalistic method because the eigenvectors for the fixed point are known.

We can also compare both methods to one another to verify that the methods agree.

4 Testing: Application to the Chesapeake Bay

4.1 Data set

The end goal of this project is the analyze the dynamics of the Chesapeake Bay. To do this,
we need velocity data corresponding to the bay. For the purposes of this analysis we will be
using the Regional Ocean Modeling System (ROMS) to generate a velocity field for some
interval of time. This will give us a 3 dimensional set of discrete points. We will have two
length dimensions (x and y) as well as a third dimension in time (t).

ROMS is a terrain-following primitive equations model for the ocean that will model the
dynamics of the Bay well enough for the purposes of this analysis. The velocities produced
are staggered using an Arakawa C-grid, as shown in Figure 10. Using the Arakawa C-grid
is a more natural way to express the state variables in the context of solving the fluid flow
equations within ROMS. The grid placed over the bay can be seen in Figure 11. [10]. Note:
ROMS automatically sets all of the velocity values to zero on land.

4.2 Approach

Using the staggered grid (Figure 10) we will interpolate u and then v, which are found
separately, at each step of the time integration. The u and v grid regions must be chosen
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Figure 10: This grid is the Arakawa C-grid used by ROMS. We can see that the x-directed velocities
are calculated along the left and right side panels of each grid cell while the y-directed velocities
are calculated along the upper and lower faces of the grid cells.[10]1

Figure 11: This is the ROMS grid shown on the Chesapeake Bay. This is the grid we will be
working with for this project. Image courtesy of the UMD ROMS group.

so that both u and v regions overlap where the point at which we wish to interpolate is in
their intersection. Figure 12 demonstrates this overlap.

5 Implementation

All algorithms will written in MATLAB on a MacBook Pro with a 2.3 GHz Intel Core
i5 processor with 4 GB of RAM. All algorithms will initially designed to run in series.
Time permitting, the algorithms for the interpolation and trajectory calculation will later
be modified to run in parallel using MATLABs Parallel Computing Toolbox.

1ROMS Wiki: Numerical Solution Technique. April 2012.
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Figure 12: This grid is the Arakawa C-grid used by ROMS. If we want to interpolate the velocity
field at some point (x, y) then we must interpolate using the overlapping grid cells from v and u.

6 Deliverables

• Code that:

– interpolates and calculates the trajectories of the ROMS data set

– calculates and plots the M values from the M Function [1]

– calculates the transition matrix and its eigenvectors and eigenvalues

• A comparison of the M Function analysis and the Probabalistic analysis

• The ROMS data set

• Proposal document and presentation

• Mid-year document and presentation

• Final report and presentation

7 Milestones

Below is the tentative schedule for the approach part of the project.

7.1 Part 1

• Develop code for Interpolation (October - November)

– Develop bilinear method (no time interpolation) (October) (Done)
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– Develop bicubic method (no time interpolation) (January)

– Develop the method for Lagrange Polynomial interpolation in time (November)
(Done)

– Validation of Interpolation methods (October to Late November) (Done)

– Time permitting: Parallelization of the interpolation process (January)

• Time integration methods (Late November - December)

– 4th oder Runge Kutta (Late November) (Done)

– 5th order Runge Kutta Fehlberg method (Late November - Early December) (Done)

– Validation of the Trajectory (time integration) computation (Late November -
Early December) (Done)

7.2 Part 2

• M Function analysis (January - mid February)

– Modify time integration methods to incorporate calculation of the distance each
particle travels (January - mid February)

– Validation of this M Function ((January - mid February)

• Probabalistic method (Mid February - April)

– Set up indexing (February)

– Solve system DiT = Dj for Tij Matrix (Early March)

– Compute SVD of T (March)

– Reconstruct image of dominating dynamics (Late March - Early April)

– Validate Probabalistic method using Duffing equation (Late March - Early April)

– Compare Deterministic method and Probabalistic method (Early April)

– Time permitting: Create my own SVD code
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