
University of Maryland-College Park

Advance Scientific Computing I,II

Spectral Clustering on Handwritten
Digits Database

Author:
Danielle Middlebrooks
Dmiddle1@math.umd.edu
Second year AMSC Student

Advisor:
Kasso Okoudjou

Kasso@math.umd.edu
Department of Mathematics

2015-2016

Abstract

Spectral Clustering is a technique used to group together data points of similar behavior in
order to analyze the overall data. The goal of this project will be to implement a spectral
clustering algorithm on the MNIST handwritten digits database in which we will be able to
cluster similar images using a similarity matrix derived from the dataset. We will develop
code in order to implement each step of the algorithm and optimize to efficiently obtain a
reasonable clustering of the dataset.

1

Contents

1 Introduction 3

1.1 Definitions . 3

1.2 Motivation . 4

2 Approach 7

2.1 Similarity Graph . 7

2.2 Laplacian Matrix . 8

2.3 Computing the first k eigenvectors . 8

2.4 Clustering . 10

3 Implementation 10

4 Databases 10

5 Validation 11

6 Testing 11

7 Project Schedule/ Milestones 11

8 Deliverables 12

A Appendix 13

B References 15

2

1 Introduction

Spectral clustering is clustering technique based on the spectral analysis of a similarity matrix
derived from a given data set. The main goal of spectral clustering or any clustering algorithm is
to implement a procedure that groups objects in a data set to other objects with ones that have
a similar behavior. For this project, we would like to use the MNIST Handwritten digits database
in order to implement a clustering algorithm that will cluster together same digits and be in a
different cluster from different digits. Spectral clustering implements a clustering algorithm such
a k-means clustering on a reduced dimension which allows the formation of tight clusters. Thus
given some data point Xi ∈ Rd, spectral clustering performs a clustering in Rk where k << d. The
advantage of spectral clustering is the simplicity of the algorithm to implement where only the use
of standard linear algebra methods are needed in order to solve the problem efficiently. It also has
many application areas such as machine learning, exploratory data analysis, computer vision and
speech processing.

1.1 Definitions

The motivation behind spectral clustering is given from ideas in graph theory. In this section we
define some notation that will be used throughout this report. Define a graph G = (V,E) as a
set of vertices together with a set of edges. We assume G is an undirected graph with vertex set
V = {v1, ..., vn}. We also assume G is unweighted or in other words each edge has the same weight
of 1. Thus the adjacency matrix W is defined to be

W = wij =

{
1, if vi, vj are connected by an edge

0, otherwise
.

Since G is undirected we require that wij = wji and hence gives a symmetric adjacency matrix.
The degree of a vertex vi ∈ V is defined as

di =
n∑

j=1

wij.

This can also be viewed as just the number of edges connected to that vertex. The degree matrix
denoted D is a diagonal matrix where each d1, ..., dn lies on the diagonal. We denote a subset of
vertices A ⊂ V and its complement as Ā = V \ A. For simplicity, we define i ∈ A, as the set of
indices i of vertices vi ∈ A. We also define two ways of measuring the size of a subset A of V .

|A| = number of vertices in A.

and
vol(A) =

∑
i∈A

di.

3

|A| measures the size of the subset by the number of vertices, while vol(A) measures the size by the
number of edges. Finally we define the weight between two subsets A,B ∈ V as

W (A,B) =
∑

i∈A,j∈B

wij.

This counts the number of edges connecting the two subsets. One final definition we would like to
introduce is the unnormalized Laplacian matrix which is defined as L = D −W .

1.2 Motivation

Clustering is a way to separate data points such that similar points are grouped together, and
are in a different group from ones that are dissimilar. Another way to think about this is from
the viewpoint of graph cuts. Given a graph, we want to partition the vertices such that those
connected by edges with high weights are grouped together and separate from the ones connected
by low weights. Spectral clustering is motivated by approximating a graph partitioning and in
particular approximating the RatioCut or NCut on a given graph.

One of the most direct ways to partition a graph is to solve the min cut problem. That is, given
a similarity graph, we want to partition the graph into k subsets and hence solve the optimization
problem of minimizing

cut(A1, ..., Ak) : =
1

2

k∑
1

W (Ai, Āi) (1)

over all partitions where W (Ai, Āi) defines the weight between a subset and its complement. In
other words, we want to minimize the number of edges cut in order to partition the graph. This
is very straightforward and easy to solve, in particular for the case when k = 2. However in some
cases it may lead to an unhelpful partition. Consider the example graph below:

1 2

3 4

5

The min cut problem would cut through the edge connecting 2 to 5 and give one partition to be
relatively smaller than the other. This is not helpful in clustering since we want each cluster to be
relatively large. To account for this, modifications known as the RatioCut and the normalized cut
or NCut can be introduced. For the RatioCut, we want the size of each partition to be measured by
the number of vertices in it. For the NCut, we would like the size of each partition to be measured

4

by the number of edges. Thus we define the RatioCut and NCut as follows:

RatioCut(A1, ..., Ak) : =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
(2)

NCut(A1, ..., Ak) : =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
(3)

In both cases, the objective functions try to balance out each partition. This makes solving these
versions of the min cut problem NP hard. Spectral clustering allows us to solve relaxed versions of
these problems. For this project, we will be focusing on the relaxed version of the NCut problem
to solve the clustering problem.

We will start with approximating the NCut problem for the case where k = 2. Relaxing the
min NCut problem will derive the motivation behind normalized spectral clustering which we will
define in a later in this section. For the case k = 2, we want to solve the optimization problem of
minimizing

NCut(A, Ā) =
W (A, Ā)

vol(A)
+
W (A, Ā)

vol(Ā)
=
W (A, Ā)(vol(Ā) + vol(A))

vol(A)vol(Ā)
(4)

over both partitions. We define a cluster indicator vector f by

f(vi) = fi =


√

vol(Ā)
vol(A)

, if vi ∈ A

−
√

vol(A)

vol(Ā)
, if vi ∈ Ā

(5)

The cluster indicator vector is giving some value depending on whether the vertex lies in A or Ā.
Thus we compute fTLf and fTDf which gives the following:

fTLf =
∑

wij(fi − fj)2 = W (A, Ā)

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

= W (A, Ā)
(vol(Ā) + vol(A))2

vol(A)vol(Ā)

(6)

fTDf =
∑

dif
2
i =

∑
i∈A

di

(√
vol(Ā)

vol(A)

)2

+
∑
j∈Ā

dj

(√
vol(A)

vol(Ā)

)2

= vol(Ā) + vol(A) (7)

Note that the ratio of the two gives us the NCut problem we want to minimize. Thus minimizing
the NCut problem is equivalent to

minimize NCut(A,B) =
fTLf

fTDf

subject to fi =


√

vol(Ā)
vol(A)

, if vi ∈ A

−
√

vol(A)

vol(Ā)
, if vi ∈ Ā

(8)

5

The relaxation problem is given by

minimize
f∈Rn

fTLf

fTDf

subject to fTD1 = 0

(9)

where f is allowed to take on real values. It can be shown the relaxation problem is a form of the
Rayleigh-Ritz quotient. Since we have the constraint that fTD1 = 0 we want a solution that will
not be the constant one vector 1 which is the eigenvector of the smallest eigenvalue of 0. Thus
we want to find the eigenvector corresponding the the second smallest eigenvalue. Substituting
g = D1/2f the problem becomes

minimize
g∈Rn

gT (D−1/2LD−1/2)g

gTg

subject to g ⊥ D1/21

(10)

where D1/21 is the first eigenvector of Lsym = D−1/2LD−1/2 which corresponds to the lowest eigen-
value of 0. Letting U = [u1u2 . . . un] be the matrix whose columns are the orthonormal eigenvectors
of Lsym. If we only consider vectors g that are orthogonal to u1 and since L is non negative, then

gTLsymg =
n∑

i=1

λi|(UTx)i|2 =
n∑

i=1

λi|uTi x|2 =
n∑

i=2

λi|uTi x|2

This gives a non negative linear combination of λ2, λ3 . . . , λn, thus

gTLsymg =
n∑

i=2

λi|uTi x|2 ≥ λ2

n∑
i=2

|uTi x|2 = λ2

n∑
i=2

|(UTx)i|2 = λ2g
Tg

provided that g is orthogonal to the first column of U . This inequality becomes equality if we choose
g = u2. Therefore

min
g 6=0

g⊥D1/21

gTLsymg

gTg
= min

gT g=1
g⊥D1/21

gTLsymg = λ2

which gives the second smallest eigenvalue and g is the corresponding eigenvector. In general
applying the Courant-Fisher theorem, we can find the k smallest eigenvalues and their corresponding
eigenvectors.

Theorem 1 (Courant-Fischer Theorem). Given A a Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn−1 ≤ λn, let k be a given integer with 1 ≤ k ≤ n, and let wi ∈ Cn, then

max
w1,w2,...,wk−1

min
x 6=0,x∈Cn

x⊥w1,w2,...,wk−1

xTAx

xTx
= λk

6

We only included part of the theorem which finds the smallest eigenvalue and corresponding eigen-
vector under some given constraints. For the complete theorem and proof of the Courant-Fischer
theorem, see appendix A.

This can be extended to the general case for k > 2. The outline for this proof comes from the paper
by Von Luxberg [1]. In this case, we define a cluster indicator vector fk by

fj(vi) = fj(i) =

{
1√

vol(Aj)
, if vi ∈ Aj

0, otherwise
(11)

We define the matrix F as the matrix whose columns are the k indicator vectors. Then, fT
i fj = 0,

fT
i Dfi = 1 and fT

i Lfi = cut(Ai,Āi)
vol(Ai)

. Thus the NCut optimization problem becomes

minimize
A1,...,Ak

Tr(F TLF)

subject to F TDF = I

F defined in (10)

(12)

Relaxing the second constraint and substituting T = D1/2F gives of the relaxation problem of

minimize
T∈Rn×k

Tr(T TD−1/2LD−1/2T)

subject to T TT = I
(13)

This is a standard trace minimization problem in which the solution T which is a matrix whose
columns are the first k eigenvectors of Lsym. The proof of the standard trace minimization problem
will be provided in appendix A. Lsym is the normalized laplacian matrix defined as

Lsym = D−1/2LD−1/2. (14)

Thus the first k eigenvectors will solve the relaxed version of the min NCut problem.

2 Approach

The following subsections outline the various steps of the project. We will start by developing code
to produce a similarity graph from our database. Given the similarity graph we will compute the
normalized laplacian matrix. From there we will compute the first k eigenvectors of the laplacian
and place in a matrix, perform a dimension reduction on the matrix of eigenvectors and use a
clustering algorithm on the reduced dimension in order to cluster the data points.

2.1 Similarity Graph

Given the data set X1, ..., Xn and a notion of “similar”, a similarity graph is a graph where Xi and
Xj have an edge between them if they are considered “similar”.The Gaussian similarity function is

7

defined as s(Xi, Xj) = e
−||Xi−Xj ||

2

2σ2 where σ is a parameter. to be determined which varies depending
on the dataset used. We use the Gaussian similarity function to define the distance between any
two data points. We must then define some threshold ε that will determine if two data points are
similar enough. If s(Xi, Xj) < ε we will consider them similar and connect an edge between Xi and
Xj. For our project, choosing the best ε is not immediately apparent so we need to be careful in
choosing this correctly. Note that since each Xi ∈ R28×28, to compute the distance between any
two points we use the `2 norm for matrixes in this case given as

||Xi −Xj||22 =
28∑
k=1

28∑
l=1

(Xi(k, l)−Xj(k, l))
2

2.2 Laplacian Matrix

Recall that the Unnormalized Laplacian Matrix is defined as L = D−W . The Normalized Laplacian
is

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2. (15)

The eigenvectors of the Normalized Laplacian is directly related to the indicator vectors in the NCut
problem. Thus finding the k first eigenvectors of the Normalized Laplacian will give a clustering
into k partitions. Recall W is the adjacency matrix. Given the Gaussian similarity function, W
can be defined as

W = wij =

{
1, if s(xi, xj) < ε

0, otherwise

which will be used in computing the Normalized Laplacian.

2.3 Computing the first k eigenvectors

We now have to compute the first k eigenvectors of the Normalized Laplacian matrix. We will use
an iterative method called the Power Method to find them.

• Start with an initial nonzero vector, v0, for the eigenvector

• Let B = D−1/2WD−1/2. Form the sequence given by:

for i = 1, ..., l

xi = Bvi−1

vi =
xi
||xi||

end

8

For large values of l we will obtain a good approximation of the dominant eigenvector of B and
corresponding eigenvalue. We can compute this without specifically choosing l and repeat until
|vi− vi−1| < δ for some small value of δ. The largest eigenvalue of B will correspond to the smallest
eigenvalue of Lsym. Hence this will give us our first eigenvector we are looking for.

To find the next eigenvector we need to implement the power method with deflation. Iteratively,
we can compute a new matrix Bi+1 Form the set of new B matrices by

for i = 1, ..., k

Bi+1 = Bi − λivivT0
end

where λi, vi are the previous eigenvalue and eigenvector found respectfully, and v0 is some initial
non-zero vector. This removes the components of the previous eigenvectors found. Then we would
apply the same sequence to Bi+1 to find the vi eigenvector and repeat until we have the first k
eigenvectors.

The speed of convergence of this method depends on the size of the eigengap γk = |λk − λk+1|.
[1]. The larger the eigengap, the faster the convergence of the algorithm in computing the first k
eigenvectors.

We then put the first k eigenvectors into a matrix and normalize it. Let T ∈ Rn×k be the eigenvector
matrix with rows having norm 1. Set

ti,j =
vi,j

(
∑

s v
2
i,s)

1/2

This transforms our matrix V consisting of the first k eigenvector as columns to our new matrix T .
v11 v12 v13 . . . v1k
...

...
...

. . .
...

vi1 vi2 vi3 . . . vik
...

...
...

. . .
...

vn1 vn2 vn3 . . . vnk

⇒

t11 t12 t13 . . . t1k
...

...
...

. . .
...

ti1 ti2 ti3 . . . tik
...

...
...

. . .
...

tn1 tn2 tn3 . . . tnk


We now project the eigenvectors onto new space. Let yi ∈ Rk be a vector from the ith row of T .
This forms the new matrix Y = T T where each yi vector is a column of Y .


t11 t12 t13 . . . t1k
...

...
...

. . .
...

ti1 ti2 ti3 . . . tik
...

...
...

. . .
...

tn1 tn2 tn3 . . . tnk

⇒ yi =


ti1
ti2
...
tik


We will now preform a clustering algorithm on our new matrix Y of a reduced dimension.

9

2.4 Clustering

We can now perform a k-means algorithm on the new set of vectors of reduced dimension.

• Randomly select k cluster centroids, zj.

• Calculate the distance between each yi and zj.

• Assign the data point to the closest centroid.

• Recalculate centroids and distances from data points to new centroids.

• If no data point was reassigned then stop, else reassign data points and repeat.

Finally, assign the original point Xi to cluster j if and only if row i of the matrix Y was assigned to
cluster j. This is the final step in the algorithm. If the algorithm was implement correctly, similar
handwritten digits should be clustered together.

3 Implementation

The spectral clustering algorithm outlined above is planned to be implemented in the programming
language MatLab R2014b. This is the programming language that we are most comfortable with
using with the most prior knowledge of this language. This will be run on a personal laptop, a
Macbook Pro which is a 2.5 GHz Intel Core processor and has 4 GB of Memory. If needed we may
be able to upgrade to a more power computer but as of right now that does not seem necessary.

4 Databases

The database used will be the MNIST Handwritten digits database. The database includes a
training set of 60,000 images and a testing set of 10000 images. We will first consider the testing
set which has 1000 of each digit 0-9. Each image is of size 28 × 28 pixels. We denote an image
Xi ∈ R28×28. A variety of methods have been tested using this database. For this project, we want
to use these images for testing the spectral clustering algorithm to see if we can cluster the images
such that same digits are cluster together despite the different handwritings. The link below can
be used to view this database.

http://yann.lecun.com/exdb/mnist/

10

5 Validation

There are various phases in which we can validate various steps of the algorithm.

• Validate the k-means clustering.
We can validate the k-means clustering algorithm on a well known clustered set. Since we are
able to repeat the initial randomize starting centroids, we can repeat the algorithm on say
the Swiss Role dataset to obtain a “good” clustering.

• Validate the computation of the eigenvectors.
We can compare our results from the power method algorithm with the eigenvectors computed
by using the Matlab command eigs(Lsym).

• Validate the final solution.
We can visually validate the solution of the algorithm by displaying the clusters and seeing if
similar images are grouped together as predicted.

6 Testing

For testing purposes we can implement the spectral clustering algorithm on another database such
as a database of face images. One that could be testing on is the public database supplied by Yale
University called “The Extended Yale Face Database B”. This database contains 16128 images
of 28 different subjects, each under 9 poses and 64 different viewing conditions. If testing on this
database, one would expect the algorithm to give similar results. Ultimately the algorithm would
cluster similar faces together and put in different clusters of faces that were dissimilar. If time
allows we may be able to test on this database.

7 Project Schedule/ Milestones

We have split the project into different phases and allocated time to complete each phase.

• End of October/ Early November
Develop code to generate a Similarity Graph and Normalized Laplacian matrix from the
MNIST database. This will include testing for the correct parameter σ in the Gaussian
Similarity function as described previously.

• End of November/ Early December
Compute first k eigenvectors of the Normalized Laplacian matrix as well as validate this. Also
prepare for the mid-year presentation and report.

• February
Normalize the rows of matrix of eigenvectors and perform dimension reduction.

11

• March/April
Cluster the points using k-means clustering algorithm and validate this step.

• End of Spring semester: Implement entire algorithm, optimize and obtain final results as well
as prepare for the final presentation and final report.

8 Deliverables

The deliverables for this project are the MNIST database and code that delivers this. We will
deliver code that implements the spectral clustering algorithm and code that was use for testing
and validations at various steps. If time allows this code will be optimized for effective performance.
We will also deliver reports at the various periods throughout the course as requested which covers
the approach, implementation, validation, testing and milestones of the project. Finally we will
give the various presentations throughout the course that introduce the project, give a mid-year
update and a final presentation of results found.

12

A Appendix

Theorem (Courant-Fischer Theorem). Given A a Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn−1 ≤ λn, let k be a given integer with 1 ≤ k ≤ n, and let wi ∈ Cn, then

max
w1,w2,...,wk−1

min
x 6=0,x∈Cn

x⊥w1,w2,...,wk−1

xTAx

xTx
= λk

and

min
w1,w2,...,wn−k

max
x 6=0,x∈Cn

x⊥w1,w2,...,wn−k

xTAx

xTx
= λk

Proof. Since A is Hermitian, there exist a unitary matrix U ∈ Mn such that A = UΛUT with
Λ = diag(λ1, λ2, ..., λn). Let 1 ≤ k ≤ n. If x 6= 0 then

xTAx

xTx
=

(UTx)TΛ(UTx)

xTx
=

(UTx)TΛ(UTx)

(UTx)T (UTx)

and {UTx|x ∈ Cn and x 6= 0} = {y ∈ Cn|y 6= 0}. Thus if w1, w2, ..., wk−1 ∈ Cn are given, then

inf
x 6=0

x⊥w1,w2,...,wk−1

xTAx

xTx
= inf

y 6=0
y⊥UTw1,U

T w2,...,U
T wk−1

yTΛy

yTy

= inf
yT y=1

y⊥UTw1,U
T w2,...,U

T wk−1

n∑
i=1

λi|yi|2

≥ inf
yy=1

y⊥UTw1,U
T w2,...,U

T wk−1

yk=yk+1=...=yn=0

n∑
i=1

λi|yi|2

= inf
|y1|2+|y2|2+...+|yk−1|2=1
y⊥UTw1,U

T w2,...,U
T wk−1

k∑
i=1

λi|yi|2 ≥ λk

This shows that

inf
x 6=0

x⊥w1,w2,...,wk−1

xTAx

xTx
≥ λk

for any k − 1 vectors. But equality will hold for one choice of the vectors which is wi = un−i+k,
where U = [u1 . . . un]. Thus,

sup
w1,...,wk−1

inf
x 6=0

x⊥w1,w2,...,wk−1

xTAx

xTx
= λk

and we can replace inf and sup with min and max, respectfully, since the extremum is achieved.
The proof for the second case is similar.

13

Theorem (Min Trace Problem). Let A be Hermitian matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤
λn−1 ≤ λn, then

minimize
X∈Rn×k

Tr(XTAX) =
k∑
1

λi

subject to XTX = I

(16)

and the columns of X contain the corresponding eigenvectors of the k smallest eigenvalues of A.

Proof. Let h(X) = tr(XTAX). Then

h(X + Y)− h(X) = tr((XT + Y T)A(X + Y))− tr(XTAX)

= tr(XTAX) + tr(XTAY) + tr(Y TAX) + tr(Y TAY)− tr(XTAX)

= 2tr(XTAY) + tr(Y TAY)

Since

lim||Y ||→0
tr(Y TAY)

||Y ||
= 0

and

lim||Y ||→0
h(X + Y)− h(X)− tr(Y TAY)

||Y ||
= 0

then
DXh(Y) = 2tr(XTAY)

So the lagrange problem to be solved is

DXh(Y) = XTΛ

hence
2XTA = 2XTΛ

⇒ AX = ΛX

which gives

Ax1 = λ1x1

Ax2 = λ2x2

...

Axk = λkxk

Thus the solution X of the eigenvalue problem is the matrix whose columns are the eigenvectors of
the corresponding eigenvalues of A.

14

B References

[1] Von Luxburg, U. A Tutorial on Spectral Clustering. Statistics and Computing, 7 (2007) 4.

[2] Shi, J. and Malik J. Normalized cuts and image segmentation. IEEE Transations on Pattern
Analysis and Machine Intelligence, 22 (2000) 8.

[3] Chung, Fan. “Spectral Graph Theory”. American Mathematical Society. Regional Conference
Series in Mathematics. 1997. Ser. 92.

[4] Vishnoi, Nisheeth K. Lx = b Laplacian Solvers and their Algorithmic Applications. Foundations
and Trends in Theoretical Computer Science, 2012.

[5] Horn, R. and Johnson, C. “Matrix Analysis”. Cambridge University Press, 1985.

15

